
Stopping time complexity and
monotone-conditional complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen

IPONWEB (Berlin), HSE (Moscow), LIRMM (Montpellier)

MFCS 2018

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix-free characterization

stopping time complexity = the minimal
complexity of a program that enumerates a
prefix-free set of strings containing x

M : machine with one-directional input tape

domain of M : an enumerable prefix-free set
(obvious)

Every enumerable prefix-free set M is a domain
of a machine with one-directional input tape
(less obvious)

sketch: read the next bit only when you know
that some proper extension is in M

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix-free characterization

stopping time complexity = the minimal
complexity of a program that enumerates a
prefix-free set of strings containing x

M : machine with one-directional input tape

domain of M : an enumerable prefix-free set
(obvious)

Every enumerable prefix-free set M is a domain
of a machine with one-directional input tape
(less obvious)

sketch: read the next bit only when you know
that some proper extension is in M

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix-free characterization

stopping time complexity = the minimal
complexity of a program that enumerates a
prefix-free set of strings containing x

M : machine with one-directional input tape

domain of M : an enumerable prefix-free set
(obvious)

Every enumerable prefix-free set M is a domain
of a machine with one-directional input tape
(less obvious)

sketch: read the next bit only when you know
that some proper extension is in M

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix-free characterization

stopping time complexity = the minimal
complexity of a program that enumerates a
prefix-free set of strings containing x

M : machine with one-directional input tape

domain of M : an enumerable prefix-free set
(obvious)

Every enumerable prefix-free set M is a domain
of a machine with one-directional input tape
(less obvious)

sketch: read the next bit only when you know
that some proper extension is in M

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix-free characterization

stopping time complexity = the minimal
complexity of a program that enumerates a
prefix-free set of strings containing x

M : machine with one-directional input tape

domain of M : an enumerable prefix-free set
(obvious)

Every enumerable prefix-free set M is a domain
of a machine with one-directional input tape
(less obvious)

sketch: read the next bit only when you know
that some proper extension is in M

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix-free characterization

stopping time complexity = the minimal
complexity of a program that enumerates a
prefix-free set of strings containing x

M : machine with one-directional input tape

domain of M : an enumerable prefix-free set
(obvious)

Every enumerable prefix-free set M is a domain
of a machine with one-directional input tape
(less obvious)

sketch: read the next bit only when you know
that some proper extension is in M

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Question

Is there a machine-free characterization for sets of
pairs that are domains of machines with two
one-directional input tapes (“twice prefix free
machines”)?

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)
objects: isolated; descriptions: isolated;

conditions: prefixes (condition x∗)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)
objects: isolated; descriptions: isolated;

conditions: prefixes (condition x∗)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)
objects: isolated; descriptions: isolated;

conditions: prefixes (condition x∗)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities

stopping time complexity of x = C (x |x∗)
objects: isolated; descriptions: isolated;

conditions: prefixes (condition x∗)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)

objects: isolated; descriptions: isolated;
conditions: prefixes (condition x∗)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)
objects: isolated; descriptions: isolated;

conditions: prefixes (condition x∗)
Mikhail Andreev, Gleb Posobin, Alexander Shen

Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

A quantitative characterization of complexity

How to define C (x) not mentioning
descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these
properties

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

A quantitative characterization of complexity

How to define C (x) not mentioning
descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these
properties

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

A quantitative characterization of complexity

How to define C (x) not mentioning
descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these
properties

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

A quantitative characterization of complexity

How to define C (x) not mentioning
descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these
properties

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

A quantitative characterization of complexity

How to define C (x) not mentioning
descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these
properties

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Similar characterization of stopping time complexity

Stopping time complexity: also upper
semicomputable

how many simple strings? now all 0n1 have
complexity O(1)

but for every path α in the binary tree and for
every n there are less than 2n strings on this
path with C (x |x∗) < n.

Stopping time complexity is the minimal
function in this class.

less obvious (Vovk, Pavlovich)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Similar characterization of stopping time complexity

Stopping time complexity: also upper
semicomputable

how many simple strings? now all 0n1 have
complexity O(1)

but for every path α in the binary tree and for
every n there are less than 2n strings on this
path with C (x |x∗) < n.

Stopping time complexity is the minimal
function in this class.

less obvious (Vovk, Pavlovich)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Similar characterization of stopping time complexity

Stopping time complexity: also upper
semicomputable

how many simple strings? now all 0n1 have
complexity O(1)

but for every path α in the binary tree and for
every n there are less than 2n strings on this
path with C (x |x∗) < n.

Stopping time complexity is the minimal
function in this class.

less obvious (Vovk, Pavlovich)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Similar characterization of stopping time complexity

Stopping time complexity: also upper
semicomputable

how many simple strings? now all 0n1 have
complexity O(1)

but for every path α in the binary tree and for
every n there are less than 2n strings on this
path with C (x |x∗) < n.

Stopping time complexity is the minimal
function in this class.

less obvious (Vovk, Pavlovich)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Similar characterization of stopping time complexity

Stopping time complexity: also upper
semicomputable

how many simple strings? now all 0n1 have
complexity O(1)

but for every path α in the binary tree and for
every n there are less than 2n strings on this
path with C (x |x∗) < n.

Stopping time complexity is the minimal
function in this class.

less obvious (Vovk, Pavlovich)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Similar characterization of stopping time complexity

Stopping time complexity: also upper
semicomputable

how many simple strings? now all 0n1 have
complexity O(1)

but for every path α in the binary tree and for
every n there are less than 2n strings on this
path with C (x |x∗) < n.

Stopping time complexity is the minimal
function in this class.

less obvious (Vovk, Pavlovich)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

An oracle characterization

an oracle (bit sequence X) can be added to
everything in recursion theory (general
computability theory)

CX (x): complexity of x if decompressor has free
access to X

CX (x) ≤ C(x |x∗) + O(1) for every extension X
of x

C(x |x∗) = max{CX (x) : X is an extension of x}

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

An oracle characterization

an oracle (bit sequence X) can be added to
everything in recursion theory (general
computability theory)

CX (x): complexity of x if decompressor has free
access to X

CX (x) ≤ C(x |x∗) + O(1) for every extension X
of x

C(x |x∗) = max{CX (x) : X is an extension of x}

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

An oracle characterization

an oracle (bit sequence X) can be added to
everything in recursion theory (general
computability theory)

CX (x): complexity of x if decompressor has free
access to X

CX (x) ≤ C(x |x∗) + O(1) for every extension X
of x

C(x |x∗) = max{CX (x) : X is an extension of x}

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

An oracle characterization

an oracle (bit sequence X) can be added to
everything in recursion theory (general
computability theory)

CX (x): complexity of x if decompressor has free
access to X

CX (x) ≤ C(x |x∗) + O(1) for every extension X
of x

C(x |x∗) = max{CX (x) : X is an extension of x}

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

An oracle characterization

an oracle (bit sequence X) can be added to
everything in recursion theory (general
computability theory)

CX (x): complexity of x if decompressor has free
access to X

CX (x) ≤ C(x |x∗) + O(1) for every extension X
of x

C(x |x∗) = max{CX (x) : X is an extension of x}

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Five equivalent definitions of stopping time complexity

minimal complexity of a Turing machine with
one-directional input tape that stops at x

minimal complexity of enumeration a prefix-free
set containing x

C(x |x∗)
minimal function in the class of lower
semicomputable functions K such that no more
than 2n prefixes of any sequence have
complexity at most n

maximalCX (x) for all extensions X of x

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Five equivalent definitions of stopping time complexity

minimal complexity of a Turing machine with
one-directional input tape that stops at x

minimal complexity of enumeration a prefix-free
set containing x

C(x |x∗)
minimal function in the class of lower
semicomputable functions K such that no more
than 2n prefixes of any sequence have
complexity at most n

maximalCX (x) for all extensions X of x

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Five equivalent definitions of stopping time complexity

minimal complexity of a Turing machine with
one-directional input tape that stops at x

minimal complexity of enumeration a prefix-free
set containing x

C(x |x∗)
minimal function in the class of lower
semicomputable functions K such that no more
than 2n prefixes of any sequence have
complexity at most n

maximalCX (x) for all extensions X of x

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Five equivalent definitions of stopping time complexity

minimal complexity of a Turing machine with
one-directional input tape that stops at x

minimal complexity of enumeration a prefix-free
set containing x

C(x |x∗)

minimal function in the class of lower
semicomputable functions K such that no more
than 2n prefixes of any sequence have
complexity at most n

maximalCX (x) for all extensions X of x

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Five equivalent definitions of stopping time complexity

minimal complexity of a Turing machine with
one-directional input tape that stops at x

minimal complexity of enumeration a prefix-free
set containing x

C(x |x∗)
minimal function in the class of lower
semicomputable functions K such that no more
than 2n prefixes of any sequence have
complexity at most n

maximalCX (x) for all extensions X of x

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Five equivalent definitions of stopping time complexity

minimal complexity of a Turing machine with
one-directional input tape that stops at x

minimal complexity of enumeration a prefix-free
set containing x

C(x |x∗)
minimal function in the class of lower
semicomputable functions K such that no more
than 2n prefixes of any sequence have
complexity at most n

maximalCX (x) for all extensions X of x

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

What is not true

C (x |y∗) is not the minimal complexity of a
prefix-free function that maps some prefix of y
to x

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)]
such that for every y and n there are at most 2n

objects x such that C (x |y∗) < n; the difference
may be by a factor of 2 (but not more)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

What is not true

C (x |y∗) is not the minimal complexity of a
prefix-free function that maps some prefix of y
to x

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)]
such that for every y and n there are at most 2n

objects x such that C (x |y∗) < n; the difference
may be by a factor of 2 (but not more)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

What is not true

C (x |y∗) is not the minimal complexity of a
prefix-free function that maps some prefix of y
to x

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)]
such that for every y and n there are at most 2n

objects x such that C (x |y∗) < n; the difference
may be by a factor of 2 (but not more)

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Thanks!

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone
(prefix-stable) w.r.t. both arguments.

conditions and programs are prefixes, objects are
isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix
complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone
(prefix-stable) w.r.t. both arguments.

conditions and programs are prefixes, objects are
isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix
complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone
(prefix-stable) w.r.t. both arguments.

conditions and programs are prefixes, objects are
isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix
complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone
(prefix-stable) w.r.t. both arguments.

conditions and programs are prefixes, objects are
isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix
complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone
(prefix-stable) w.r.t. both arguments.

conditions and programs are prefixes, objects are
isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix
complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix stopping time complexity

K (x |y∗): the decompressor is monotone
(prefix-stable) w.r.t. both arguments.

conditions and programs are prefixes, objects are
isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix
complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program

minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability

minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]

> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)

> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]

= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .
A priori probability: random program (for the
universal decompressor) maps y to x
maximal lower semicomputable function
m(x |y∗) that is monotone w.r.t. y and∑

x m(x |y∗) ≤ 1 for every y
Now they differ [Andreev]

Open question: can one prove the equivalence of
prefix complexity definitions using prefix-free and
prefix-stable decompressors, not using a priori
probability as an intermediate step?
Formal version: are the monotone-conditional
complexities obtained using prefix-free and
prefix-stable (w.r.t. first argument) decompressors
the same or not?

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .

A priori probability: random program (for the
universal decompressor) maps y to x
maximal lower semicomputable function
m(x |y∗) that is monotone w.r.t. y and∑

x m(x |y∗) ≤ 1 for every y
Now they differ [Andreev]

Open question: can one prove the equivalence of
prefix complexity definitions using prefix-free and
prefix-stable decompressors, not using a priori
probability as an intermediate step?
Formal version: are the monotone-conditional
complexities obtained using prefix-free and
prefix-stable (w.r.t. first argument) decompressors
the same or not?

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .
A priori probability: random program (for the
universal decompressor) maps y to x

maximal lower semicomputable function
m(x |y∗) that is monotone w.r.t. y and∑

x m(x |y∗) ≤ 1 for every y
Now they differ [Andreev]

Open question: can one prove the equivalence of
prefix complexity definitions using prefix-free and
prefix-stable decompressors, not using a priori
probability as an intermediate step?
Formal version: are the monotone-conditional
complexities obtained using prefix-free and
prefix-stable (w.r.t. first argument) decompressors
the same or not?

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .
A priori probability: random program (for the
universal decompressor) maps y to x
maximal lower semicomputable function
m(x |y∗) that is monotone w.r.t. y and∑

x m(x |y∗) ≤ 1 for every y

Now they differ [Andreev]

Open question: can one prove the equivalence of
prefix complexity definitions using prefix-free and
prefix-stable decompressors, not using a priori
probability as an intermediate step?
Formal version: are the monotone-conditional
complexities obtained using prefix-free and
prefix-stable (w.r.t. first argument) decompressors
the same or not?

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .
A priori probability: random program (for the
universal decompressor) maps y to x
maximal lower semicomputable function
m(x |y∗) that is monotone w.r.t. y and∑

x m(x |y∗) ≤ 1 for every y
Now they differ [Andreev]

Open question: can one prove the equivalence of
prefix complexity definitions using prefix-free and
prefix-stable decompressors, not using a priori
probability as an intermediate step?

Formal version: are the monotone-conditional
complexities obtained using prefix-free and
prefix-stable (w.r.t. first argument) decompressors
the same or not?

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

Monotone-conditional prefix complexity

Even more splitting. . .
A priori probability: random program (for the
universal decompressor) maps y to x
maximal lower semicomputable function
m(x |y∗) that is monotone w.r.t. y and∑

x m(x |y∗) ≤ 1 for every y
Now they differ [Andreev]

Open question: can one prove the equivalence of
prefix complexity definitions using prefix-free and
prefix-stable decompressors, not using a priori
probability as an intermediate step?
Formal version: are the monotone-conditional
complexities obtained using prefix-free and
prefix-stable (w.r.t. first argument) decompressors
the same or not?

Mikhail Andreev, Gleb Posobin, Alexander Shen
Stopping time complexity and monotone-conditional complexity

