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Abstract

Consider a binary string x of length » whose Kolmogorov complexity equals an for some « < 1.
We want to increase the complexity of x by changing a small fraction of bits in x. This is always
possible: Buhrman, Fortnow, Newman and Vereshchagin showed [Buhrman et al., 2005] that the
increase can be at least én for large n (Where ¢ is some positive number that depends on « and
the allowed fraction of changed bits).

We consider a related question: what happens with the complexity of x when we randomly
change a small fraction of the bits (changing each bit independently with some probability p)?
It turns out that a linear increase in complexity happens with high probability, but the
guaranteed increase is smaller than in the case of arbitrary change. We note that the amount of
the increase depends on x (strings of the same complexity could behave differently), and give an
exact lower and upper bounds for this increase (with o(n) precision).

The proof uses the combinatorial technique that goes back to Ahlswede, Gacs and Kérner
[Ahlswede et al., 1976]. For the reader’s convenience (and also because we need a slightly
stronger statement) we provide a simplified exposition of this technique, so the paper is
self-contained.

AHHOTaLUs

PaccMoTpum GMHAPHYIO CTPOKY X ITTMHBI 72 C KOJIMOTOPOBCKO¥ CJIOKHOCTBIO i [J1S1 HEKOTOPOTO
a < 1. MbI XOTUM YBEIUYUTD CJI0KHOCTb X MU3MEHUB MajyIo 1010 OUTOB. ITO BCEr[ia BO3MOXKHO:
Bypman, ®opTHOy, HbloMmaH 1 Bepemjaruu nokasanu [Buhrman et al., 2005], uTo MOXHO
rapaHTMPOBATh yBeJINUeHMe CI0KHOCTY 110 KpaiiHeit Mepe Ha dn 151 [OCTATOYHO OOIbIINX &
(rme § — HeKOTOpoe MOJIOKUTEIbHOE YMCI0, KOTOPOe 3aBUCUT OT a U JOJIU Pa3pelIéHHbIX
U3MEeHEeHMIn).

MbI paccMaTpyBaeM CBSI3aHHbBIN BOIIPOC: UTO MTPOVCXOIUT CO CJIOKHOCTBIO CTPOKM X KOT/IA MbI
CIy4aifHO M3MeHsIeM HeOOJIbIIIYIO T0JII0 OMTOB (TO eCTh, MU3MEeHsIEM KakKAbIii OMT He3aBUCUMO C
HEKOTOPOJ BEPOSITHOCTBIO p)? OKa3bIBAETCS, IMHEITHOE YBEIMUEHYE CJIOKHOCTY ITPOVCXOINUT C
60JbI1I0V BEPOSITHOCTBIO, HO 3TO M3MeHeHMe MeHbllle, UeM B Cydae ITPOM3BOIbHbIX
M3MeHeHMIi. BenmunHa M3MeHeHMs CJIOXKHOCTM 3aBUCUT OT CTPOKM x (CTPOKM C OIMHAKOBOI
CJIOKHOCTBIO MOTYT BEeCTU Ce06s T0-pa3HOMY), U JaéM TOUHbIe BepxHMe U HISKHME OLIeHKM Ha
U3MEeHEeHMe CJIOKHOCTU C TOYHOCTBIO o(n).

Jloka3aTeabCTBO MUCIIONb3yeT KOMOMHATOPHYIO PACCYKIEHMSI, BOCXOASIIYIO K AjnicBenie, lauy u
Képnepy [Ahlswede et al., 1976]. [Ins1 yno6cTBa unTaTess (a TakKe ITIOTOMY YTO HAM HY>KHO
HEMHOTO 60Jiee CUTbHOE YTBEPKAeHMe) Mbl IPUBOAMM O0Jiee MPOCThie T0Ka3aTelbCTBA
HYKHBIX Pe3y/IbTaTOB, TaK YTO paboTa CaMOAOCTATOYHA.
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Abstract

Consider a binary string x of length n whose Kolmogorov complexity equals an for
some o < 1. We want to increase the complexity of x by changing a small fraction of
bits in x. This is always possible: Buhrman, Fortnow, Newman and Vereshchagin showed
[Buhrman et al., 2005] that the increase can be at least 6n for large n (where 0 is some
positive number that depends on & and the allowed fraction of changed bits).

We consider a related question: what happens with the complexity of x when we ran-
domly change a small fraction of the bits (changing each bit independently with some
probability p)? It turns out that a linear increase in complexity happens with high prob-
ability, but the guaranteed increase is smaller than in the case of arbitrary change. We
note that the amount of the increase depends on x (strings of the same complexity could
behave differently), and give an exact lower and upper bounds for this increase (with o(n)
precision).

The proof uses the combinatorial technique that goes back to Ahlswede, Gacs and
Korner [[Ahlswede et al., 1976]. For the reader’s convenience (and also because we need
a slightly stronger statement) we provide a simplified exposition of this technique, so the
paper is self-contained.

1 Introduction

The Kolmogorov complexity C(x) of a binary string x is defined as the minimal length of
the program that generates x, assuming that we use an optimal programming language that
makes the complexity function minimal up to an O(1) additive term (see [Li and Vitanyi, 2008,
Shen et al., 2017] for details). There are several versions of complexity; we consider the orig-
inal version, called plain complexity. In fact, for our considerations the difference between
different versions does not matter, since they differ only by O(logn) term for n-bit strings,
but we restrict ourselves to plain complexity for simplicity.

The complexity of n-bit strings is between 0 and n (we omit O(1) additive terms); most
strings have complexity close to 7. Consider a string x of length 7 that has some intermediate
complexity, say 0.5n. Let us change about 1% of bits in x, changing each bit independently
with probability 0.01. Does this change increase the complexity of x? It may depend on the
bits we change, but it turns out that for a random change the complexity of the resulting string
increases with high probability: we get a string of complexity at least 0.5017n with probability
at least 99%, for all large enough n (the result is necessarily asymptopic, since Kolmogorov
complexity function is defined up to O(1) terms).

This is the type of statement we are interested in; of course, the parameters above are
chosen as an example, and the following general statement is true.



Theorem 1. There exists a strictly positive function 6(a, T) defined for a,t € (0,1) with the
following property: for all sufficiently large n, for every a € (0,1), for every T € (0,1), for
B = a+ 6(a, T), and for every x such that C(x) > an, the probability of the event

C(N(x)) > pn

where N, (x) is a random variable obtained if we change every bit in x independently with prob-
ability 7, is at least 1 — 1/n.

Remark 1. We use the inequality C(x) > an (and not an equality C(x) = an) to avoid technical
problems: the complexity C(x) is an integer, and an may not be an integer.

Remark 2. One may consider only 7 < 1/2 since reversing all bits does not change Kolmogorov
complexity. For T = 1/2 the variable N (x) is uniformly distributed in the Boolean cube B",
so its complexity is close to 71, and the statement is easy (for arbitrary f < 1).

Remark 3. We use a, T as parameters while fixing the probability bound as 1 —1/n. As we will
see, the choice of this bound is not important: we could use a stronger bound (exponentially
close to 1) as well.

Now the natural question arises: for which functions 6(, 7) the statement of Theorem [
holds. In other words, fix a and 7. Theorem [ guarantees that there exists some B > a such
that every string x of complexity at least an is guaranteed to have complexity at least fn after
T-noise (with high probability). What is the maximal value of B for which such a statement is
true?

Before answering this question, we should note that the guaranteed complexity increase
depends on x: for different strings of the same complexity the typical complexity of N (x)
could be different. Here are two opposite examples (with minimal and maximal increase, as
we will show).

Example 1. Consider some p € (0, 1) and Bernoulli distribution B, on the Boolean cube B" (bits
are independent; every bit equals 1 with probability p). With high probability the complexity
of a B,-random string is 0(11)-close to nH (p) (see [Shen et al., 2017, chapter 7]), where H(p) is
the Shannon entropy function

H(p) = —plogp — (1 -p)log(l - p).
After applying t-noise the distribution B, is tranformed into By ;), where
N(t,p)=pAl-1)+(1-p)t=p+1-2p1

is the probability to change the bit if we first change it with probability p and then (indepen-
dently) change it with probability 7, and the complexity of N (x) is close (with high probabil-
ity) to H(N(t, p)) if the B,-random string x and the 7-noise are chosen independently. So in
this case we have (with high probability) the complexity increase

H(p)n — H(N(z, p))n.

Note that N(7, p) is closer to 1/2 than p, and H is strictly increasing on [0, 1/2], so indeed some
increase happens.

Example 2. Now consider an error-corrrecting code that has 24" codewords and corrects n
errors (this means that the Hamming distance between codewords is greater than 27n). Such
a code may exist or not depending on the choice of & and 7. The basic result in coding theory,
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Gilbert’s bound, guarantees that it exists if @ and 7 are not too large. Consider some pair of «
and 7 for which such a code exist; moreover, let us assume that it corrects up to 7’n errors for
some 7’ > 7. We assume also that the code itself (the list of codewords) has small complexity,
say, O(log n). This can be achieved by choosing the first (in some ordering) code with required
parameters.

Now take a random codeword of this code; most of the codewords have complexity close
to an. If we randomly change each bit with probability p, then with high probability we get
at most 7’1 errors, so decoding is possible and the pair (x, noise) can be reconstructed from
N, (x), the noisy version of x. Then the complexity of N.(x) is close to the complexity of the
pair (x, noise), which (due to independence) is close to an + H(t)n with high probability. So
in this case we have the complexity increase

an — (a + H(1))n.

Remark 4. Note that this increase is maximal possible not only for a random independent
noise but for any change in x that changes 7-fraction of bits. See below the discussion of the
difference between random change and arbitrary change.

Now we formulate the result we promised. It says that the complexity increase observed
in Example [Il is the minimal possible: such an increase is guaranteed for every string of given
complexity.

Theorem 2. Let « = H(p) for somep € (0,1). Let T be an arbitrary number in (0,1). Let  be
some number less than H(N(p, 7)). Then for sufficiently large n the following is true: for every
string x with C(x) > an the string N, (x), obtained from x by changing each bit independently
with probability T, has complexity greater than BN, with probability at least 1 — 1/n.

The Example [ shows that the bound for f in this theorem is optimal. However, the result
does not say anything about the boundary case when f is exactly H(N(p, 7)), for this our tools
are not precise enough.

Theorem [ is the main result of the paper. It is proven, as it often happens with results
about Kolmogorov complexity, by looking at its combinatorial counterparts. We explain the
reduction to a combinatorial statement in the next section. Then in Section § we prove the
combinatorial statement. In fact, if we are interested in some complexity increase (Theorem [f)
a simple argument (suggested by Fedor Nazarov) that uses Fourier transform is enough. A
stronger result can be obtained by hypercontractivity techniques. However, for the optimal
bound (Theorem H) we need to use more advanced tools from [Ahlswede et al., 1976] paper.

2 Reduction to combinatorial statements

We want to estimate the complexity increase caused by random noise. Let us consider first
a different question. What if we are allowed to change arbitrary bits (only the number of
changed bits in bounded) and want to increase complexity? This question was considered
in [Buhrman et al., 2005]. It turns out that it is equivalent to a combinatorial statement, and
similar equivalence can be used for the case of random change. Let us look first at the case of
arbitrary change.

2.1 Arbitrary change

Fix some « and 7. Our goal is to show, for some § > a, that every string of complexity at
least an can be changed in at most 77 position to get some string of complexity at least 1.



Let us reformulate this goal using contraposition: if a string cannot be changed in at most tn
positions to get a string of complexity at least fn, then its complexity is at most an. In other
words, consider the set B of all n-bit strings that have complexity less than fn. We want to
show that if a Hamming ball of radius 77 is contained entirely in B, then the center of this ball
has complexity less than an.

This would imply that the “7n-interior of B”, the set A of the centers of tn-balls con-
tained entirely in B, has less than 24" elements. On the other hand, this cardinality bound is
enough, the connection works in the reverse direction, too, if we measure complexity with
o(n)-precision. Indeed, knowing n, fn and 77 (their integer parts), we may enumerate the set
B; when an entire ball of radius 77 is covered by the points of B that are already enumerated,
we know that the center of this ball is in A. So A can be enumerated, and each of its elements
can be described by specifying (in addition to n and | S, which require only O(log 1) bits) its
ordinal number in the enumeration, and this number has log #A bits. So the 2*" bound for the
size of A implies an+ O(log n) bound for the complexity of all elements in A, and the O(log )
term is negligible since we consider the question with o(n)-precision.

Now we can state the combinatorial counterpart of the result from [Buhrman et al., 2005],
and the required relation between « and f.

Proposition 1. Let p be some number in (0,1) and let « = H(p). Let T be some positive number
sothatp + 1 < 1/2, and let = H(p + 7). Let B be an arbitrary subset of B" of size at most
2P Let A be a subset of B", and for every x € A the Hamming ball of radius tn with center x
is contained in B. Then the cardinality of A does not exceed poly (1)2%".

This is a direct consequence of the Harper’s theorem (see, e.g.,[Frankl and Fiiredi, 1981])
that says that for a set of a given size its c-interior (for some fixed c) is maximal when the
set is a Hamming ball (formally speaking, is between two Hamming balls of sizes k and k + 1
for some k). Or, in dual terms, that the c-neighborhood of a set of a given size is minimal
if a set is a Hamming ball. The relation between 2% and 2" in the proposition is just the
relation between the sizes of balls whose radii differ by tn (we ignore polynomial in 7 factors
for simplicity). Note that p + T < 1/2 is needed since otherwise the radius exceeds 7/2 and
then the log-size of the ball is close to 7 and not H((p + 7)n). The poly (1) factor is needed due
to the polynomial factor in the estimates of the ball size in terms of Shannon entropy (the ball
of radius yn has size 2H0)" up to polynomial in 7 factors).

We do not go into details here (and do not reproduce the proof of Harper’s theorem) since
we need this result only to motivate the corresponding relation between combinatorial and
complexity statements for a random change.

2.2 Random change

For the random change the corresponding combinatorial statement needs to be changed. Be-
fore, for some set B and some number 7, we considered the Tn-interior of B, i.e., the points
that are contained in B together with its Tn-neighborhood. Now we need to consider a bigger
set of all points x such that N,(x) gets into B with probability at least 1/nJ| Let us state this
reduction explicitly.

'One could also replace the 7-noise by changing a randomly chosen set of at most 7 bits (all sets of size at
most Tn are considered as equiprobable). Then we have to consider balls where at least 1/n-th part of the ball is
covered by B. This is closer to the case of arbitrary change. Technically this setting is less convenient, but one
can translate our results to this language without much difficulties and get the same relation between a, § and 7.



Proposition 2. Let @ and B be some numbers in (0,1), and a < B. Let T € (0,1/2) be some
number. Assume that the following combinatorial statement is true: for every sufficiently largen,
for every set B C B" such that #B < 2P", the set A of all points x € B" that get into B with
probability greater than 1/n after applying t-noise, has size #A < 2%".

Then, for every a’ > a, the following complexity statement is true: for all sufficiently large n,
for every n-bit string x such that C(x) > a’n, the probability of the event “T-noise transforms x
into a string y = N (x) such that C(y) > pn” is at least 1 — 1/n.

Remark 5. This theorem shows, informally speaking, that the region of (a, §, 7) where the
combinatorial statement is true, is contained (may be, except the boundary points, since we
require @’ > @) in the region where the complexity statement is true. In fact, these regions
coincide (save the boundary points, maybe), since Example [ and Theorem J provide matching
upper and lower bounds.

Proof of Proposition [3. Fix a, B, T, and a’ satisfying the conditions of the proposition. Let 1 be
a sufficiently large integer. Consider the set B of n-bit strings y such that C(y) < pn. This set
contains at most 2/ elements. Then consider the set A constructed as in the combinatorial
statement, i.e., the set of all x such that the probability of the event “N (x) € B” exceeds 1/n.
The combinatorial assumption guarantees that the size of A does not exceed 2. The set
B can be enumerated if 7 and n is known. Enumerating B, we get (for each x) increasing
lower bounds for the probability of the event N (x) € B and can enumerate strings x where
this probability exceeds 1/n. The ordinal number in the enumeration has an bits (due to the
bound for #A), and together with additional O(log 1) needed to specify parameters we get
an + O(logn) < a’n: complexity of each element of A is less then a’n. This is exactly the
statement we need to prove.f [

3 Combinatorial proof

In this section we provide the combinatorial bound, as discussed in the previous section:

Proposition 3. Let &« = H(p) for somep € (0,1). Let T be an arbitrary number in (0,1). Let
B = H(N(p,)). Then for every set B of size at most 2P", the set A of all x € B such that the
probability of the event “N (x) € B” is greater than 1/n, where N.(x) is obtained from x by
changing each bit independently with probability T, has cardinality at most poly (11)2%".

Together with the reduction described in the previous section (Proposition [ this finishes
the proof of Theorem [J. (Note that the polynomial factor in Proposition B can be absorbed for
large n by a small change in & or f3, so it does not matter.)

3.1 An easy proof of some decrease

We start with a proof (suggested to us by Fedor Nazarov, personal communication) of a weak
version of Proposition § showing that for every 7 and every B < 1 there exists some a < 8
such that required bound #A < 2%" is valid of every B of size 2.

?A pedantic reader would say that 7 and § may not be computable, and in this case we do not have an algorithm
to enumerate B. However, for § we need to known only the maximal integer that is smaller than fn, and this
is O(log n) bits. For 7 the situation is more complicated, since the computation of probabilities uses 7. To deal
with the problem for non-computable 7, we have to change the bound 1/n to something smaller, like 1/2n, so
the proposition should be corrected for noncomputable 7. Still we ignore this problem, since the change of the
bound in the combinatorial statement is not important; we will see that the bound can be easily replaced by any

bound of the form 1/ poly (n).



Every real-valued function on the Boolean hypercube B”, identified with {-1, 1}"* and con-
sidered as a multiplicative group in this section, can be written in the standard Fourier basis:

fx) =] Fsxs),

Sc[n]

where f s are Fourier coefficients, x5(x) = [[,_¢ x;. Functions xg are characters of the Boolean
cube as a multiplicative group. They form an orthonormal basis in the space of real-valued
functions on B” with respect to the following inner product:

1
(f,8) =5 2 fg() = E f()3(x)

xelB"

This representation will be useful for us, since the Fourier representation of the convolution of

two functions is simply jche point-wise product of their Fourier representations: f *g. = fsgs,
where the convolution is defined as

(f*@)x) = E flxbg(t™).

teB"
For a set B C B" we are interested in the probability
NB(x) = Pr[N,(x) € B].

This function is a convolution of the indicator function 15 of the set B (that is 1 inside the set
and 0 outside) and the distribution of the noise, multiplied by 2" (since we divide by 2" when
computing the expectation):

NE=1p+f,

where f(x) = 2" Pr[N.(1) = x]. Here 1 € B" is the unit of the group,ie,1=(1,1,..,1). The
Fourier coefficient fg is easy to compute:
fS = <f/XS> = E f(x)XS(x)/
xeB"
and both functions f and xg are products of functions depending on one coordinate:

fOx, s xy) = g(x1) - g (xyy)
where ¢g(1) = 2 — 27 and g(-1) = 27, and

Xs(X1, e, X)) = x1(x1) X (%),

where x; is constant 1if i ¢ S, and yx;(x) = x for i € S. Due to independence, the expectation
of the product is a product of expectations; they are 1 fori ¢ Sand 1 — 27 fori € S, so

~

fs=@1-20)%

In other terms, noise (convolution with f) decreases the S-th coefficient of the Fourier trans-
form by multiplying it by (1 — 27)*S. We need to apply noise to the indicator function of B
that we denote by b = 1, and get a bound for the number of points where b * f exceeds 1/n.



Why b + f cannot be relatively large (greater than 1/n) on a large set A? We know that

b+ f(x) = D1 - 20)*bsxs(x).
S

This sum can be split into two parts: for “small” S, where #S < d, and for “large” S, where
#S > d. Here d is some threshold to be chosen later in such a way that the first part (for small
S) does not exceed, say 1/2n for all x. Then the second part should exceed 1/2n everywhere
on A, and this makes the L,-norm of the second part large, while all coefficients in the second
part are multiplied by a small factor (1 — 27)".

How should we choose the threshold d? The coefficient EQ equals y(B), the uniform mea-

sure of B, and for all other coefficients we have |ES| < (B). The size (the number of terms) in
the first part is the number of sets of cardinality less than d, and is bounded by poly (1)2"H @),
Therefore, if we choose d in such a way that

1
H(B) poly (n)2"m < o

we achieve our goal (the first part of the sum never exceeds 1/2n).
Now the second part: compared to the same part of the sum for b, we have all coefficients
multiplied by (1 — 27)%, so the L,-norm of this part is bounded:

llsecond partll, < (1 -27)?[Ibll, = (1 - 27)y/u(B).

On the other hand, if the second part exceeds 1/2n inside A, we have the lower bound:

|lsecond part|l, > /u(A)/2n

In this way we get

Vu(A)2n < (1 -21)%/u(B),

H(A) < 4n%(1 - 20)*u(B)

where d is chosen in such a way that

or

u(B) < 27"HUM  poly (1)
For #B = 2P we have H(d/n) ~ 1 - f and
#A < (1-27)%2pn
We see that the first term gives an exponentially small factor since d is proportional to n:
dn~ H(1-B)

(here H™!(y) is the preimage of ¥ between 0 and 1/2). So we get the required bound for some
a < f3 as promised.



3.2 Using hypercontractivity

We can get a better bound using two-function hypercontractivity inequality for uniform bits,
whose proof can be found in [O’Donnell, 2014, chapter 10]:

Proposition 4 (Two-function hypercontractivity inequality). Let f,g : B" — R, letr,s > 0,
and assume( < 1-21 < \/% < 1. Then

xg]EB” LF ()] < Nf Il 1Sl 4
y=N(x)

Here the distribution of x is the uniform distribution in B”, and y is obtained from x by
applying (independent) T-noise: ¥ = N (x). The same distribution can be obtained in a sym-
metric way, starting from y. The notation || - || denotes L,-norm:

lull, = (Elur))™” .
How do we apply this inequality? For an arbitrary set B we consider the set
A ={x:Pr[N.(x) € B] > €}.
Let a, b be the indicator functions of A and B. Then Proposition [ gives
E[a(x)b(y)] = Pr[x € A,y € B] > Pr[x € A]Pr[y € Blx € A] > u(A)e.
Now we write down the hypercontractivity inequality (note that [|Ly||, = u(X )Yy
eu(A) < p(AVE (B

log ¢ + log 1(A) < log u(4) | log p(B)

1+r 1+s

+7r 1+7r
1 A) < 1 B) — 1 .
og H(A) A +s) og 1(B) ——loge

This is true for every r,s with \/rs > 1-27. To get the strongest bound we minimize the right

hand side, so we use (for given r) the minimal possible value of s = (1 — 27)?/r:
+r log 1(B) 1+
r+ (1-27)2 B H r

If ¢ = 1/poly (n), we can set r — 0 at the appropriate rate, and we finally get:

log 1(A) < " loge.

log u(A) < 1202 log 14(B)

log#A < —((1-27)2 = 1) n + (1 - 27) 2 log #B + o(n)

3.3 Exact bound: combinatorial statement

We need a statement of the following type: if B C B" is of size at most 2/, and ¢ is some
threshold (not too small, say, 1/n or even 1/ poly (1)), then the set A of all x € B” that get into
B with probability at least ¢ after applying a 7-random noise, is of size at most 2*"". We have
shown two arguments of this type, but they have not optimal (too strong) assumptions about
a, B and 7. Figure [ shows the corresponding regions of parameters a, f3.

In this section we prove the result in the optimal version (matching the example with balls,
as we discussed in Section [l}). The proof goes in two steps: first we assume that ¢ is very close
to 1, and then “amplify” this result and extend it to small values of ¢.
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Figure 1: Bounds obtained with discussed techniques. The set of points not discarded by each
bound consists of the points above the corresponding curve.

3.3.1 Proof for high probability range

First we show that adding noise to a random variable increases its entropy.

Let P be a random variable with values in B”, and P’ be a noise version of P (we inde-
pendently change every bit in the value of P with some probability 7). The first stepf| is to
show that P’ has larger entropy than P by providing some bound relating them (the bound
depends on 7). It turns out that one can provide such a bound for n = 1 and this extends to
all n (“one-letter characterization”, “tensorization”).

First, we need to consider a more general setting. Let X and Y be finite sets. Consider
some stochastic transformation T: X — Y: for every x € X we have some distribution T (x)
on Y. Then, for every random variable P with values in X, we may consider random variable
T (P) with values in Y. (In other words, we consider a random variable with values in X X Y
whose marginal distribution on X is P and conditional distribution Y |X is T'.) For a fixed T
(our main example is adding noise) we are interested in the relation between the entropies of
P and T(P) for arbitrary P. In other words, we consider the set of all pairs (H(P), H(T(P)))
for all possible X-valued random variables P. It is a subset of the rectangle [0, log #X] X
[0, log #Y']. We denote this set by S(T). The following lemma shows that for a product of two
independent transformations T7: X; X Y7 and Tp: X, — Y, this set can be bounded in terms
of the correspoding sets for T; and T5.

Lemma 1. Let T;: X1 — Y; and To: X, — Y, be two stochastic transformations, and let
T1XTy: X1 XXy — Y1 XY; be their product (independent transformations of both coordinates).
Then every point (u,u’) in S(T; X T,) is above a sum of some point in S(T7) and some convex
combination of points in S(T>).

Here “above” means “can be obtained by increasing a second coordinate”, and convex com-
bination is linear combination with non-negative coefficients that have sum 1.

’In fact, the entropy increase for random variables is a corollary of the result about the complexity increase,
for the same set of parameters. This can be proven in a usual way. We consider N independent copies of random
variable P and independently apply noise to all of them. Then we write the inequality for the typical values of
the complexities; in most cases they are close to the corresponding entropies, with o(N) precision. Therefore, we
get the inequality for entropies with o(IN) precision (for N copies) and 0(1) precision for one copy (the entropies
are divided by N). As N — oo, we get rid of the additional term 0(1) and get an exact inequality for entropies.



Proof. Consider some random variable (P;, P,) with values in X; X X,; the components P;
and P, can be dependent. Then

H(Py, Py) = H(Py) + H(Py|Py).

This is the first coordinate of a pair in question; the second coordinate is the entropy of the
variable (T X T,)(P1, P5); its components Q; and (Q, are dependent and have (marginal) dis-
tributions T7(P;) and T5(P,). The second coordinate of the pair is then

H(Q1,Q2) = H(Qq) + H(Q21Qu)-

We may consider all four variables Py, P,, Q1, Q, as defined on the same space that is a product
of three spaces: the space where (Py, P5) is defined, the space used in the stochastic transfor-
mation of P; and the space used in the stochastic transformation of P,. Now we see that the
pair we are interested it is a sum of two pairs:

(H(P1,Py), H(Q1,Qy)) = (H(P1), H(Q1)) + (H(P2|P1), H(Q21Q1))-

The first pair (H(P;), H(Qq)) is in S(T;) by definition. The second pair, as we will show,
is above (H(P,|P7), H(Q,|P;)). By definition, the conditional entropy with condition Py is a
convex combination of conditional entropies with conditions P; = x for all x € X, and all pairs
(H(Py|P; = x),H(Q,|P; = x)) are in S(T5), since for every x the distribution (Q,|P; = x) is
obtained by applying T to the distribution (P, |P; = x).

It remains to show that

H(Qy1Q1) = H(Q2|Py),

and this is because Q; and Q, are independent given Py (the difference H(Q,|Q1)—H(Q,|P;)
is equal to [(Qy : P1|Qq) — I(Qq : Q| P;), and the second term is zero due to the conditional
independence. O

This lemma obviously generalizes for the product of several stochastic transformations.
For the noise case in B” we consider a product of 7 copies of “one-letter” transformation N,
that maps O to 1 with probability 7 and vice versa.

Lemma 2. The set S(N,) is a curve in the unit square that starts at (0, H(t)) and ends at (1,1).
This curve is increasing and convex.

Proof of Lemma [4. This is an exercise in elementary calculus; still we provide the sketch of a
proof. The curve in question is the image of the mapping

p = (H(p), H(p")),

where p’ = p + T — 2pr, the probability to get 1 if we choose 1 with probability p and then
change the result with probability 7 (independently). The point p” divides the interval [p, 1/2]
as 27 : (1-271). When p increases with constant speed from 0 to 1/2, the point p” also increases
with constant speed from 7 to 1/2, and the point (H (p), H(p’)) moves from left to right starting
at (0, 7) and finishing at (1, 1) (when p = 1/2, we have p’ = 1/2). Then the curve is reversed, so
we consider only p € (0, 1/2). To show that the curve is convex, we need to check that it slope
increases from left to right (as p increases). Both points p and p’ move with constant speeds,
so the slope is proportional to the ratio H'(p”)/H’(p), where H(p) = —plogp—(1-p) log(1-p).
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Figure 2: The boundary curve for N, for different values of 7.
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Figure 3: Obtaining a point (H(p), H(p’)) on the curve.
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To compute the derivative H’(p), we may replace the binary logarithms by natural ones (this
does not change the ratio of derivatives). The derivative of pInpisInp + 1, so

H'(p) = —lnp—1+In(l-p)+1 :ln(lr%p)'

For computations, it is convenient to shift the origin and let p = 5 + u, then

1-2u
H’(u) =In .
1+2u
In this new coordinates p’ corresponds to u’ that is proportional to u, i.e., u’ = cu, where cis a
constant (c = 1 — 27). We need to show that H’(u")/H’(u) increases as u increases from —1/2

to 0. Letting u = —v/2, we need to show that

increases as v decreases from 1 to 0. Using the series

1+
In (—v) = In(1 +v) - In(1 - 0) = 2(v + ~0° + ~0° + ..),
1-v 3 5

we can rewrite our statement as follows: the ratio

1 1
c-v+c3-§v3+c5-gv5+...

1 1
3 5
O+ -0°+ =-0v” + ..
3 5

decreases as v increases from O to 1. This ratio is a center of gravity for points having (de-

) . 1 51 . .
creasing) coordinates c, c3,¢°, ... and masses v, 0%, =0°, .... When v increases, the proportion
of masses is shifted to the right, and the sequence of coordinates decreases, so the center of

gravity moves to the left as required. To say it a bit more formally, we note that the ratio of

the first mass (v) and the rest (%vg’ + %05 + ...) decreases as v increases, so the center of gravity
become closer to the center of gravity for the system without the first mass, and the latter also
moves to the right for similar reason. To make the induction formal, we need to prove the
similar statement for finitely many masses and then consider the limit. O

Lemma [] shows that the set of points of the unit square above S(N) is convex. Therefore,
applying Lemma [{ for the noise case, we do not need convex combinations: one point in each
set S(T;) is enough. Note also that for N copies we have a sum of N points above S(N,), and
dividing this sum by N, we get a point in S(N,). We get the following relationship between
the entropy of an arbitrary random variable P in B" and its noisy version.

Proposition 5. Let P be arbitrary random variables with values in B", and let P’ be its noisy
version obtained by applying N independently to each bit in P. Choose p in such a way that
H(P) = nH(p). Then consider ¢ = N(p, T), the probability to get 1 if we apply N to a variable
that equals 1 with probability p. Then H(P’) > nH(q).

*In general, we make use the following monotonicity statement: if the coordinates of points are x; > x, > ... >
X, qnd ljhe masses 11y, ...,y are changed in such a way that new masses m; satisfy the inequality mj/m; > m;/m;
forj > i, then center of gravity moves to the left after the change. This can be easily proven by induction over 7,
following the scheme explained above.
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In other words, for a fixed entropy H (P) the minimal entropy of P’ is achieved for Bernulli
distribution P = B, for a suitably chosen p. Note that this is a Shannon information the-
ory counterpart of our main result about increasing complexity by random noise. However,
for the Kolmogorov complexity version it is not enough, and we need additional arguments
amplifying the error probability. This is the topic of the next section.

3.3.2 Amplification: blowing-up lemma

Now we can apply the inequality for entropies to get some bound for the set size. Recall that
we consider sets A, B C B", and we know that for each x € A the probability of the event
“N.(x) € B” is at least €. We want to get the upper bound for the size of A in terms of the size
of B and other parameters (¢ and 7). We start by considering the regime when ¢ is close to 1.

Consider a random variable P that is uniformly distributed in A. Its entropy is log#A. We
know that the entropy increases when we apply the noise to P and consider N (P). On the
other hand, with probability ¢ (close to 1, as we now assume) we have N (P) in B. Indeed,
this is the case for every x € A, so it is also true for a randomly chosen x. So we can encode
N, (P) in the following way:

- one bit (flag) says whether N (P) is in B;
« if yes, then log #B bits are used to encode an element of B;
« otherwise n bits are used to encode the value of N, (P) (trivial encoding).

Computing the average length of this code, we get the bound
H(N,(P)) <1+ ¢log#B + (1 —¢)n. (*)

This bound makes sense if ¢ is close to 1. It does not give us much per se (recall that we are
interested in the opposite regime, when ¢ = 1/n), but then we use some kind of amplification.
The inequality (*) gives the desired bound (in the same region as for the random variables) if
¢ =1-0(1) asn — oo. Therefore it is enough to extend our argument that was valid for the
case ¢ = 1 —o0(1), to a more difficult case ¢ = 1/poly (1) (in fact, we need ¢ = 1/n, but the
argument is the same for all polynomials).

The idea of this improvement is very simple. Consider for some d (depending on n, see
below) the Hamming d-neighborhood of B. Let us denote it by B;. We will show two things:

« B, is not much bigger than B (for suitable d);

« if the probability to get into B after applying noise is at least 1/ poly (1) for every x € A,
then the probability to get into bigger set B, is close to 1 for every x € A.

The first statement uses the trivial bound: #B, is bounded by #B multiplied by the size of the
Hamming ball in B” of radius d. We need that this additional factor does not change « and
asymptotically, so the value of d (for a given 1) should be chosen in such a way that the size
of the Hamming ball is 2°®". Since the size of the Hamming ball of radius d is 27" and the
entropy function H(p) converges to 0 as p — 0, it is enough to have d = o(n).

What do we need for the second statement? We have some x and know that Pr[N (x) €
B] > 1/poly(n). We need to show that Pr[N,(x) € B,;] converges to 1, for suitable chosen
values of d. In fact, x does not matter here, we may assume that x = 0...0 (flipping bits in x
and B simultaneously). For that we use the following property of Bernoulli distribution with
parameter 7: if some set B has probability not too small (at least 1/ poly (1)) according to this
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distribution, then its neighborhood B, has probability close to 1. This statement is needed for
d = o(n).

Such a statement is called blowing-up lemma in [Ahlswede et al., 1976]. There are several
(and quite different) ways to prove statements of this type. The original proofin [Ahlswede et al., 1976]
used a result of Margulis from [Margulis, 1974] that says that the (Bernoulli) measure of a
boundary of a set U C B" is not too small compared to the measure of a boundary of a
ball of the same size. Iterating this statement (a neighborhood is obtained by adding bound-
ary layer several times), we get the lower bound for the measure of the neighborhood. Then
Marton [Marton, 1986] suggested another proof based on the information-theoretical consid-
erations that introduced transportation cost inequalities for bounding measure concentration.
This proof provides d = O(+/nlogn).

Let us state the blowing-up lemma in a slightly more general version than we need. Let
Xy, ..., X,, be (finite) probability spaces. Consider the space X = X; X ... X X, with the product
measure [ (so the coordinates are independent).

Proposition 6 (Blowing-up lemma). Let B be some subset of X of non-zero measure ti(B). Denote
by B, the r-neighborhood of B, i.e. the set of points that can be obtained from points in B by
changing at most r coordinates. Then, if r > \/(n/Z) In(1/u(B)) +t fort > 0, the following bound
holds:

212
u(B,) > 1 —exp s

Remark 6. Let us check that the blowing-up lemma is enough for our purposes. We apply it to
Boolean cube (so X; = B for all i), and the noise distribution (which is a product distribution).
If the probability of B is at least 1/n (or 1/ poly (1)), then the expression \/ (n/2) In(1/u(B)) is
O(v/nlogn). If we let t be also of the same order, say, t = +/cnlogn for some constant c, we
get (B,) > 1 —exp(—2clogn) = 1 — n%, so u(B,) converges to 1 (rather fast, but this is not
important). At the same time r = O(y/nlogn) = o(n) for this choice of t, as we needed.

So it remains to prove the blowing-up lemma to finish the proof of Theorem [.

Remark 7. In fact, the blowing-up lemma is more symmetric than it looks at first. We claim
that the complement of B, is small if 7 is large enough. We can state it differently: if two sets
B, B’ are not too small, then the distance between B and B’ is small. The exact statement is

d(B,B') < [(n/2) In(1/u(B)) + /(n/2) In(L/u(B")).

To get the original statement, assume that B’ is the complement of B,. Then the distance
exceeds 7, therefore

V(#/2) In(1/u(B)) + v/(n/2) In(1/u(B’)) > 7,

and

V#/2) In(1/u(B’)) > r — \/(n/2) In(1/u(B)) > t.

Therefore, 1(B’) < exp(2t?/n), and we get the desired inequality (recall that B’ is the comple-
ment of B,).

To prove the blowing-up lemma, we use McDiarmid’s inequality:

Proposition 7 (McDiarmid’s inequality, [McDiarmid, 1989]). Consider a function f: X; X ... X
X, = R. Assume that changing the i-th coordinate changes the value of f at most by some c;:

f() - f) < ¢
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ifx and x" coincide everywhere except for the i-th coordinate. Then

2
Pf - Ef > 2] < exp (—%]
i=1"1i

for arbitraryz > 0.

Here the probability and expectation are considered with respect to the product distribu-
tion u (the same as in the blowing-up lemma, see above). This inequality shows that f cannot
be much larger that its average on a big set. Applying this inequality to —f, we get the same
bound for the points where the function is less than its average by c or more.

We postpone the proof of McDiarmid’s inequality to the end of the section. Now let us
show why it implies the blowing-up lemma (in the symmetric version).

Proof of the blowing-up lemma. Let f(x) = d(x, B) be the distance between x and B, i.e., the
minimal number of coordinates that one has to change in x to get into B. This function satisfies
the bounded differences property with ¢; = 1, so we can apply McDiarmid’s inequality to it.
Let ¢ be the expectation of f. Then on B the function is below that expectation at least by c, so

2c2
1(B) < exp (—7), or ¢ < +/(n/2)In(1/u(B))

On B’ the function f is at least d(B, B’), so it exceeds its expectation at least by d(B, B") —c,
therefore McDiarmid’s inequality gives

d(B,B’) — ¢ < +/(n/2) In(1/u(B")),

and it remains to add the last two inequalities. [
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