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What is a random object

Individual random objects

Would you believe that a fair coin produced these sequences?

▶ 0000000000000000000000000000000000000000

▶ 0101010101010101010101010101010101010101

▶ 0111001101110011011100011000111111100111

▶ 0010010000111111011010101000100010000101

All 40-bit sequences are equally random (have the same probability 2−40 in
a fair coin model), but some look more random than others
Not only a paradox, but a real problem for statisticians: can we reject the
null hypothesis of a fair coin looking at the experimental data?
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What is a random object

Simple normality

Borel (1909, Les probabilités dénombrables et leurs applications
arithmétiques):

Un nombre simplement normal est donc caractérisé par le fait que,
c0,c1,c2, . . . ,c8,c9 désignant les nombres respectifs de fois que figurent les
chiffres 0,1,2, . . . ,8,9 parmi les n premières décimales, chacun des rap-
ports:

c0
n

,
c1
n

, . . . ,
c8
n

,
c9
n

a pour limite 1
10 lorsque n augmente indéfiniment.

“In the limit every digit appears equally often”
00000… is not simply normal, but 010101… is
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Randomness and normality

Normal sequences

Normality

▶ Stronger condition: 00,01,10,11 appear equally often, and the same
is true for k-bit blocks for k= 3,4,5, . . .

▶ 01010101… is not normal

▶ definition for infinite sequences only

▶ two versions of the definition:

01 11 00 11 01 11 00 11 01 00 01 aligned

01 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 non-aligned

▶ Equivalent if required for all k (Borel, without proof)

▶ Not so obvious proofs (1940s): Pillai, Niven, Zuckerman, Maxfield,…
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Randomness and normality

Normal sequences

Normality ≠ randomness

▶ 01101110010111011110001001… is normal (Champernowne)

▶ the same is true if we use only composite numbers (Champernowne)

▶ or prime numbers (Copeland, Erdös)

▶ or perfect squares (Besicovitch)

▶ π= [11.]0010010000111111011010101000100010000101 . . .
conjectured to be normal

▶ = example #4

▶ normality is “weak randomness”

▶ what else?
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▶ the same is true if we use only composite numbers (Champernowne)

▶ or prime numbers (Copeland, Erdös)

▶ or perfect squares (Besicovitch)

▶ π= [11.]0010010000111111011010101000100010000101 . . .
conjectured to be normal

▶ = example #4

▶ normality is “weak randomness”

▶ what else?
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Randomness and normality

Normal sequences

Randomness as incompressibility

▶ individual random sequences: plausible as outcomes of coin tossing

▶ (classical) probability theory: no idea

▶ Kolmogorov, Levin, Chaitin,…: randomness = incompressibility

▶ 000 . . .000 not random: short description: “n zeros”

▶ the same for 010101 . . . and for π in binary

▶ …and for all computable sequences

▶ algorithmic information theory: description of x = a program that
produces x; random = no short descriptions

▶ Kolmogorov complexity: minimal length of a description

▶ “compressed size” (no decompression)

▶ randomness: Kolmogorov complexity close to length
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Randomness and normality

Weak incompressibility

Normality as weak incompressibility

▶ randomness⇔ incompressibility

▶ normality: weak randomness

▶ normality: weak incompressibility (Agafonov, Schnorr, Becher,
Heiber,…)

Theorem (informal)
A sequence is normal if and only if it is incompressible with finite memory

Proof (informal).
⇐ if different blocks appear with different frequencies, then Shannon–Fano code
can be used; it uses finite memory
⇒ with finite memory decompression is local: N-bit blocks for large N are
decompressed almost independently, and most of them are incompressible (and all
blocks have the same frequency)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Normality as weak incompressibility

▶ randomness⇔ incompressibility

▶ normality: weak randomness

▶ normality: weak incompressibility (Agafonov, Schnorr, Becher,
Heiber,…)

Theorem (informal)
A sequence is normal if and only if it is incompressible with finite memory

Proof (informal).
⇐ if different blocks appear with different frequencies, then Shannon–Fano code
can be used; it uses finite memory
⇒ with finite memory decompression is local: N-bit blocks for large N are
decompressed almost independently, and most of them are incompressible (and all
blocks have the same frequency)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Normality as weak incompressibility

▶ randomness⇔ incompressibility

▶ normality: weak randomness

▶ normality: weak incompressibility (Agafonov, Schnorr, Becher,
Heiber,…)

Theorem (informal)
A sequence is normal if and only if it is incompressible with finite memory

Proof (informal).
⇐ if different blocks appear with different frequencies, then Shannon–Fano code
can be used; it uses finite memory
⇒ with finite memory decompression is local: N-bit blocks for large N are
decompressed almost independently, and most of them are incompressible (and all
blocks have the same frequency)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Normality as weak incompressibility

▶ randomness⇔ incompressibility

▶ normality: weak randomness

▶ normality: weak incompressibility (Agafonov, Schnorr, Becher,
Heiber,…)

Theorem (informal)
A sequence is normal if and only if it is incompressible with finite memory

Proof (informal).
⇐ if different blocks appear with different frequencies, then Shannon–Fano code
can be used; it uses finite memory
⇒ with finite memory decompression is local: N-bit blocks for large N are
decompressed almost independently, and most of them are incompressible (and all
blocks have the same frequency)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Normality as weak incompressibility

▶ randomness⇔ incompressibility

▶ normality: weak randomness

▶ normality: weak incompressibility (Agafonov, Schnorr, Becher,
Heiber,…)

Theorem (informal)
A sequence is normal if and only if it is incompressible with finite memory

Proof (informal).
⇐ if different blocks appear with different frequencies, then Shannon–Fano code
can be used; it uses finite memory
⇒ with finite memory decompression is local: N-bit blocks for large N are
decompressed almost independently, and most of them are incompressible (and all
blocks have the same frequency)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Normality as weak incompressibility

▶ randomness⇔ incompressibility

▶ normality: weak randomness

▶ normality: weak incompressibility (Agafonov, Schnorr, Becher,
Heiber,…)

Theorem (informal)
A sequence is normal if and only if it is incompressible with finite memory

Proof (informal).
⇐ if different blocks appear with different frequencies, then Shannon–Fano code
can be used; it uses finite memory
⇒ with finite memory decompression is local: N-bit blocks for large N are
decompressed almost independently, and most of them are incompressible (and all
blocks have the same frequency)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Automatic complexity

▶ description mode: relation D(x,y) on binary strings

▶ D(p,x) reads “p is a description of x”

▶ CD(x)=min{|p|: D(p,x)}: complexity with respect to D

▶ not all modes are useful: if D(x,y)≡ true, then CD(x)≡ 0
Automatic description mode:

▶ every p is a description of O(1) strings

▶ the relation D corresponds to an automaton of a special type

directed graphs; edges are labeled by {0,1,ϵ}× {0,1,ϵ}; going along a path, we collect first letters into
p, second letters into x; D consists of all pairs (p,x) obtained in this way



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Automatic complexity

▶ description mode: relation D(x,y) on binary strings

▶ D(p,x) reads “p is a description of x”

▶ CD(x)=min{|p|: D(p,x)}: complexity with respect to D

▶ not all modes are useful: if D(x,y)≡ true, then CD(x)≡ 0
Automatic description mode:

▶ every p is a description of O(1) strings

▶ the relation D corresponds to an automaton of a special type

directed graphs; edges are labeled by {0,1,ϵ}× {0,1,ϵ}; going along a path, we collect first letters into
p, second letters into x; D consists of all pairs (p,x) obtained in this way



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Automatic complexity

▶ description mode: relation D(x,y) on binary strings

▶ D(p,x) reads “p is a description of x”

▶ CD(x)=min{|p|: D(p,x)}: complexity with respect to D

▶ not all modes are useful: if D(x,y)≡ true, then CD(x)≡ 0
Automatic description mode:

▶ every p is a description of O(1) strings

▶ the relation D corresponds to an automaton of a special type

directed graphs; edges are labeled by {0,1,ϵ}× {0,1,ϵ}; going along a path, we collect first letters into
p, second letters into x; D consists of all pairs (p,x) obtained in this way



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Automatic complexity

▶ description mode: relation D(x,y) on binary strings

▶ D(p,x) reads “p is a description of x”

▶ CD(x)=min{|p|: D(p,x)}: complexity with respect to D

▶ not all modes are useful: if D(x,y)≡ true, then CD(x)≡ 0
Automatic description mode:

▶ every p is a description of O(1) strings

▶ the relation D corresponds to an automaton of a special type

directed graphs; edges are labeled by {0,1,ϵ}× {0,1,ϵ}; going along a path, we collect first letters into
p, second letters into x; D consists of all pairs (p,x) obtained in this way



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Randomness and normality

Weak incompressibility

Automatic complexity

▶ description mode: relation D(x,y) on binary strings

▶ D(p,x) reads “p is a description of x”

▶ CD(x)=min{|p|: D(p,x)}: complexity with respect to D

▶ not all modes are useful: if D(x,y)≡ true, then CD(x)≡ 0
Automatic description mode:

▶ every p is a description of O(1) strings

▶ the relation D corresponds to an automaton of a special type

directed graphs; edges are labeled by {0,1,ϵ}× {0,1,ϵ}; going along a path, we collect first letters into
p, second letters into x; D consists of all pairs (p,x) obtained in this way
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Randomness and normality

Weak incompressibility

Automatic complexity version

Theorem
An infinite binary sequence a1a2 . . .an . . . is normal if and only if for every
automatic description mode D we have

liminf
CD(a1a2 . . .an)

n
⩾ 1

“Normality: no way to compress significantly all prefixes of the sequence if
only automatic description modes are allowed”
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Randomness and normality

Weak incompressibility

Local complexity version

A function K(x) on strings with non-negative integer values is called a local
complexity measure if

▶ K(xy)⩾ K(x)+K(y) [locality]

▶ the number of strings x such that K(x)⩽ n is O(2n) [calibration]

Theorem
An infinite binary sequence a1a2 . . .an . . . is normal if and only if for every local
complexity function K we have

liminf
K(a1a2 . . .an)

n
⩾ 1
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Randomness and normality

Normal numbers revisited

Classical results as corollaries

▶ equivalence between non-aligned and aligned definitions of normality

▶ Wall: real number remains normal when multiplied/divided by an
integer

▶ Champernowne, Copeland, Erdös, Besicovitch examples of normal
numbers (sufficient conditions for the concatenation B1B2 . . . of blocks:
average block complexity close to average block length)

▶ Agafonov, Schnorr: finite state selection rule preserves normality

▶ Piatetski-Shapiro: if block frequencies are bounded by O(2−k) for
blocks of length k, then the sequence is normal
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Randomness and normality

Bonus track

Finite state dimension

▶ Hausdorff dimension of a subset of [0,1]

▶ effective Hausdorff dimension

▶ is maximum of the dimension of individual points

▶ defined as liminf C(a1 . . .an)/n

▶ finite state version of Hausdorff dimension (Dai, Lathrop, Lutz,
Mayordomo)

▶ characterized as aligned/non-aligned limit entropy

▶ or infD liminf CD(a1 . . .an)/n
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Randomness and normality

Bonus track

More information and references

https://arxiv.org/pdf/1701.09060.pdf

(last version, 2019, see also FCT 2017 and 2019 papers)

Randomness discussed in a movie:
https://www.youtube.com/embed/3YHHHEg3ioc?start=181&end=359

https://arxiv.org/pdf/1701.09060.pdf
https://www.youtube.com/embed/3YHHHEg3ioc?start=181&end=359

