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Abstract. We study a discrete model of jurisdiction formation in the
spirit of Alesina and Spolaore [1]. A finite number of agents live along a
line. They can be divided into several groups. If a group is formed, then
some facility is located at its median and every member x of a group S
with a median m pays 1

|S| + |x − m|.
We consider the notion of coalitional stability: a partition is stable if no

coalition wishes to form a new group decreasing the cost of all members.
It was shown by Savvateev et al. [4] that no stable partition may exist
even for 5 agents living at 2 points. We now study approximately stable
partitions: no coalition wishes to form a new group decreasing all costs
by at least ε.

In this work, we define a relative measure of partition instability and
consider bipolar worlds where all agents live in just 2 points. We prove
that the maximum possible value of this measure is approximately 6.2%. AQ1

Keywords: Facility location · Group partition · Coalitional stability
Approximate equilibrium

1 Introduction

Partitioning of society into groups affects many economic, political and social
processes. Everyone is a member of many groups but sometimes the groups
must be disjoint. For instance, most people have only one citizenship and only
one employer. Almost everywhere a person may be a member of at most one
political party. It is very hard to be a fan of two football clubs. An airline may
be a member of only one alliance. A bitcoin miner may be a member of only one
mining pool.

Why do people and other economic agents unite themselves into groups
(clubs, coalitions, communities, jurisdictions etc.)? The general answer is that a
group provides some type of club good that is either infeasible or too expensive
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2 A. Golman and D. Musatov

for an individual. In this paper, we study the case when this good is horizontally
differentiated. It means that the good is described by a set of characteristics
and different agents have different tastes. In this case, two opposite forces affect
the size of a group. On the one hand, the larger the group the less fraction of
the fixed cost is beared by an individual. On the other hand, a smaller group is
typically more homogeneous, hence its members could be better satisfied by the
club good characteristics.

The main theoretical question is whether these two forces always balance
each other and yield a stable partition. The answer crucially depends on the
underlying notion of stability. In some frameworks very general existence theo-
rems are proven. In other cases, some tricky examples without stable partitioning
are constructed. To the best of our knowledge, this paper is the first one where
an approximate equilibrium is studied in this context. It is more or less obvious
that an approximate equilibrium should always exist for coarse approximation
factors and may not exist for fine approximation factors if no exact equilibrium
exists. Our main contribution is to derive concrete bounds on these factors.

Our study is narrowed to a specific framework where the main features of the
model are highlighted. Firstly, we analyze a bipolar world with only two types
of public good. Secondly, we analyze coalitional stability: a group partition is
stable if no new coalition wishes to break out and thus decrease the cost of all
its members. The approximate analog is the following: no new coalition wishes
to break out and thus decrease the cost of all its members by a considerable
amount.

We illustrate our model by the following story: several sportspersons decide
which game to play: football or handball. Some people prefer football, the others
prefer handball, but everyone prefers to play than not to play. We ignore all
limitations on the number of players: any group may rent a hall and play there.
The hall is universal, so they may also mix the games: play football for some
time and then switch to handball. The rent price is distributed equally among
the players. If a player has to participate in the less preferred game, then he
gets some additional disutility. The society may divide themselves into several
groups. Each group rents a hall shares the payment equally and choose the game
by majority voting. If an equal number of agents vote for both games then the
playing time may be divided in any proportion.

1.1 Related Literature

Here we present a broad perspective of the studies in local public goods, facility
location and group partition.

The study of local public goods was started in the 1950s by a discussion
between Samuelson [15] and Tiebout [19]. Samuelson stated that a public good
can never be financed by a free choice of all society members. The main idea
is that if an agent chooses how much public good to purchase then she does
not account for positive externalities and thus underfinances the good. Tiebout
responded that the situation is different in the case of local public goods. In this
case, the choice may be internalized by “foot voting”: if an agent does not like
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Approximate Coalitional Equilibria in the Bipolar World 3

the tax level and the amount of public good provided in his jurisdiction then he
can migrate to another one. Tiebout’s hypothesis was that in this case a social
optimum is restored.

Unfortunately, Tiebout did not present a formal mathematical model. A sub-
sequent line of research formulated several approaches that dealt with vertical
differentiation: all agents value the local good but have different willingness to
pay for it. The society becomes stratified by the level of public good provi-
sion and, consequently, taxes. This framework was analyzed by Westhoff [20],
Bewley [3], Greenberg and Weber [8], among others. The latter paper was the
first one to distinguish two notions of stability: migrational and coalitional.
Under the former type of stability, no single agent wishes to change her jurisdic-
tion. Under the latter one no group of agents would like to form a new jurisdic-
tion.1 Both notions are based on quotes from the Tiebout paper.

Another approach deals with horizontal differentiation of local goods and het-
erogeneous tastes of agents. Mas-Colell [13] introduced a model of determining
a type of the public good within a community. In the seminal paper [1] Alesina
and Spolaore elaborated a model of stable partitioning into several jurisdictions
(nations). Their model is continuous and one-dimensional with a uniform dis-
tribution of agents. Each jurisdiction determines the location of its public good
(the capital) by the median rule.2 Every agent has two types of cost: monetary
cost for providing the good and transportational cost for reaching its location.
The paper also employs migrational and coalitional stability.

A bunch of subsequent papers analyzes the stability and efficiency issues
of the model. Haimanko et al. [9] prove that if all coalitions may redistribute
the cost in any manner then a coalitionary stable partition does always exist.
Bogomolnaia et al. [4,5] study different notions of stability for models with finite
number of agents and provide examples where no coalitionary stable structure
exists. Savvateev [16] provides a counterexample for a more general notion of
stability. Musatov et al. [14] explore a very general model with a continuum
of agents and migrational stability. It is proven that if a benefit from the local
good is bounded and an agent may refuse to join any group then no stable
structure may exist even for a very narrow class of models. On the other hand,
if participation is mandatory, then there always exists a partition satisfying
the border indifference property: no agent wants to migrate to the neighboring
community. Under some mild single-crossing conditions such a partition is also
a migrational equilibrium: no agent wants to migrate to a distant community
as well. The existence result was expanded by Marakulin [12] to the case of a
continuous population density with atoms.

Finally we mention some notable works on multi-dimensional models which
are due to Drèze et al. [7], Marakulin [11] and Savvateev et al. [18]. The first
paper also employed some kind of approximate equilibrium notion.

1 This is the type of stability developed by Aumann and Drèze [2].
2 This rule was also employed in the migrational models due to Bolton and Roland [6]

and Jehiel and Scotchmer [10].
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4 A. Golman and D. Musatov

2 The Model

2.1 General Setting

Here we formulate a specific model of splitting a bipolar world with a finite
number of agents. This model is similar to the model in [17]. A more general
model may be found, for instance, in [14]. In our model, there is a set X consisting
of N = L + R agents: L agents live at the point 0 (representing football) and
R agents live at the point d (representing handball). Denote by p(x) the point
where agent x lives. A community S may consist of l agents from the left and
r agents from the right. Every community should locate a facility somewhere
between 0 and d (endpoints included). This facility represents the distribution
of time between the games. We adopt the median rule: the facility is located at
a median m ∈ med(S), i.e., both {x ∈ S | p(x)x ≤ m} and {x ∈ S | p(x)x ≥ m}
must contain at least half of members of S. It means that if l > r then m = 0, if
l < r then m = d, and if l = r then m may be any point in [0, d]. (In this case,
we say that S is indeterminate). The median rule has two advantages. Firstly, a
median is a minimizer for the total disutility. Secondly, it beats any other option
by majority voting.

If a community is organized then all its members may use its facility. The
facility is uncapacitated and the cost of its maintenance (payment for hall rent)
does not depend on the number of users. Let this cost be equal to g. Apart
from the maintenance cost, every member pays for transportation to the facility
(disutility from a non-preferred game). If an agent is located at p and a facility
is located at m then the agent pays t · |p − m|. Thus, the total cost of agent x
within coalition S with the facility at m equals

C(x, S,m) =
g

|S| + t · |p(x) − m|.

Suppose that a society is split into jurisdictions S1, . . . , Sk with fixed medians
m1, . . . , mk. The configuration is coalitionary stable if no new community can
emerge and decrease the cost of all its members. That is, there is no community
S with its median m such that for all i and for all x ∈ S ∩ Si it holds that

C(x, S,m) < C(x, Si,mi).

2.2 Fixing the Parameters

In our model, we have three arbitrary parameters: d (the distance between the
two options), g (the cost of facility maintenance) and t (the unit cost of trans-
portation). It is clear that d and t do not matter by themselves. Only the product
t · d does influence the outcome. This value represents the disutility of football
players from playing handball and vice versa. So, let us fix t = 1 and keep d
variating. Now let us notice that g and d do not matter by themselves either,
only g/d does matter. This value is the “exchange rate” between the hall rent
and the disutility. So, let us fix g = 1 and keep (L,R, d) as the parameters of
the model.
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Approximate Coalitional Equilibria in the Bipolar World 5

One could think that the model is also invariant with respect to multiplying
L, R, and g by the same factor. Indeed, all costs remain the same after this
multiplication. But the notion of stability may differ because new coalitional
threats emerge. For instance, for L = 30 and R = 20 a community of size 27
may be a potential threat that is absent for L = 3 and R = 2. Nevertheless, we
could suppose w.l.o.g. that L ≥ R. (Football is not less popular than handball).

2.3 Approximate Coalitional Stability

Now we define the central notions for our analysis.

Definition 1. Consider a configuration P, i.e. a partition X = S1 � · · · � Sk

with fixed medians m1, . . . , mk. Denote by S(x) the group that contains x and
by m(x) the respective median. Denote by C(x,P) the cost of x in P, i.e.
C(x, S(x),m(x)). Then define the absolute instability of the configuration as the
value

Δabs(P) = max
T⊂X,T �=∅,m∈med(T )

min
x∈T

(
C(x,P) − C(x, T,m)

)
. (1)

The intuitive meaning is the following: if x agrees to join T with median
m then she bears cost C(x, T,m). The difference C(x,P) − C(x, T,m) is her
advantage from joining T , or willingness to join T . The minimum over x ∈ T is
the minimal willingness to join T . We may also call it the willingness to secede
of coalition T . If it is positive, then all agents in T would like to break out and
establish this community. If it is true for at least one T , then the configuration
is unstable. Thus, we have justified the following fact:

Proposition 1. For any configuration P it holds that Δabs(P) ≥ 0. Configura-
tion P is stable if and only if Δabs(P) = 0.

Proof. If we take T = Si then the willingness to join T is zero for all its members,
hence the maximum is non-negative. The second part was already proved.

Definition 2. The relative instability of configuration P is the value

Δrel(P) = max
T⊂X,T �=∅,m∈med(T )

min
x∈T

C(x,P) − C(x, T,m)
C(x,P)

. (2)

The intuitive meaning is the same as before, but now the willingness to
join is measured in terms of initial costs. Now we expand our notions from a
configuration to the whole world.

Definition 3. The (absolute, relative) instability of a bipolar world (L,R, d) is
the minimal (absolute, relative) instability of all configurations P of this world.
We use the same notation as before: Δabs(L,R, d) and Δrel(L,R, d).

Our main question is the following:

Problem 1. Find the least upper bound on Δabs(L,R, d) and on Δrel(L,R, d).
Which worlds are the least stable?

Partial solutions to this problem include computing the values of
Δabs(L,R, d) and Δrel(L,R, d) for particular L, R and d, finding parameters
with large instability and establishing some upper bounds.
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6 A. Golman and D. Musatov

3 Analysis of Approximate Equilibria: General
Considerations

It was proven in [17, Theorem 2] that any stable configuration must belong to
one of three types:

– “Union”. The partition consists of one grand coalition. (One hall is rented
and all play football).

– “Federation”. The partition consists of two coalitions: all agents at 0 and all
agents at d. (Two halls are rented and everyone plays their preferred game).

– “Mixed structure”. The partition consists of two coalitions: the first one con-
tains R agents from 0 and R agents from d, the second one contains L − R
agents from 0. The median of the first coalition lies somewhere between 0 and
d. (Two halls are rented, the first one is used for football, the second one is
used partially for football and partially for handball, no person who prefers
handball plays in the first hall).

In the case of approximate stability, things become more complex. But the
following theorem still holds (both for absolute and relative instability):

Theorem 1. There exists a configuration P minimizing the instability of a bipo-
lar world (L,R, d), such that:

– There are at most 3 coalitions in P. Among them, at most one coalition has
the median at 0, at most one has the median at d and at most one has the
median strictly in between.

– Among the coalitions with medians at 0 and d at most one contains some
agents from the other point.

The proof employs several lemmas. We start with the following one:

Lemma 1. Among all configurations that minimize the instability of a bipolar
world there must exist a strictly Pareto optimal one, i.e., there could not exist
another configuration P ′ such that for all x it holds that C(x,P ′) ≤ C(x,P) and
for some x it holds that C(x,P ′) < C(x,P). Also, every minimizing configuration
must be weakly Pareto optimal, i.e., there could not exist another configuration
P ′ such that for all x it holds that C(x,P ′) < C(x,P).

Proof. Suppose that P is a configuration with minimal absolute instability and
that P ′ weakly Pareto improves it. It means that for all x, T and m it holds
that C(x,P ′)−C(x, T,m) ≤ C(x,P)−C(x, T,m). The inequality remains valid
after minimizing both parts in x ∈ T and then after maximizing in (T,m). Thus
we obtain Δabs(P ′) ≤ Δabs(P). If P is a minimizer then so must be P ′. If P ′

cannot be further Pareto improved, then it must be a strictly Pareto optimal
minimizer. It can be easily shown that the set of possible tuples of utilities that
Pareto improves the initial one is compact, and thus the mentioned P ′ exists.
If the initial inequality were strict, then we would obtain Δabs(P ′) < Δabs(P)
that contradicts to the choice of P. Thus an optimal configuration cannot be
strictly improved and thus must be weakly Pareto optimal. The proof for relative
instability is similar.
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Approximate Coalitional Equilibria in the Bipolar World 7

This lemma immediately implies the following weak version of Theorem 1:

Lemma 2. There exists a configuration P that minimizes the instability of a
bipolar world (L,R, d), such that for any m there exists at most one coalition
with median m, and among the coalitions with medians at 0 or d at most one
contains agents from the opposite point.

Proof. From Lemma 1 we may suppose that P is strictly Pareto efficient. If
there are two coalitions with the same median then they may unite and thus
reduce their costs without affecting any other agent. If there is a coalition S1

with median 0 that contains agents from d and a coalition S2 with median d
that contains agents from 0 then the extra agents may switch their coalitions.
The costs of these agents will fall and the costs of all others remain the same. If
no such improvements could occur then we get the claimed configuration.

In order to get the full statement of Theorem 1, we must prove that there
could not be two jurisdictions with medians strictly between 0 and d. The argu-
ment from [17, Theorem 1] is no longer valid since not all threats considered
there lead to Pareto improvement. Instead, we employ the fact that the question
is non-trivial only if no stable partition exists.

Lemma 3. If a world (L,R, d) does not admit a stable configuration, then

L

R(L + R)
< d <

1
L

. (3)

Proof. If no stable configuration exists, then, in particular, configurations
“Union” and “Federation” are unstable. Consider the configuration “Union”.
Agents from 0 get least possible monetary cost and zero transportation cost.
Therefore, a separating group may include only agents from the right.

The greater is the separating group the less monetary cost each of them bears.
If some group would like to secede then the group of all right agents would like
to secede all the more. This implies that if “Union” is unstable then

1
R

<
1

L + R
+ d. (4)

By transposing the terms we get

d >
1
R

− 1
L + R

=
L

R(L + R)

and thus establish the first inequality. In the sequel we suppose that (4) holds.
Now consider the configuration “Federation”. Let S be the coalition having

maximum willingness to secede. Let S contain l agents from the left and r agents
from the right. Consider several cases:

1. S is indeterminate (i.e., l = r) and chooses median m ∈ [0, d]. If S wants to
break out then it must hold that

{
1
L > 1

l+r + m = 1
2r + m;

1
R > 1

l+r + d − m = 1
2r + d − m.
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8 A. Golman and D. Musatov

By summing up the two inequalities, we get

1
L

+
1
R

>
1
r

+ d.

Since r ≤ R we get

d <
1
L

, (5)

as stated.
2. The median of S is at 0 and l > r. Because of (4), agents from d cannot win

from joining S. But a group of left agents cannot win from breaking out since
after seceding they get 1

l instead of 1
L .

3. The median of S is at d and l < r. If l = 0, then S cannot win from seceding,
like in the previous case. If l > 0, then consider the group S′ consisting of S
and r − l agents from the left with the median still at d. Transportation cost
in S′ is the same as in S and monetary cost is lower. Thus, if S wins from
seceding, then S′ does win all the more. But S′ is indeterminate and thus it
implies d < 1

L , as before.

To complete the proof of Theorem 1, we need only one more ingredient.
Specifically, the case of two indeterminate coalitions must be excluded.

Lemma 4. There exists a configuration P minimizing the instability of a bipo-
lar world (L,R, d) that satisfies the properties from Lemma 2 and, moreover,
contains at most one indeterminate coalition.

Proof. Suppose that P contains at least two indeterminate coalitions with total
population 2a. We prove that after merging into one group they can locate the
median such that all their members are better off. Suppose that, on the contrary,
some member x is worse off for any location of the median. Suppose that she
belongs to coalition B with population 2b.

Firstly we prove that B must be a large coalition. Specifically, b is greater
than a

2 . Indeed, the initial cost of x must be at least 1
2b . The cost beared by x

in the merged group can be made 1
2a + d

2 . Since x must be worse off, we obtain

1
2a

+
d

2
>

1
2b

. (6)

But from (5) we have d
2 < 1

2L . Since a ≤ L, we have d
2 < 1

2a . Plugging this
into (6) we get 1

2b < 1
2a + 1

2a = 1
a , thus b > a

2 , as stated.
Secondly, we prove that there could not be small coalitions. Specifically, any

coalition C with population c ≤ a
2 is better off after joining B. Indeed, the new

cost is at most 1
2b + d. Since b > a

2 and d < 1
L , it is at most 1

a + 1
L . Since a < L,

this is at most 2
a ≤ 1

c . Since the old cost is at least 1
c , all members of C prefer

to join B. All members of B do also win if the median does not change: the
transportation cost stays the same and the monetary cost decreases.
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Approximate Coalitional Equilibria in the Bipolar World 9

Thus there could be only two indeterminate coalitions. Finally we show that
they are better off if they merge and locate the median at some point m. Suppose
that their populations are 2aγ and 2a(1 − γ), and the distance between their
initial medians is q. Suppose that they merge and locate the new median between
the old medians within the distances q1 and q2 to them, respectively. If the
median moves towards an agent then she must be definitely better off. Consider
the other agents. The members of the first coalition win 1

2aγ − 1
2a − q1. The

members of the second coalition win 1
2a(1−γ) − 1

2a − q2. Both these value can
be made non-negative iff their sum is non-negative. This is equivalent to the
following:

1
2aγ

+
1

2a(1 − γ)
− 1

a
≥ q. (7)

Note that 1
γ + 1

1−γ ≥ 4 if γ ∈ (0, 1). Thus the left part of (7) is at least 2
a − 1

a = 1
a .

But 1
a ≥ 1

L > d and of course d ≥ q. Thus (7) is established, the merger can be
profitably done and Lemma 4 and Theorem 1 are proven.

4 Approximation Algorithm for Computing Instabilities

The results of the previous section crucially decrease the number of configura-
tions that could potentially minimize the instability. The remaining possibilities
can be looked through in polynomial time. Firstly we show how to calculate the
instability of a fixed configuration. Note that after the secession all members of
the seceding coalition residing at the same point get the same cost. Thus the
minima in (1) and (2) are achieved for x with minimal initial cost. Note also
that we may consider only the case when the seceding coalition contains only
the agents with maximal cost from the two poles. This justifies the following
algorithm for computing Δabs(P):

1. Calculate C(x,P) for all x. This step is done straightforwardly by definition.
2. Sort all agents from the left by the costs in nonincreasing order. Do the same

with the agents from the right.
3. Assign value 0 to the variable Δ. For all l ∈ [0, L] and r ∈ [0, R] consider

the lth agent from the left and the rth agent from the right in the obtained
orders. Denote them by x and y respectively. Let T be the coalition of l agents
from the left and r agents from the right. Do the following:

– If l > r > 0 then Δ := max{Δ,min{C(x,P) − C(x, T, 0), C(y,P) −
C(y, T, 0)}};

– If r = 0 then Δ := max{Δ,C(x,P) − C(x, T, 0)};
– If 0 < l < r then Δ := max{Δ,min{C(x,P) − C(x, T, d), C(y,P) −

C(y, T, d)}};
– If l = 0 then Δ := max{Δ,C(y,P) − C(y, T, d)};
– If l = r then find m that maximizes min{C(x,P) − C(x, T,m),

C(y,P) − C(y, T,m)}. Usually it is just the root of linear equation
C(x,P) − C(x, T,m) = C(y,P) − C(y, T,m). Then assign Δ :=
max{Δ,min{C(x,P) − C(x, T,m), C(y,P) − C(y, T,m)}}.

4. Return Δ.
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10 A. Golman and D. Musatov

The algorithm for computing Δrel(P) is similar, but all terms of type C(z,P)−
C(z, T,m) are replaced by C(z,P)−C(z,T,m)

C(z,P) . The following bound on the time
complexity is straightforward:

Proposition 2. The algorithm for computing Δabs(P) works for O(N2) steps
for worlds with N agents.

Proof. The first stage is performed in O(NM) steps where M is the number
of groups. Clearly M = O(N), and for minimizing configurations we have even
M = O(1) by Theorem 1. The sorting on the second stage takes O(N log N)
steps. On the third stage the algorithms looks through all pairs (l, r) and makes
a small calculation. This takes O(LR) = O(N2) steps. The total running time
is O(N2), as stated.

Now we describe an approximate algorithm for computing Δabs(L,R, d) (or
Δrel(L,R, d)) in a bipolar world with parameters (L,R, d). The algorithm also
gets the parameter M—the maximum number of considered medians of the inde-
terminate coalition. The idea is to search through all configurations satisfying
the condition of Theorem 1 and take the minimal instability. We denote by (l, r)
the group consisting of l agents from the left and r agents from the right. If
l = r, we attach the median m as the third parameter. The procedure is the
following:

1. Check the validity of condition (3). If it does not hold, return 0.
2. Assign Δ := ∞. For all k ∈ [0, R] and for all c ∈ [0,M ]:

(a) For all l ∈ (L − R,L − k]:
– P := the configuration consisting of groups (l, 0), (L − k − l, R − k),

(k, k, c
M d);

– Δ := min{Δ,Δabs(P)}.
(b) For all r ∈ [0, R − k]:

– P := the configuration consisting of groups (L − k,R − k − r), (0, r),
(k, k, c

M d);
– Δ := min{Δ,Δabs(P)}.

3. Return Δ.

Proposition 3. The algorithm for computing Δabs(L,R, d) works for O(N4M)
steps for worlds with N agents.

Proof. The algorithm considers all possible k, c and l (or r). There are less than
R ·M ·L = O(N2M) variants totally. The computation of Δabs(P) takes O(N2)
steps, thus the total time is O(N4M).

Now we estimate the precision of the described algorithm.

Proposition 4. Let θ be d
M . If the algorithm for computing the absolute insta-

bility returns Δ, then Δabs(L,R, d) ≥ Δ − θ
2 .
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Proof. Suppose that Δabs(L,R, d) = Δabs(P), where P satisfies the condition
of Theorem 1. If P does not contain an indeterminate coalition then it will be
considered during the algorithm and Δ = Δabs(L,R, d) exactly. Suppose that
P contains an indeterminate coalition Q with median q and one or two other
coalitions. During the algorithm we will consider the partition P ′ with the same
coalitions and median q′ of Q such that |q − q′| ≤ θ

2 . Note that for all x it holds
that C(x,Q, q) ≤ C(x,Q, q′) + θ

2 . Hence

C(x,P ′) ≤ C(x,P) +
θ

2
(8)

for all x. This inequality still holds after subtracting C(x, T,m), taking minimum
and maximum. Thus Δabs(P ′) ≤ Δabs(P)+ θ

2 . Since P ′ is considered by the algo-
rithm, we obtain Δ ≤ Δabs(P ′). By our assumption, Δabs(P) = Δabs(L,R, d).
Thus the inequality Δabs(L,R, d) ≥ Δ − θ

2 is established.

Proposition 5. If the algorithm for computing the relative instability returns
Δ, then Δrel(L,R, d) ≥ Δ − θ(L + R).

Proof. The argument proceeds along the same line as the previous one. The
difference starts when we make implications about Δrel instead of Δabs. The
inequality (8) still holds and thus

C(x,P ′) − C(x, T,m)
C(x,P ′)

≤ C(x,P) − C(x, T,m) + θ
2

C(x,P ′)

=
C(x,P) − C(x, T,m)

C(x,P)
· C(x,P)
C(x,P ′)

+
θ

2C(x,P ′)
. (9)

The inequality (8) does also hold after switching P and P ′, i.e., C(x,P) ≤
C(x,P ′)+ θ

2 . Hence C(x,P)
C(x,P′) ≤ 1+ θ

2C(x,P′) . Thus the right part of (9) is at most
C(x,P)−C(x,T,m)

C(x,P) + θ
2C(x,P′)

(
1 + C(x,P)−C(x,T,m)

C(x,P)

)
≤ C(x,P)−C(x,T,m)

C(x,P) + θ
C(x,P′) ≤

C(x,P)−C(x,T,m)
C(x,P) +θ(L+R). The first inequality holds because C(x,P)−C(x,T,m)

C(x,P) ≤
1 and the second one because C(x,P ′) ≥ 1

L+R . Putting all together, we get

C(x,P ′) − C(x, T,m)
C(x,P ′)

≤ C(x,P) − C(x, T,m)
C(x,P)

+ θ(L + R).

After sequential minimizing and maximizing we get Δrel(P ′) ≤ Δrel(P)+ θ(L+
R), that implies the statement of the theorem, as before.

5 Analysis of Approximate Equilibria: Absolute
Instability

Now we proceed in the following way: we narrow the set of possible worlds where
the maximum instability can be achieved and search through the remaining set
exhaustively.
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12 A. Golman and D. Musatov

Theorem 2. The maximal possible absolute instability is achieved for some
(L,R, d) with L < 100, R < 100 and d ≤ 1.

Proof. If d > 1 then “Federation” is stable. Indeed, every agent has the cost at
most 1, but in any coalition with agents from different poles some agents has
the cost greater than 1.

If L ≥ 100 or R ≥ 100 then in “Federation” some agents have cost at most
0.01. Thus the absolute instability is at most 0.01. But the configuration L = 3,
R = 2, d = 14

45 yields absolute instability 1
90 > 0.01. (The proof of this fact is

straightforward but tedious and thus is omitted).

The remaining possibilities were analyzed in a brute-force manner. We found
only three pairs (L,R) with Δabs > 0.01 for some d. In all cases optimal d and
Δ can be shown to be rational numbers. In Table 1 we summarize our findings
for optimal distances:

Table 1. The worlds with maximal absolute instabilities.

L R d Δ

3 2 14
45

≈ 0.311 1
90

≈ 0.0111

4 3 5
24

≈ 0.208 1
48

≈ 0.0208

5 4 7
40

= 0.175 1
80

= 0.0125

These findings justify the following theorem:

Theorem 3. The maximal possible absolute instability in a bipolar world is 1
48 .

6 Analysis of Approximate Equilibria: Relative Instability

The case of relative instability is much more complex. The numerical experi-
ments show that sometimes the optimal configuration is neither “Federation”,
nor “Union”, nor “Mixed structure”. Specifically, the optimal configuration could
be a “Pseudofederation”: there are two communities, one of which contains L−k
agents from the left and the other contains k agents from the left and all agents
from the right. Thus, an analog of Theorem 2 from [17] does not hold in our
setting. On Fig. 1 we show which configuration is the most stable one for which
parameters.

Theorem 4. There exists a bipolar world with Δrel(L,R, d) > 0.0615.

Proof. By applying our algorithm for computing Δrel to various parameters
we found the following example: L = 73, R = 56, d = 0.0114. The relative
instability returned by the algorithm 0.0622. By subtracting the discrepancy
we get the claimed lower bound. In Table 2 the relative instabilities for various
configurations are shown.

A
u

th
o

r 
P

ro
o

f



Approximate Coalitional Equilibria in the Bipolar World 13

Fig. 1. The figure describes which configurations are the most stable ones for which
parameters. Pseudofederation with a% means that the sizes of the groups are approx-
imately (L − 0.01aR, 0) and (0.01aR, R).

Finally, we present an upper bound on Δrel.

Theorem 5. For any bipolar world Δrel(L,R, d) ≤ 0.063.

Proof (Sketch). The complete proof is rather technical and tedious. As before,
it combines analytical and numerical methods. Here we present only the general
idea. We consider the four main classes of configurations: “Union”, “Federation”,
“Mixed” and “Pseudofederation”. We prove that our bound hold even for these
configurations. All the more it does hold for an arbitrary one.

For example, consider the case of “Federation”. Here C(x,P) = 1
L for the

left agents and C(x,P) = 1
R for the right agents. Let the seceding coalition T be

indeterminate. If T is willing to secede, then the group (R,R) is willing stronger,

Table 2. Relative instabilities in the world L = 73, R = 56, d = 0.0114.

Configuration Groups Δ

Union (73, 56) 0.066

Federation (73, 0) + (0, 56) 0.074

Mixed (56, 56) + (9, 0) 0.062

Optimal (69, 0) + (4, 56) 0.062

A
u

th
o

r 
P

ro
o

f



14 A. Golman and D. Musatov

so we may think that T = (R,R). Let t be the median of T . Thus the new costs
are 1

2R + t for the left agents and 1
2R + d − t for the right agents. If the relative

instability equals δ then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ ≥ 1 −
1

2R + t
1
R

=
1
2

+ Lt;

δ ≥ 1 −
1

2R + d − t
1
L

= 1 − L

R
·
(

1
2

+ Ld − Lt

)
.

(10)

Note that the right parts of (10) depend not on L, R, d, t themselves, but on
the composite values ρ = L

R , γ = Ld, η = Lt. Thus δ must be not less than

min
{

1
2

+ η, 1 − ρ

(
1
2

+ γ − η

)}
. (11)

This lower bound is maximal for η =
1
2 −ρ( 1

2+γ)

1+ρ . Plugging this into (11) we get
a lower bound on δ.

Then we consider other seceding coalitions and obtain other lower bounds on
δ. The maximum of these bounds is a lower bound on the relative instability of
the configuration. Then we consider other configurations and take the minimal
bound. We search for this minimum numerically and find the following values:

L

R
≈ 1.3065;

d

R
≈ 0.6328; δ ≈ 0.0623.

Adding the discrepancy, we obtain Δrel(L,R, d) ≤ 0.063 for all (L,R, d), as
claimed.

7 Conclusion

This work is the first contribution to the literature on jurisdiction partitions that
analyzes approximate coalitional equilibria. We have analyzed the bipolar world
and found out how far such a world could be from an equilibrium. We considered
the cases of absolute and relative instability metrics and established the bounds
on them using numerical methods. In the first case, the bound is exact. In the
second case, the upper and the lower bounds almost coincide. We believe that the
true value lies somewhere between 0.0622 and 0.0623. The future work should
give the precise value in the analytic form and study the worlds other than
bipolar ones. Our conjecture is that the bipolar worlds are the least stable.

Acknowledgments. We want to thank Alexei Savvateev for his support and advice
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