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Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ

d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Decreasing complexity by changing bits

string x ∈ Bn has some complexity C(x) < n

C(x) = αn

change some small fraction of bits in x

what happens with C(x)?

may increase or decrease: how much?

decrease: min{C(y) : d(x , y) 6 τn} as a function of τ
d(x , y): the Hamming distance (the number of changed bits)

τn-balls: what is the complexity of their simplest elements?

depends not only on C(x), but on the properties of x

algorithmic statistics for restricted families of models
(Vereshchagin, Vitanyi) tells us what functions are possible

[random bits]000 . . . 000

random codeword: no decrease

alexander.shen@lirmm.fr, www.lirmm.fr/~ashen, joint work with Gleb Posobin based on the discussions with Peter GacsRandom noise increases Kolmogorov complexity



Increasing complexity by changing bits

x ∈ Bn, C(x) = αn

changing τ -fraction of bits: d(x , y) 6 τn

is it always possible to increase complexity?

τ 7→ max{C(y) : d(x , y) 6 τn}
Buhrman, Fortnow, Newman, Vereshchagin: Ω(n) increase is
always possible

the amount of increase depends on x

open question: what functions can appear here?

maximal possible increase for random codewords

BFNV: minimal possible increase for Bernoulli random strings

combinatorial tool: Harper’s theorem (Hamming balls have
minimal neighborhoods)
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Random change: what happens with complexity?

x ∈ Bn, C(x) = αn

changing a random τ -fraction of bits

better: each bit changed with probability τ independently

Nτ (x): noise of intensity τ added to x
Nτ (x) = x ⊕ Bτ where Bτ is a Bernoulli distribution with
parameter τ

“random noise”: probabilistic, not algorithmic randomness

C(Nτ (x)): a random variable

concentration inequalities: for every x this random variable
has some typical value

some increase in complexity guaranteed with high probability

exact lower bound for this increase
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Complexity increases with high probability

Theorem

Let α ∈ (0, 1) and τ ∈ (0, 1/2). There exists some β > α with the
following property:

C(x) > αn⇒ Pr[C(Nτ (x)) > βn] > 1− 1

n

for sufficiently large n and for every x of length n

regime: α, β and τ are fixed, n→∞
β is some function of α and τ
different combinatorial arguments possible
(Fourier analysis, hypercontractivity inequalities)
but they do not give an optimal bound for β
1/n can be replaced by 1/nd for arbitrary fixed d
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Optimal lower bound for the complexity increase
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The complexity of Bτ

Nτ (0n) = Bτ

≈ complexity of random string of length n with τn ones

log(number of strings of length n with τn ones)

log
( n
τn

)
= 2H(τ)n, where

H(p) = p log
1

p
+ (1− p) log

1

1− p

is the Shannon entropy of for the (p, 1− p) distribution

if Bp is a Bernoulli random string with probability p, then
Nτ (Bp) = BN(p,τ)

N(p, τ) = p(1− τ) + (1− p)τ

complexity increase H(p) 7→ H(N(p, τ)) for Bernoulli random
strings
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Complexity increases with high probability: optimal bound

Theorem

Let p ∈ (0, 1/2) and τ ∈ (0, 1/2).
Let α = H(p) and β = H(N(τ, p)). Then

C(x) > αn⇒ Pr[C(Nτ (x)) > βn − o(n)] > 1− 1

n

for n→∞ and for every x of length n. This β is the best possible
bound.

Remark: for some strings (e.g., random codewords) we have better
bounds, but the lower bound is optimal: one cannot improve β for
all strings
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Three approaches to measuring information

Kolmogorov (1965): combinatorial, algorithmic, probabilistic

combinatorial: an element of a set of size N has logN bits of
information

algorithmic: C(x), the minimal length of a program that
produces x

probabilistic: the Shannon entropy

measures applied to different things (sets, strings, random
variables) but they are deeply connected and this is our main
tool

Buhrman et al. result uses the connection between
combinatorial and algorithmic approaches

we need all three
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Buhrman et al. result revisited

(complexity version) for every string length n at complexity
> αn one can change at most τn bits to get a string of
complexity > βn

(combinatorial version) for every set of size at most 2βn its
τn-interior is of size at most 2αn

(reformulation) for every set of size at least 2αn its
τn-neighborhood is of size at least 2βn.

d-neigborhood of a set X : all strings at distance at most d
from X (union of d-balls)

d-interior of a set X : all strings y that are in X together with
the entire d-ball centered at y

Harper’s theorem: minimal neighborhoods / maximal interiors
happen for Hamming balls
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combinatorics ⇒ complexity

assume the combinatorial version: every set of size 6 2βn has
interior of size at most 2αn

apply it to the set X of n-bit strings of complexity less than βn

#X 6 2βn

its τn-interior has size at most 2αn

this interior is (computably) enumerable given n, βn, τn

its elements have complexity less than αn + O(log n)
(log n terms are ignored)

so a string of complexity > αn + O(log n) is not in this
interior. . .

i.e., it can be changed in at most τn places to get outside X ,
i.e., to have complexity > βn
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interior. . .

i.e., it can be changed in at most τn places to get outside X ,
i.e., to have complexity > βn
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complexity ⇒ combinatorics

assume the combinatorial statement: each string of
complexity > αn can be changed in 6 τn places to get a
string of complexity > βn

assume that combinatorial statement is false: there is a set X
of size 2βn whose τn-interior is (much) bigger that 2αn

let X be the first set with this property

then all elements of X have complexity at most βn (ignore
O(log n) terms)

complexity statement implies that all the elements in the τn
interior have complexity at most αn

but there are too many of them: contradiction
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Random noise case

(Shannon information) for a distribution P on n-bit strings: if
H(P) > αn, then H(Nτ (P)) > βn.

(complexity) if C(x) > αn, then C(Nτ (x)) > βn with
probability at least 1− 1

n

(combinatorial) if #B 6 2βn, and every element of A get into
B with probability at least 1

n after τ -noise, then #A 6 2αn.

(weak combinatorial) if #B 6 2βn, and every element of A
get into B with probability at least 1− 1

n after τ -noise, then
#A 6 2αn.

All equivalent with precision o(n) for complexity (log-cardinality)
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Proof of equivalence

complexity ⇔ combinatorial: as before

complexity ⇒ Shannon entropy: random i.i.d. copies have
complexity close to entropy with high probability

entropy ⇒ weak combinatorial: coding argument (apply the
entropy inequality to the uniform distribution on A)

weak combinatorial ⇒ combinatorial: concentration inequality
(McDiarmid inequality, a version of Azuma–Hoeffding
inequality)
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How to prove the entropy inequality

“one-letter case” P is a distribution on {0, 1} (n = 1)

P = Bp for some p

H(P) = H(p)

H(Nτ (P)) = H(N(p, τ))

exactly the curve mentioned in the lower bound

“tensorization” + convexity argument
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Tensorization lemma

P on n-bit strings

(H(P),H(Nτ (P)): which pairs are possible?

a set Sn in [0, n]× [0, n]

Lemma

Sn+m ⊂ Sn + Sm

Minkowski sum
correction: above the convex closure of Sn + Sm
lemma’s proof: inequalities for Shannon entropies

It remains to check that the curves are convex (computation with
power series)
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Infinite consequences

effective Hausdorff dimension of a binary sequence:

dim(X ) = lim inf
n

C(X1X2 . . .Xn)

n

the effective dimension increases if random noise is applied to
every bit (independently)

if dim(X ) > α = H(p), then dim(Np(X )) > H(N(p, τ)) with
probability 1

the same lower bound curve for the increase

one may use different noise levels for different positions

every sequence of dimension α can be changed in a negligible
fraction of positions (Besicovitch distance 0) to a strongly
α-random sequence. [weakly random: Greenberg et al.]
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Thanks!
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