Stopping time complexity and monotone-conditional complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen

IPONWEB (Berlin), HSE (Moscow), LIRMM (Montpellier)

MFCS 2018

Mikhail Andreev, Gleb Posobin, Alexander Shen

Kolmogorov complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen

(日)

疌

• "amount of information" in a binary string x

- "amount of information" in a binary string x
- (Shannon information theory: amount of information in a random variable)

- "amount of information" in a binary string x
- (Shannon information theory: amount of information in a random variable)
- complexity C(x): "the minimal length of a description of x", "compressed size"

- "amount of information" in a binary string x
- (Shannon information theory: amount of information in a random variable)
- complexity C(x): "the minimal length of a description of x", "compressed size"
- = the minimal length of a program that produces x

- "amount of information" in a binary string x
- (Shannon information theory: amount of information in a random variable)
- complexity C(x): "the minimal length of a description of x", "compressed size"
- = the minimal length of a program that produces x
- depends on the description mode (programming language)

- "amount of information" in a binary string x
- (Shannon information theory: amount of information in a random variable)
- complexity C(x): "the minimal length of a description of x", "compressed size"
- = the minimal length of a program that produces x
- depends on the description mode (programming language)
- choose and fix an optimal one

Mikhail Andreev, Gleb Posobin, Alexander Shen

臣

-≣->

イロト イヨト イヨト イ

 How to tell which exit on a road one should take?

- How to tell which exit on a road one should take?
- "*N*th exit": log *N* bits of information

- How to tell which exit on a road one should take?
- "*N*th exit": log *N* bits of information
- "First exit after the bridge": O(1) bits

- How to tell which exit on a road one should take?
- "*N*th exit": log *N* bits of information
- "First exit after the bridge": O(1) bits
- "Last exit before the brigde": not allowed

- How to tell which exit on a road one should take?
- "*N*th exit": log *N* bits of information
- "First exit after the bridge": O(1) bits
- "Last exit before the brigde": not allowed
- you get a sequence of bits (one at a time) and decide when to stop

- How to tell which exit on a road one should take?
- "*N*th exit": log *N* bits of information
- "First exit after the bridge": O(1) bits
- "Last exit before the brigde": not allowed
- you get a sequence of bits (one at a time) and decide when to stop
- TM: input one-directional read-only tape

- How to tell which exit on a road one should take?
- "*N*th exit": log *N* bits of information
- "First exit after the bridge": O(1) bits
- "Last exit before the brigde": not allowed
- you get a sequence of bits (one at a time) and decide when to stop
- TM: input one-directional read-only tape
- stopping time complexity of x = the minimal plain complexity of a TM that stops after reading input x (not seeing the next bit)

Prefix-free characterization

Mikhail Andreev, Gleb Posobin, Alexander Shen

疌

2

 stopping time complexity = the minimal complexity of a program that enumerates a prefix-free set of strings containing x

- stopping time complexity = the minimal complexity of a program that enumerates a prefix-free set of strings containing x
- M: machine with one-directional input tape

- stopping time complexity = the minimal complexity of a program that enumerates a prefix-free set of strings containing x
- M: machine with one-directional input tape
- domain of *M*: an enumerable prefix-free set (obvious)

- stopping time complexity = the minimal complexity of a program that enumerates a prefix-free set of strings containing x
- M: machine with one-directional input tape
- domain of *M*: an enumerable prefix-free set (obvious)
- Every enumerable prefix-free set *M* is a domain of a machine with one-directional input tape (less obvious)

- stopping time complexity = the minimal complexity of a program that enumerates a prefix-free set of strings containing x
- M: machine with one-directional input tape
- domain of *M*: an enumerable prefix-free set (obvious)
- Every enumerable prefix-free set *M* is a domain of a machine with one-directional input tape (less obvious)
- sketch: read the next bit only when you know that some proper extension is in *M*

Is there a machine-free characterization for sets of pairs that are domains of machines with two one-directional input tapes ("twice prefix free machines")?

different "topologies" on descriptions and objects

different "topologies" on descriptions and objects

	isolated descriptions	descriptions as prefixes
isolated objects	plain complexity	prefix complexity
objects as prefixes	decision complexity	monotone complexity

different "topologies" on descriptions and objects

	isolated descriptions	descriptions as prefixes
isolated objects	plain complexity	prefix complexity
objects as prefixes	decision complexity	monotone complexity

decompressor: descriptions \times conditions \rightarrow objects

8 versions of conditional complexities

different "topologies" on descriptions and objects

	isolated descriptions	descriptions as prefixes
isolated objects	plain complexity	prefix complexity
objects as prefixes	decision complexity	monotone complexity

decompressor: descriptions \times conditions \rightarrow objects

8 versions of conditional complexities stopping time complexity of x = C(x|x*)

different "topologies" on descriptions and objects

	isolated descriptions	descriptions as prefixes
isolated objects	plain complexity	prefix complexity
objects as prefixes	decision complexity	monotone complexity

decompressor: descriptions \times conditions \rightarrow objects

8 versions of conditional complexities stopping time complexity of x = C(x|x*)objects: isolated; descriptions: isolated; conditions: prefixes (condition x*)

Mikhail Andreev, Gleb Posobin, Alexander Shen

▲ロ▶▲御▶▲恵▶▲恵▶ ― 恵 … のの()

 D(p,x): partial computable function (conditional decompressor)

- D(p,x): partial computable function (conditional decompressor)
- $C_D(y|x*) = \min\{|p|: D(p,x) = y\}$ (x is a condition)

- D(p, x): partial computable function (conditional decompressor)
- $C_D(y|x*) = \min\{|p|: D(p,x) = y\}$ (x is a condition)
- but *D* is required to be monotone ('prefix-stable') with respect to condition:

- D(p,x): partial computable function (conditional decompressor)
- $C_D(y|x*) = \min\{|p|: D(p,x) = y\}$ (x is a condition)
- but D is required to be monotone ('prefix-stable') with respect to condition:
- if D(p, x) = y, then D(p, xz) = y for every z

- D(p,x): partial computable function (conditional decompressor)
- $C_D(y|x*) = \min\{|p|: D(p,x) = y\}$ (x is a condition)
- but D is required to be monotone ('prefix-stable') with respect to condition:
- if D(p, x) = y, then D(p, xz) = y for every z
- C(y|x*) = the minimal plain complexity of a prefix-stable program that maps x to y

- D(p, x): partial computable function (conditional decompressor)
- $C_D(y|x*) = \min\{|p|: D(p,x) = y\}$ (x is a condition)
- but D is required to be monotone ('prefix-stable') with respect to condition:
- if D(p,x) = y, then D(p,xz) = y for every z
- C(y|x*) = the minimal plain complexity of a prefix-stable program that maps x to y
- C(x|x*) is not O(1) anymore

The "monotone-conditional" complexity C(y|x*)

- D(p, x): partial computable function (conditional decompressor)
- $C_D(y|x*) = \min\{|p|: D(p, x) = y\}$ (x is a condition)
- but D is required to be monotone ('prefix-stable') with respect to condition:
- if D(p,x) = y, then D(p,xz) = y for every z
- C(y|x*) = the minimal plain complexity of a prefix-stable program that maps x to y
- C(x|x*) is not O(1) anymore
- C(x|x*) = (plain) stopping time complexity

글 > 글

A quantitative characterization of complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen

→ < ≣ >

A quantitative characterization of complexity

 How to define C(x) not mentioning descriptions/programs?

- How to define *C*(*x*) not mentioning descriptions/programs?
- C(x) is upper semicomputable;

- How to define C(x) not mentioning descriptions/programs?
- C(x) is upper semicomputable;
- $\#\{x: C(x) < n\} < 2^n$ for all *n*;

- How to define C(x) not mentioning descriptions/programs?
- C(x) is upper semicomputable;
- $\#\{x: C(x) < n\} < 2^n$ for all n;
- *C*(·) is the minimal function with these properties

Similar characterization of stopping time complexity

Mikhail Andreev, Gleb Posobin, Alexander Shen

▲ロ▶▲御▶▲恵▶▲恵▶ ― 恵 … 釣ぬび

Similar characterization of stopping time complexity

• Stopping time complexity: also upper semicomputable

Similar characterization of stopping time complexity

- Stopping time complexity: also upper semicomputable
- how many simple strings? now all 0ⁿ1 have complexity O(1)

- Stopping time complexity: also upper semicomputable
- how many simple strings? now all 0ⁿ1 have complexity O(1)
- but for every path α in the binary tree and for every n there are less than 2ⁿ strings on this path with C(x|x*) < n.

- Stopping time complexity: also upper semicomputable
- how many simple strings? now all 0ⁿ1 have complexity O(1)
- but for every path α in the binary tree and for every n there are less than 2ⁿ strings on this path with C(x|x*) < n.
- Stopping time complexity is the minimal function in this class.

- Stopping time complexity: also upper semicomputable
- how many simple strings? now all 0ⁿ1 have complexity O(1)
- but for every path α in the binary tree and for every n there are less than 2ⁿ strings on this path with C(x|x*) < n.
- Stopping time complexity is the minimal function in this class.
- less obvious (Vovk, Pavlovich)

An oracle characterization

Mikhail Andreev, Gleb Posobin, Alexander Shen

疌

2

 an oracle (bit sequence X) can be added to everything in recursion theory (general computability theory)

- an oracle (bit sequence X) can be added to everything in recursion theory (general computability theory)
- C^X(x): complexity of x if decompressor has free access to X

- an oracle (bit sequence X) can be added to everything in recursion theory (general computability theory)
- C^X(x): complexity of x if decompressor has free access to X
- $C^X(x) \le C(x|x*) + O(1)$ for every extension X of x

- an oracle (bit sequence X) can be added to everything in recursion theory (general computability theory)
- C^X(x): complexity of x if decompressor has free access to X
- $C^X(x) \le C(x|x*) + O(1)$ for every extension X of x
- $C(x|x*) = \max{C^X(x): X \text{ is an extension of } x}$

▶ < ≣ ▶</p>

Mikhail Andreev, Gleb Posobin, Alexander Shen

 minimal complexity of a Turing machine with one-directional input tape that stops at x

- minimal complexity of a Turing machine with one-directional input tape that stops at x
- minimal complexity of enumeration a prefix-free set containing x

- minimal complexity of a Turing machine with one-directional input tape that stops at x
- minimal complexity of enumeration a prefix-free set containing x
- C(x|x*)

- minimal complexity of a Turing machine with one-directional input tape that stops at x
- minimal complexity of enumeration a prefix-free set containing x
- C(x|x*)
- minimal function in the class of lower semicomputable functions K such that no more than 2ⁿ prefixes of any sequence have complexity at most n

- minimal complexity of a Turing machine with one-directional input tape that stops at x
- minimal complexity of enumeration a prefix-free set containing x
- C(x|x*)
- minimal function in the class of lower semicomputable functions K such that no more than 2ⁿ prefixes of any sequence have complexity at most n
- maximal $C^{X}(x)$ for all extensions X of x

What is not true

Mikhail Andreev, Gleb Posobin, Alexander Shen

臣

≣≯

・ロト ・回ト ・ ヨト・

C(x|y*) is not the minimal complexity of a prefix-free function that maps some prefix of y to x

- C(x|y*) is not the minimal complexity of a prefix-free function that maps some prefix of y to x
- C(x|y*) does not have the natural quantitative characterization as a monotone over y function
 [C(x|y0*) ≤ C(x|y*), C(x|y1*) ≤ C(x|y*)]
 such that for every y and n there are at most 2ⁿ
 objects x such that C(x|y*) < n; the difference
 may be by a factor of 2 (but not more)

Thanks!

臣

イロト イ団ト イヨト イヨト

Mikhail Andreev, Gleb Posobin, Alexander Shen

Mikhail Andreev, Gleb Posobin, Alexander Shen

 K(x|y*): the decompressor is monotone (prefix-stable) w.r.t. both arguments.

Prefix stopping time complexity

- K(x|y*): the decompressor is monotone (prefix-stable) w.r.t. both arguments.
- conditions and programs are prefixes, objects are isolated

- K(x|y*): the decompressor is monotone (prefix-stable) w.r.t. both arguments.
- conditions and programs are prefixes, objects are isolated
- Why should we bother?

- K(x|y*): the decompressor is monotone (prefix-stable) w.r.t. both arguments.
- conditions and programs are prefixes, objects are isolated
- Why should we bother?
- Vovk and Pavlovich tried to define this version

- K(x|y*): the decompressor is monotone (prefix-stable) w.r.t. both arguments.
- conditions and programs are prefixes, objects are isolated
- Why should we bother?
- Vovk and Pavlovich tried to define this version
- separates many things that coincide for prefix complexity

Prefix (stopping time) complexity: different definitions

() 《 문) 《

Mikhail Andreev, Gleb Posobin, Alexander Shen

Prefix (stopping time) complexity: different definitions

• the length of the shortest prefix-stable program

Prefix (stopping time) complexity: different definitions

- the length of the shortest prefix-stable program
- minus logarithm of the a priori probability

- the length of the shortest prefix-stable program
- minus logarithm of the a priori probability
- minus logarithm of the maximal lower semicomputable semimeasure

- the length of the shortest prefix-stable program
- minus logarithm of the a priori probability
- minus logarithm of the maximal lower semicomputable semimeasure

Now:

- the length of the shortest prefix-stable program
- minus logarithm of the a priori probability
- minus logarithm of the maximal lower semicomputable semimeasure

Now:

 minimal prefix complexity of a prefix-free set containing x [Vovk-Pavlovic]

- the length of the shortest prefix-stable program
- minus logarithm of the a priori probability
- minus logarithm of the maximal lower semicomputable semimeasure

Now:

- minimal prefix complexity of a prefix-free set containing x [Vovk-Pavlovic]
- $\bullet > K(x|x*)$

- the length of the shortest prefix-stable program
- minus logarithm of the a priori probability
- minus logarithm of the maximal lower semicomputable semimeasure

Now:

- minimal prefix complexity of a prefix-free set containing x [Vovk-Pavlovic]
- $\bullet > K(x|x*)$
- > minus logarithm of the a priori probability (probability for the universal probabilistic machine to stop at x) [Andreev]

- the length of the shortest prefix-stable program
- minus logarithm of the a priori probability
- minus logarithm of the maximal lower semicomputable semimeasure

Now:

- minimal prefix complexity of a prefix-free set containing x [Vovk-Pavlovic]
- $\bullet > K(x|x*)$
- > minus logarithm of the a priori probability (probability for the universal probabilistic machine to stop at x) [Andreev]
- = minus logarithm of the maximal lower

semicomputable function m(x) whose sum along \mathcal{P}^{α}

Mikhail Andreev, Gleb Posobin, Alexander Shen

• Even more splitting...

- Even more splitting...
- A priori probability: random program (for the universal decompressor) maps *y* to *x*

- Even more splitting...
- A priori probability: random program (for the universal decompressor) maps *y* to *x*
- maximal lower semicomputable function m(x|y*) that is monotone w.r.t. y and $\sum_x m(x|y*) \le 1$ for every y

- Even more splitting...
- A priori probability: random program (for the universal decompressor) maps y to x
- maximal lower semicomputable function m(x|y*) that is monotone w.r.t. y and $\sum_{x} m(x|y*) \le 1$ for every y
- Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity definitions using prefix-free and prefix-stable decompressors, not using a priori probability as an intermediate step?

- Even more splitting...
- A priori probability: random program (for the universal decompressor) maps y to x
- maximal lower semicomputable function m(x|y*) that is monotone w.r.t. y and $\sum_{x} m(x|y*) \le 1$ for every y
- Now they differ [Andreev]

Open question: can one prove the equivalence of prefix complexity definitions using prefix-free and prefix-stable decompressors, not using a priori probability as an intermediate step? Formal version: are the monotone-conditional complexities obtained using prefix-free and

Mikhail Andreev, Gleb Posobin, Alexander Shen