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Kolmogorov complexity

“amount of information” in a binary string x

(Shannon information theory: amount of
information in a random variable)

complexity C(x): “the minimal length of a
description of x”, “compressed size”

= the minimal length of a program that
produces x

depends on the description mode (programming
language)

choose and fix an optimal one
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Vovk & Pavlovich idea

How to tell which exit on a road one should
take?

“Nth exit”: logN bits of information

“First exit after the bridge”: O(1) bits

“Last exit before the brigde”: not allowed

you get a sequence of bits (one at a time) and
decide when to stop

TM: input one-directional read-only tape

stopping time complexity of x = the minimal
plain complexity of a TM that stops after
reading input x (not seeing the next bit)
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Prefix-free characterization

stopping time complexity = the minimal
complexity of a program that enumerates a
prefix-free set of strings containing x

M : machine with one-directional input tape

domain of M : an enumerable prefix-free set
(obvious)

Every enumerable prefix-free set M is a domain
of a machine with one-directional input tape
(less obvious)

sketch: read the next bit only when you know
that some proper extension is in M
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Question

Is there a machine-free characterization for sets of
pairs that are domains of machines with two
one-directional input tapes (“twice prefix free
machines”)?
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The classification of complexities

decompressor: descriptions → objects

different “topologies” on descriptions and objects

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity

objects as prefixes decision complexity monotone complexity

decompressor: descriptions × conditions → objects

8 versions of conditional complexities
stopping time complexity of x = C (x |x∗)
objects: isolated; descriptions: isolated;

conditions: prefixes (condition x∗)
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The “monotone-conditional” complexity C (y |x∗)

D(p, x): partial computable function
(conditional decompressor)

CD(y |x∗) = min{|p| : D(p, x) = y} (x is a
condition)

but D is required to be monotone
(‘prefix-stable’) with respect to condition:

if D(p, x) = y , then D(p, xz) = y for every z

C (y |x∗) = the minimal plain complexity of a
prefix-stable program that maps x to y

C (x |x∗) is not O(1) anymore

C (x |x∗) = (plain) stopping time complexity
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A quantitative characterization of complexity

How to define C (x) not mentioning
descriptions/programs?

C (x) is upper semicomputable;

#{x : C (x) < n} < 2n for all n;

C (·) is the minimal function with these
properties
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Similar characterization of stopping time complexity

Stopping time complexity: also upper
semicomputable

how many simple strings? now all 0n1 have
complexity O(1)

but for every path α in the binary tree and for
every n there are less than 2n strings on this
path with C (x |x∗) < n.

Stopping time complexity is the minimal
function in this class.

less obvious (Vovk, Pavlovich)
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An oracle characterization

an oracle (bit sequence X ) can be added to
everything in recursion theory (general
computability theory)

CX (x): complexity of x if decompressor has free
access to X

CX (x) ≤ C(x |x∗) + O(1) for every extension X
of x

C(x |x∗) = max{CX (x) : X is an extension of x}
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Five equivalent definitions of stopping time complexity

minimal complexity of a Turing machine with
one-directional input tape that stops at x

minimal complexity of enumeration a prefix-free
set containing x

C(x |x∗)
minimal function in the class of lower
semicomputable functions K such that no more
than 2n prefixes of any sequence have
complexity at most n

maximalCX (x) for all extensions X of x
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What is not true

C (x |y∗) is not the minimal complexity of a
prefix-free function that maps some prefix of y
to x

C (x |y∗) does not have the natural quantitative
characterization as a monotone over y function
[C (x |y0∗) ≤ C (x |y∗), C (x |y1∗) ≤ C (x |y∗)]
such that for every y and n there are at most 2n

objects x such that C (x |y∗) < n; the difference
may be by a factor of 2 (but not more)
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Thanks!
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Prefix stopping time complexity

K (x |y∗): the decompressor is monotone
(prefix-stable) w.r.t. both arguments.

conditions and programs are prefixes, objects are
isolated

Why should we bother?

Vovk and Pavlovich tried to define this version

separates many things that coincide for prefix
complexity
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Prefix (stopping time) complexity: different definitions

the length of the shortest prefix-stable program
minus logarithm of the a priori probability
minus logarithm of the maximal lower
semicomputable semimeasure

Now:

minimal prefix complexity of a prefix-free set
containing x [Vovk-Pavlovic]
> K (x |x∗)
> minus logarithm of the a priori probability
(probability for the universal probabilistic
machine to stop at x) [Andreev]
= minus logarithm of the maximal lower
semicomputable function m(x) whose sum along
every path does not exceed 1 [Andreev]
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Monotone-conditional prefix complexity

Even more splitting. . .
A priori probability: random program (for the
universal decompressor) maps y to x
maximal lower semicomputable function
m(x |y∗) that is monotone w.r.t. y and∑

x m(x |y∗) ≤ 1 for every y
Now they differ [Andreev]

Open question: can one prove the equivalence of
prefix complexity definitions using prefix-free and
prefix-stable decompressors, not using a priori
probability as an intermediate step?
Formal version: are the monotone-conditional
complexities obtained using prefix-free and
prefix-stable (w.r.t. first argument) decompressors
the same or not?
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