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Abstract. In this paper we provide two equivalent characterizations of
the notion of finite-state dimension introduced by Dai, Lathrop, Lutz
and Mayordomo (2004). One of them uses Shannon’s entropy of non-
aligned blocks and generalizes old results of Pillai (1940) and Niven –
Zuckerman (1951). The second characterizes finite-state dimension in
terms of superadditive functions that satisfy some calibration condition
(in particular, superadditive upper bounds for Kolmogorov complexity).
The use of superadditive bounds allows us to prove a general sufficient
condition for normality that easily implies old results of Champernowne
(1933), Besicovitch (1935), Copeland and Erdös (1946), and also a recent
result of Calude, Staiger and Stephan (2016).
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1 Introduction

The notion of finite-state dimension of a bit sequence was introduced by Dai et
al. [7] using finite-state gales. Later Bourke et al. [2] characterized the finite-state
dimension in terms of Shannon entropies of aligned bit blocks (a prefix of the
sequence is split into k-bit blocks for some k, and a random variable “uniformly
chosen block” is considered).

In this paper we provide two new characterizations (equivalent definitions)
of this notion. First (Section 2) we extend old results of Niven – Zuckerman [11]
and Pillai [12] to the case of arbitrary finite-state dimension. These results were
proven for normal sequences, i.e., sequences of finite-state dimension 1, and new
tools (including Shearer-type inequality for entropies) are needed for the case
of arbitrary finite-state dimension. Namely, we show (Theorem 1) that one can
equivalently define the finite-state dimension using non-aligned blocks. For that,
for a given n we consider a random variable “uniformly chosen k-bit factor”
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of the n-bit prefix of the sequence, take the lim inf of its Shannon entropy as
n→∞, divide this lim inf by k and then take infimum (or limit) over k. We also
provide examples showing that this equivalence works only in the limit (k →∞),
not for blocks of fixed size.

The second characterization of finite-state dimension is given in Section 3. It
does not use finite-state machines or entropies at all. We consider non-negative
superadditive functions on bit strings, i.e., functions F such that F (uv) >
F (u) + F (v) for all u and v. Additionally we require some calibration prop-
erty saying that F cannot be too small on too many inputs. Given a sequence
α = α0α1α2 . . ., we consider lim infn F (α0α1 . . . αn−1)/n. We prove that the
finite-state dimension of α is the infimum of these quantities taken over all F
that satisfy our requirements.

The first example of a normal sequence was given by Champernowne [5]. It
was the sequence 0 1 10 11 100 101 110 111 1000 1001 . . . (concatenation of integers
0, 1, 2, 3, . . . written in binary5). Later a more general class of examples was sug-
gested by Copeland and Erdös [6]. In Section 4, using superadditive functions,
we prove a general sufficient condition for normality (=finite-state dimension
1) for a sequence that is a concatenation of some finite strings x1, x2, x3, etc.
This sufficient condition is formulated in terms of Kolmogorov complexity of xi:
the average Kolmogorov complexity of strings x1, . . . , xk should have the same
asymptotic growth as the average length of these strings (under some techni-
cal conditions; see the exact statement of Theorem 4). In [3] Calude, Salomaa
and Roblot introduced the notion of automatic complexity and asked whether
this notion can be used to characterize normality. This question was answered
negatively in [4]. We give an alternative proof of this result using our sufficient
condition for normality.

The notion of automatic complexity that can be used to characterize normal-
ity and finite-state dimension (and was the starting point for us) was introduced
in [13]. A self-contained exposition, including the results of the current paper
and other results about finite-state dimension, automatic complexity, finite-state
a priori probability and martingales, as well as applications of these notions, will
be included in the arxiv version of [13].

2 Non-aligned entropies

Consider a sequence α = α0α1α2 . . ., and some positive integer k. We can split
the sequence α into k-bit consecutive non-overlapping blocks (aligned version),
or consider all k-bit substrings of α (non-aligned version, see below the exact
definition). Then we consider limit frequencies of these blocks. In this way we
get some distribution on the set {0, 1}k of all k-bit blocks. We want to define
the finite-state dimension of α as the limit of the normalized (i.e., divided by k)
Shannon entropy of this distribution when k goes to infinity.

5 In fact, Champernowne spoke about decimal notation and sequences of digits, but
this does not make a big difference.
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However, we should be more careful since these limit frequencies may not
exist. Here is the exact definition. For every N take the first N blocks of
length k and choose one of them uniformly at random. In this way we ob-
tain a random variable taking values in {0, 1}k. Consider the Shannon entropy
of this random variable (for the definition of Shannon entropy of a random
variable see, e.g., [14, Chapter 7]). This can be done in an aligned (a) and non-
aligned (na) settings, so we get two quantities: Ha

k,N (α) = H(αkI . . . αkI+k−1),
Hna
k,N (α) = H(αI . . . αI+k−1), where I ∈ {0, . . . , N − 1} (the block number) is

chosen uniformly at random, and H denotes the Shannon entropy of the corre-
sponding random variable.

Then we apply the lim infN as N →∞ and let Ha
k(α) = lim infN→∞Ha

k,N (α)
and Hna

k (α) = lim infN→∞Hna
k,N (α). The following result says that both quan-

tities Ha
k(α) and Hna

k (α), divided by the block length k, converge to the same
value as k → ∞, and this value can also be defined as infkHk(α)/k (both in
aligned and non-aligned versions).

Theorem 1. For every bit sequence α we have

lim
k

Ha
k(α)

k
= inf

k

Ha
k(α)

k
= lim

k

Hna
k (α)

k
= inf

k

Hna
k (α)

k
.

This common value is called the finite-state dimension of α and denoted by
FSD(α). The original definition of finite-state dimension [7] was different, and
the equivalence between it and the aligned version of the definition given above
was shown in [2]. The equivalence between non-aligned and aligned versions
seems to be new.

To prove this result, it is enough to prove two symmetric lemmas. The first
one guarantees that if Ha

k(α)/k is small (less than some threshold) for some k,
then Hna

K (α)/K is also small (less than the same threshold) for all sufficiently
large K; the second says the same with aligned and non-aligned versions ex-
changed.

Lemma 1. For every α, every k, every K > k:
Hna

K (α)
K 6 Ha

k(α)
k +O

(
k
K

)
.

Lemma 2. For every α, every k, every K > k:
Ha

K(α)
K 6 Hna

k (α)
k +O

(
k
K

)
.

This two lemmas easily imply Theorem 1 by taking lim supK→∞ and then
infk of both sides of both inequalities. So it remains to prove them.

Proof (of Lemma 1). Fix some sequence α, and consider some integer N . Take
I ∈ {0, 1 . . . , N − 1} uniformly at random and consider a random variable

ξ = αI . . . αI+K−1

whose values are K-bit strings. By definition, the entropy of ξ is Hna
K,N (α). Let us

look at aligned k-bit blocks covered by the block ξ (i.e., the aligned k-bit blocks
inside I . . . I + K − 1). The exact number of these blocks may vary depending
on I, but there are at least m = bK/kc − 1 of them (if there were only m − 1
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complete blocks, plus maybe two incomplete blocks, then the total length would
be at most k(m − 1) + 2k − 2 = km + k − 2, but we have K/k > m + 1, i.e.,
K > km+k). We number the first m blocks from left to right and get m random
variables ξ1, . . . , ξm (defined on the same space {0, . . . , N − 1}). For example,
ξ1 is the leftmost aligned k-bit block of α in the interval I . . . I + K − 1. To
reconstruct the value of ξ when all ξi are known, we need to specify the prefix
and suffix of ξ that are not covered by ξi (including their lengths). This requires
O(k) bits of information, so

Hna
K,N (α) = H(ξ) 6 H(ξ1) + . . .+H(ξm) +O(k).

We will show that for each s ∈ {1, . . . ,m} the distribution of the random variable
ξs is close to the uniform distribution over the first bN/kc aligned k-bit blocks
of α. The standard way to measure how close are two distributions on the same
set A is to measure the statistical distance between them, defined as

δ(P,Q) =
1

2

∑
a∈A

∣∣P (a)−Q(a)
∣∣.

We claim that (for each s ∈ {1, 2, . . . ,m}) the statistical distance between the
distribution of ξs and the uniform distribution on the first bN/kc aligned blocks
converges to 0 as N → ∞. First, let us note that for a fixed aligned block
its probability to become s-th aligned block inside a random nonaligned block is
exactly k/N (there are k possible positions for a random non-aligned block when
this happens). The only exception to this rule are aligned blocks that are near
the endpoints, and we have at most O(K/k) of them. When we choose a random
aligned block, the probability to choose some position is exactly 1/bN/kc, so we
get some difference due to rounding. It is easy to see that the impact of both
factors on the statistical distance converges to 0 as N →∞. Indeed, the number
of the boundary blocks is O(K/k), and the bound does not depend on N , while
the probability of each block (in both distributions) converges to zero.6 Also,
since m = N/k and m′ = bN/kc differ at most by 1, the difference between
1/m and 1/m′ is of order 1/m2, and converges to 0 even if multiplied by m (the
number of blocks is about m).

Now we use the continuity (more precisely, the uniform continuity) of the
entropy function and note that all m = bN/kc− 1 random variables in the right
hand side are close to the uniform distribution on first bN/kc aligned blocks (the
statistical distance converges to 0), so

lim inf
N→∞

Hna
K,N (α) 6 (bK/kc − 1) lim inf

N→∞
Ha
k,bN/kc(α) +O(k),

and dividing by K we get the statement of Lemma 1. ut
6 More precisely, we should speak not about the probability of a given block, since

the same k-bit block may appear in several positions, but about the probability of
its appearance in a given position. Formally speaking, we use the following obvious
fact: if we apply some function to two random variables, the statistical difference
between them may only decrease. Here the function forgets the position of a block.
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Proof (of Lemma 2). Take I ∈ {0, 1 . . . , N − 1} uniformly at random. We need
an upper bound for Ha

K,N (α), i.e., for H(αKI . . . αKI+K−1). For that we use
Shearer’s inequality (see, e.g., [14, Section 7.2 and Chapter 10]). In general, this
inequality can be formulated as follows. Consider a finite family of arbitrary
random variables η0, . . . , ηm−1 indexed by integers in {0, . . . ,m− 1}. For every
U ⊂ {0, . . . ,m − 1} consider the tuple ηU of all ηu where u ∈ U . If a family of
subsets U0, . . . , Us−1 ⊂ {0, . . . ,m− 1} covers each element of U at least r times,
then

H(ηU ) 6 1
r

(
H(ηU0) + . . .+H(ηUs−1)

)
.

In our case we have K variables η0, . . . ηK−1 that are individual bits of a K-
bit block αKI . . . αKI+K−1 (for random I), i.e., η0 = αKI , η1 = αKI+1, etc.
The set U contains all indices 0, . . . ,K − 1, and the sets Ui contains k indices
i, i + 1, . . . , i + k − 1 (where operations are performed modulo K, so there are
Ui that combine the prefix and suffix of a random K-bit block). Each ηi is
covered k times due to this cyclic arrangement. In other words, the variable ηUi

is a substring of the random string ηU = αKI . . . αKI+K−1 that starts from ith
position and wraps around if there is not enough bits. There are k − 1 tuples
of this “wrap-around” type (block of length k may cross the boundary in k − 1
ways). These tuples are not convenient for our analysis, so we just bound their
entropy by k. In this way we obtain the following upper bound:

Ha
K,N (α) = H(αKI . . . αKI+K−1) 6

6
1

k

(
K−k∑
s=0

H(αKI+s . . . αKI+s+k−1) + (k − 1)k

)
.

Adding k− 1 terms (replacing the wrap-around terms by some other entropies),
we increase the right hand side:

Ha
K,N (α) 6

1

k

(
K−1∑
s=0

H(αKI+s . . . αKI+s+k−1) + (k − 1)k

)
.

Let us look at the variable αKI+s . . . αKI+s+k−1 in the right hand side for some
fixed s. It has the same distribution as the random non-aligned k-bit block
αJ . . . αJ+k−1 for uniformly chosen J in {0, . . . , NK − 1} conditional on the
event “J mod K = s”:

H(αKI+s . . . αKI+s+k−1) = H(αJ . . . αJ+k−1 |J mod K = s).

The average of these K entropies (for s = 0, . . . ,K−1) is the conditional entropy
H(αJ . . . αJ+k−1 |J mod K) that does not exceed the unconditional entropy. So
we get

Ha
K,N (α) 6

1

k

(
K ·Hna

k,KN (α) + (k − 1)k
)
.

By taking the lim inf as N →∞ we obtain

Ha
K(α)

K
= lim inf

N→∞

Ha
K,N (α)

K
6 lim inf

N→∞

Hna
k,KN (α)

k
+O

(
k

K

)
.
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However, the lim inf in the right hand side is taken over multiples of K and we
want it to be over all indices. Formally, it remains to show that

lim inf
N→∞

Hna
k,KN (α)

k
= lim inf

N→∞

Hna
k,N (α)

k

as the latter is by definition equal to Hna
k (α)/k. Indeed, the statistical distance

between distributions on the first KN (non-aligned) blocks and the distribution
on the first KN + r blocks (where r the remainder modulo K) tends to zero
since the first distribution is the second one conditioned on the event whose
probability converges to 1 (i.e., the event “the randomly chosen block is not
among the r last ones” whose probability is KN/(KN + r)). ut

As we have mentioned, this result implies that non-aligned and aligned ver-
sions of normality (uniform distribution on non-aligned and aligned blocks) are
equivalent. However, note the asymptotic nature of this argument: to prove that
the distribution of (say) non-aligned k-bit blocks is uniform, it is not enough to
know that aligned k-bit blocks have uniform distribution; we need to know that
the distribution of K-bit blocks is uniform for arbitrarily large values of K. This
is unavoidable, as the following result shows.

Theorem 2.

(a) For all k there exists an infinite sequence α such that Hna
2 (α) < 2 and

Ha
i (α) = i for all i 6 k.

(b) For all k there exists an infinite sequence α such that Ha
2 (α) < 2 and

Hna
i (α) = i for all i 6 k.

Proof. (a) Consider all k-bit strings. It is easy to arrange them in some order
B0, B1, . . . such that the last bit of Bi is the same as the first bit of Bi+1, for all i,
and the last bit of the last block is the same as the first bit of the first block. For
example, consider (for every x ∈ {0, 1}k−2) four k-bit strings 0x0, 0x1, 1x1, 1x0
and concatenate these 2k−2 quadruples in arbitrary order.

Then consider a periodic sequence with period B0B1 . . . B2k−1. Obviously
all aligned k-bit blocks have the same frequency, so Ha

k(α) = k. However, for
non-aligned bit blocks of length 2 we have two cases: this pair can be completely
inside some Bi, or be on the boundary between blocks. The pairs of the first type
are balanced (since we have all possible k-bit blocks), but the boundary pairs
could be only 00 or 11 due to our construction. So the non-aligned frequency of
these two blocks is 1/4+Ω(1/k), and for two other blocks we have 1/4−Ω(1/k),
so Hna

2 (α) < 2.
However, in this construction we do not necessarily have that Ha

i (α) = i for
i < k. But this is easy to fix. Note that Ha

k(α) = k implies Ha
i (α) = i whenever

i is a divisor of k. So we can just use the same construction with blocks of length
k! instead of k.

(b) Now let us consider a sequence constructed in the same way, but blocks
B0, B1, . . . , B2k−1 go in the lexicographical ordering. First let us note that all
k-bit blocks have the same non-aligned frequencies in the periodic sequence with
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period B0B1 . . . B2k−1. (For aligned k-blocks it was obvious, but the non-aligned
case needs some proof.) Indeed, consider some k-bit string U ; we need to show
that it appears exactly k times in the (looped) sequence B0B1 . . . B2k−1. In fact,
it appears exactly once for each position modulo k. For example, it appears once
among the blocks Bi. Why the same it true for some other position s mod k
where the k− s first bits of U appear as a suffix of Bi−1 and the last s bits of U
appear as a prefix of Bi? Note that (k − s)-bit suffixes of B0, B1, B2, . . . form a
cycle modulo 2k−s, so the first k− s bits of U uniquely determine the last k− s
bits of Bi, whereas the first s bits of Bi are just written in the s-bit suffix of U .

This implies that non-aligned frequencies for all k-bit blocks are the same.
Therefore, they are the same also for all smaller values of k. In particular, we
can assume for the rest that k is odd.

Now let us consider aligned blocks of size 2. We will show that aligned fre-
quency of the block 10 in the sequence B0B1 . . . B2k−1 is 1/4 − Ω(1/k). Since
k is odd (see above), when we cut our sequence into blocks of size 2, there are
“border” blocks that cross the boundaries between Bi and Bi+1, and other non-
border blocks. Each second boundary is crossed (between B0 and B1, then B2

and B3, and so on), so the border blocks all have the first bit 0. In particular, 10
never appears on such positions. This creates discrepancy of order 1/k for 10,
and we should check that it is not compensated by non-boundary blocks. In the
blocks Bi with even i we delete that last bit and cut the rest into bit pairs. After
deleting the last bit we have all possible (k − 1)-bit strings, so no discrepancy
arises here. In the blocks Bi with odd i we delete the first bit, and then cut the
rest into bit pairs. In the last pair the last bit is 1 (since i is odd), so once again
we never have 10 here, as required (the other positions are balanced). ut

3 Superadditive complexity measures

The finite-state dimension is a scaled-down version of effective Hausdorff dimen-
sion [8]. The effective Hausdorff dimension of a sequence α = α0α1 . . . can be
equivalently defined as the lim inf C(α0 . . . αN−1)/N , where C stands for the Kol-
mogorov complexity function [9,10]. We use here plain complexity, but prefix,
a priori or monotone complexity (see, e.g., [14, Chapter 6]) will work as well,
since they all differ only by O(log n) for n-bit strings (see, e.g., [14] for more
details about Kolmogorov complexity and effective dimension). It is natural to
look for a similar characterization of finite-state dimension in terms of compress-
ibility. Such a characterization was given in [7, Section 7]. However, it did not
use a complexity notion that can replace C in the definition of effective Haus-
dorff dimension, using finite-state compressors instead. A suitable complexity
notion was introduced in [13], and it indeed gives the desired characterization.
We may also use superadditive upper bounds for Kolmogorov complexity. In this
extended abstract we present only a version that does not mention Kolmogorov
complexity or finite-state machines at all.

Consider a non-negative function F defined on strings. Recall that F is su-
peradditive if F (xy) > F (x) + F (y) for all x and y. We call F calibrated if for
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every n the sum
∑

2−F (x) taken over all strings x of length n does not exceed
some constant (not depending on n).

Theorem 3. Let α = α0α1α2 . . . be an infinite bit sequence. Then

FSD(α) = inf
F

(
lim inf
N→∞

F (α0 . . . αN−1)

N

)
,

where the infimum is taken over all superadditive calibrated F : {0, 1}∗→ [0,+∞).

Proof. We start with an upper bound for the finite-state dimension. Let F be a
superadditive calibrated function. We need to show that

FSD(α) 6 lim inf
N→∞

F (α0 . . . αN−1)

N
.

Since FSD(α) can be defined as limkH
a
k(α)/k, it is enough to prove that

Ha
k(α)/k 6 lim inf

N→∞

F (α0 . . . αN−1)

N
+O(1/k) (∗)

for all k. Fix some k ∈ N. We can split α0 . . . αN−1 into M = bN/kc aligned
k-bit blocks b1, . . . , bM and a tail of length less than k. Since F is superadditive,
its value of α0 . . . αN−1 is at least the sum of its values on blocks b1, . . . , bM (plus
the value on the tail; it is non-negative and we ignore it). So we need a lower
bound for the sum F (b1) + . . .+ F (bM ).

How do we get such a bound? We know that the sum of 2−F (b) (taken over all
blocks b of length k) is bounded by some constant c that does not depend on k.
Assume first for simplicity that this constant is 1 and all values of F are integers.
Then there exists a prefix-free code for all k-bit blocks where every block b has
code of length at most F (b). Then the sum F (b1) + . . .+F (bM ), divided by M ,
is an average code length for the distribution with entropy Ha

k,M (α), therefore

F (b1) + . . .+ F (bM ) >MHa
k,M (α),

and
F (α0 . . . αN−1) > bN/kcHa

k,bN/kc(α).

Now, dividing both sides by N and taking the lim inf, we get the desired inequal-
ity (∗) even without O(1/k) term. This term appears when we recall that the
sum of 2−F (b) over all blocks of length k is bounded by a constant (instead of
1) and that the values of F are not necessary integers. To rescue the argument,
we need to add some constant to F and perform rounding that adds a constant
term to the average code length bound. We get

F (b1) + . . .+ F (bM ) >M(Ha
k,M (α)−O(1))

and
F (α0 . . . αN−1) > bN/kc(Ha

k,bN/kc(α)−O(1)).
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Dividing by N , we get a correction of order O(1/k), as claimed.

For the other direction, we need to assume that Ha
k(α)/k is small (less than

some threshold) for some k and construct a calibrated superadditive function F
such that lim inf F (α0 . . . αN−1)/N is small (does not exceed the same threshold).
For that, we need some general method to construct superadditive calibrated
functions. This method is a finite-state version of the a priori complexity notion
from algorithmic information theory [14, Section 5.3]. Here it is.

Consider a finite set S of vertices (states). Assume that each vertex has two
outgoing edges labeled by (0, p0) and (1, p1), where p0 and p1 are some non-
negative reals such that p0 + p1 = 1. Then we may consider a probabilistic
process: being in state s, the machine emits 0 (with probability p0) or 1 (with
probability p1), and changes state following the corresponding edge. In addition
to such a labeled graph G, fix some state s ∈ S as an initial state. Then we
get a probabilistic algorithm that emits bits, and the corresponding measure
PG,s on the space of bit sequences. Let PG,s(u) be the probability of the event
“starting from s, the process emits a bit sequence with prefix u”. For each k
the sum of PG,s(u) over all strings u of length k is exactly 1, so the function
u 7→ − log2 PG,s(u) is calibrated. However, it may not be superadditive. To get
superadditivity, we take the maximum probability over all initial states s.

Lemma 3. Let G be a labeled graph of the described type, and all probabilities on
labels are positive.7Then the function FG(u) = − log maxs∈S PG,s(u) is calibrated
and superadditive.

Proof (of Lemma 3). (Calibration) Since maxs∈S does not exceed
∑
s∈S , we

conclude that the sum of 2−FG(u) over all strings of given length does not exceed
the number of states.

(Superadditivity) We need to prove that

max
s∈S

PG,s(uv) 6 max
s∈S

PG,s(u) ·max
s′∈S

PG,s′(v).

We need an upper bound for PG,s(uv) for each s. Indeed, the probability of
emitting uv starting from s is equal to the product of the probability of emitting
u, starting from s, and the conditional probability of emitting v if u was emitted
before. The first probability is PG,s(u) (and does not exceed the maximal value
taken over all s). The second probability is PG,s′(v), where s′ is the state s′ after
emitting u. Lemma 3 is proven. ut

Now assume that Ha
k(α)/k (for some k) is less than some threshold β. This

means that there exists a sequence of prefixes of α such that the entropies of
corresponding aligned distributions on {0, 1}k converge to some number less
than βk. Compactness arguments show that we may assume that the correspond-
ing distributions on {0, 1}k converge to some distribution Q whose entropy H(Q)
is less that βk. Assume for now that all blocks have positive Q-probabilities. Con-
sider a probabilistic process that generates a concatenation of independent k-bit

7 This is a technical condition needed to avoid infinities in the logarithms.
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strings each having distribution Q. To generate one string according to Q, we
generate its bits sequentially, with corresponding conditional probabilities. So
the state is the sequence of bits that are already generated; the states form a
tree. Finally, generating the last (kth) bit of this string, we return to the initial
state (the root of this tree) and are ready to generate new independent strings
with the same distribution.

If G is the labeled graph constructed in this way, all labels are positive
(recall that we assume that all Q-values are positive). If s is the root, then
PG,s(b0 . . . bm−1) = Q(b0) · . . . ·Q(bm−1) for arbitrary k-bit blocks b0, . . . , bm−1.
Now let b0b2 . . . bm−1 be the prefix of α from the subsequence of prefixes where
the corresponding distributions converge to Q. If F (u) is defined as − logPG,s(u),

then F (b0 . . . bm−1) =
∑m−1
i=0 (− logQ(bi)). Recall that the frequencies of all k-bit

blocks among b0, . . . , bm−1 converge to Q. Therefore,

F (b0 . . . bm−1) = (H(Q) + o(1))m < βkm

for sufficiently large m such that the prefix b0 . . . bm−1 belongs to the subse-
quence. Dividing both sides by the length km, we get lim infN F (α0 . . . αN−1)/N 6
β. The only problem is that F (u) may not be superadditive, but we can replace it
by a smaller superadditive calibrated function − logPG(u) (taking the maximum
of probabilities over all states).

This ends the proof for the case when Q is everywhere positive. If not, we
may consider another distribution Q′ that is close to Q but has all positive
probabilities. Then F (b0 . . . bm−1) will be bigger, and the increase is Kullback –
Leibler divergence between Q and Q′. So we just need to make this divergences
less than βk −H(Q).

Theorem 3 is proven. ut

4 Sufficient condition for normality

Assume that some non-empty strings x1, x2, . . . are given, and consider the in-
finite sequence κ = x1x2 . . . obtained by their concatenation. The following
theorem provides some conditions that guarantee that κ is a normal sequence.

Theorem 4. Let Ln be the average length of the first n strings, i.e., Ln = (|x1|+
. . .+ |xn|)/n. Let Cn be the average Kolmogorov complexity of the same strings,
i.e., Cn = (C(x1) + . . .+ C(xn))/n. Assume that |xn|/(|x1|+ . . .+ |xn−1|)→ 0
and Ln →∞ as n→∞. If Cn/Ln → 1 as n→∞, then κ = x1x2 . . . is normal.
In general, FSD(κ) > lim inf

n→∞
Cn/Ln.

Recall that normal sequences can be defined as sequences of finite-state di-
mension 1.

For example, in the Champernowne sequence the string xn is the binary
representation of n. It is easy to check all three conditions (the latter one uses
that the average Kolmogorov complexity of k-bit strings is k −O(1)).
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This theorem and its proof require some notions and results from algorithmic
information theory (all needed information can be found, e.g., in [14]): the notion
of plain Kolmogorov complexity C(x) in used in its statement, the notion of a
priori complexity (the logarithm of the continuous a priori probability) is used in
the proof. However, this theorem has a corollary that can be formulated without
Kolmogorov complexity. For that we consider a random variable i uniformly
distributed in {1, . . . , n}, random variable xi whose value are binary strings, and
replace Cn by the entropy Hn of this variable. (If all xi are different, this entropy
is log n.) Again, if Hn/Ln → 1, then κ is normal, and FSD(κ) > lim inf Hn/Ln
in the general case. To derive this corollary, we note that the difference between
a priori and prefix complexity is negligible (logarithmic compared to length,
see below the comparison between a priori and plain complexities), and prefix
complexity provides a prefix-free code for the random variable xi (with random
i), so the average length of the code is at least the Shannon entropy of this
variable.

Proof (of Theorem 4). To prove this result, we need to recall the proof of Theo-
rem 3 and note that we can restrict the infF in the right hand side to functions
F that are computable upper bounds for the a priori complexity up to O(1)
precision (see [14, Section 5.1] for the definition). Indeed, in the proof we have
constructed a distribution on the Cantor space (product of distribution Q on
k-bit blocks). If Q were computable, then all the transition probabilities in the
graph G we constructed would be computable, and PG,s would be a computable
measure on the Cantor space for each s, therefore its negative logarithm would
be an upper bound for a priori complexity (up to O(1) precision), and the same
is true for the minimum over (finitely many) states s.

However, we may not assume that Q is computable: it is the limit distribution
in a sequence of prefixes and may be arbitrary. Still (see the discussion above)
we may always choose Q′ that is close to Q, is computable (even rational) and
has non-zero probabilities.

Therefore it remains to show that for every F that is a superadditive upper
bound for a priori complexity, the liminf of F (u)/|u|, where u is a prefix of κ,
is at least lim infn Cn/Ln. If u ends on the block boundary, i.e., if u = x1 . . . xn
for some n, then

F (u) = F (x1 . . . xn) > F (x1) + . . .+ F (xn) > KA(x1) + . . .+ KA(xn)−O(n),

where KA is a priori complexity (we use superadditivity of F and recall that
F is an upper bound for KA up to O(1) additive term). Assume for a while
that we have plain complexity C in this inequality. Then we may continue and
write F (u) > C(x1) + . . . + C(xn) − O(n) = nCn − O(n) and |u| = nLn, so
F (u)/|u| > Cn/Ln − O(1/Ln), and the last term is o(1), since Ln → ∞ as
n→∞.

Now we should consider u that do not end on the block boundary. We can
delete the last incomplete block and get slightly shorter u′. For this u′ we use
the same bound as before, and due to the superadditivity it works as a bound
for u. However, we have |u| in the denominator, not |u′|. This does not change
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the lim inf, since we assume that |xn| = o(|x1|+ . . .+ |xn−1|), so the length of the
incomplete block is negligible compared to the total length of previous complete
blocks, and the correction factor converges to 1.

Finally, the difference between plain and a priori complexity is O(logm) for
strings of length m. Therefore, we get a bound (for prefixes u = x1 . . . xn)

F (u)

|u|
>

KA(x1) + . . .+ KA(xn)−O(n)

|x1|+ . . .+ |xn|
>

>
C(x1) + . . .+ C(xn)−O(log |x1|+ . . .+ log |xn|)−O(n)

|x1|+ . . .+ |xn|
.

Both O-terms do not change the limit; we have already discussed this for O(n)
(recall that n is small compared to the total length, since Ln → ∞), and the
convexity of logarithm (Cauchy inequality) allows us to write

log |x1|+ . . .+ log |xn|
|x1|+ . . .+ |xn|

6
n · log (|x1|/n+ . . .+ |xn|/n)

|x1|+ . . .+ |xn|
=

logLn
Ln

→ 0.

Theorem 4 is proven. ut

As we have noted, this sufficient condition implies the normality of the Cham-
pernowne number [5]. It is also easy to see that Copeland – Erdös criterion [6]
can be derived in the same way. In this result some integers are skipped, but in
such a way that the bit length of the ith remaining integer is still (1+o(1)) log i,
and the sufficient condition can be still applied. More work is needed to derive
the result of Besicovitch [1] saying that that concatenated binary representa-
tions of perfect squares form a normal number. For this example xm is a binary
representation of m2, has length about 2 logm and complexity about m, so we
get only the lower bound 1/2 for its finite-state dimension from Theorem 4. To
prove normality, we should split the string xm into two halves of the same length
xm = ymzm. It is easy to see that the most significant half of m2 determines m
almost uniquely, so the complexity of ym is close to the complexity of m. For zm
it is not the case: if m has j trailing zeros in the binary representation, then m2

has 2j trailing zeros and its complexity decreases at least by j−O(1) compared
to the complexity of m. A simple analysis shows that this estimate is exact, and
since the average number of trailing zeros in a random s-bit string is O(1), we
get the required bound.

Now let us give more details. Let zm be the suffix of xm of length blog2mc+1,
i.e., the length of zm is exactly the length of the binary representation of m, and
let ym ∈ {0, 1}∗ be the corresponding prefix, i.e., xm = ymzm. Note that the
length of ym is log2m+O(1). Therefore, the average length of y1, z1, . . . , ym, zm
is log2m+O(1), and it remains to show that the average Kolmogorov complexity
of these strings is logm · (1− o(1)). We will do this by showing that the average
of conditional complexities C(i|yi), C(i|zi) over i ∈ {1, . . . ,m} is O(log logm).
Since we already know that the average of C(i) over i ∈ {1, . . . ,m} is log2m+
O(1), this would give the desired bound. Indeed, this follows from the chain rule:

C(yi) > C(i)−C(i|yi)−O(log logm), C(zi) > C(i)−C(i|zi)−O(log logm).
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For the first part we will show not only that the average of C(i|yi) is at most
O(log logm), but that the same is true for every i. Indeed, assume that you know
yi and the length of the binary representation of i (let us denote this quantity
by k). Then there is at most O(1) different j of length k such that yj = yi.
Indeed, the difference between i2 and j2 is |i2−j2| = Ω(|i−j| ·2k). On the other
hand, by definition we have that i2 = 2kyi+zi, j

2 = 2kyi+zj , which means that
that difference between i2 and j2 is |zi − zj | = O(2k). Therefore, if for the k-bit
number j we have yj = yi, then j differs from i only by some constant. We need
only to specify the length of the binary representation of i, using O(log logm)
bits.

As we mentioned earlier, we need a more complicated argument to show
that the average of C(i|zi) is O(log logm). The reason is that it is true only for
averages: there are some i such that C(i|zi) is of order logm. We have to show
somehow that the number of “bad” i is negligible. To do so we need the following
technical lemma.

Lemma 4. Let t(n) denote the largest natural number d such that n is divisible
by 2d (i.e., t(n) is the number of trailing zeros in the binary representation of
n). Then for every a ∈ N the number of x ∈ {0, 1, . . . , 2k − 1} such that x2 ≡ a2
(mod 2k) is at most O(2t(a)).

Proof. Indeed, assume that a has z trailing zeros and x2 = a2 (mod 2k) for
some x ∈ {0, 1 . . . , 2k − 1}. Then x2 − a2 = (x − a)(x + a) is a multiple of 2k,
therefore x − a is a multiple of 2u and x + a is a multiple of 2v for some u, v
such that u + v = k. Then 2a = (x + a) − (x − a) is a multiple of 2min(u,v), so
min(u, v) 6 z − 1. Then max(u, v) > k − z − 1, so one of x − a and x + a is a
multiple of 2k−z−1, and each case contributes at most 2z+1 = O(2z) solutions
for the equation x2 = a2 (mod 2k). ut

This lemma implies that C(i|zi) = O(t(i) + log logm). Indeed, assume that
zi and the length of the binary representation of i (denoted by k in the sequel)
are given. Suppose that j is a k-bit number satisfying zj = zi. Then, as i2 =
2k · yi + zi, j

2 = 2k · yj + zi, the difference between i2 and j2 is the multiple of
2k. By Lemma 4 the number of such j is O(2t(a)), i.e., specifying one of them
requires t(a) +O(1) bits.

As the average of t(i) is O(1), this gives the required bound for the average
value of C(i|zi).

Calude, Salomaa and Roblot [3, Section 6] define a version of automatic com-
plexity in the following way. A deterministic transducer (finite automaton that
reads an input string and at each step produces some number of output bits)
maps a description string to a string to be described, and the complexity of y
is measured as the minimal sum of the sizes of the transducer and the input
string needed to produce y; the minimum is taken over all pairs (transducer,
input string) producing y. The size of the transducer is measured via some en-
coding, so the complexity function depends on the choice of this encoding. “It
will be interesting to check whether finite-state random strings are Borel nor-
mal” [3, p. 5677]. Since normality is defined for infinite sequences, one probably
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should interpret this question in the following way: is it true that normal infi-
nite sequences can be characterized as sequences whose prefixes have finite-state
complexity close to length?

It turns out [4] that this is only a sufficient condition, not a criterion. More
precisely, there is a normal sequence such that finite-state complexity of its first
n bits is o(n). This example is also an easy consequence of Theorem 4. Indeed,
let us denote the complexity defined in [3] by CSR(x). It depends on the choice
of the encoding for transducers, but the following theorem is true for every
encoding, so we assume that some encoding is fixed and omit it in the notation.

Theorem 5 ([4]). (a) If a sequence α = a0a1 . . . is not normal, then there
exists some c < 1 such that the CSR(a0 . . . an−1) < cn for infinitely many n.

(b) lim inf CSR(b0 . . . bn−1)/n = 0 for some normal sequence β = b0b1 . . .

Proof. The first part of the statement can be proven using Shannon coding in
the same way as in [13]. For the second part we construct an example of a normal
sequence using Champernowne’s idea and Theorem 4. The sequence will have
the form β = (B1)n1(B2)n2 . . . ; here Bi is the concatenation of all strings of
length i (say, in lexicographical ordering, but this does not matter), and ni is a
fast growing sequence of integers.

To choose ni, let us note first that for a periodic sequence (of the form XY∞)
the CSR-complexity of its prefixes of the form XY k is o(length). Indeed, we may
consider a transducer that first outputs X, then outputs Y for each input bit 1.
So CSR(XY m) = m + O(1), and the compression ratio is about 1/|Y |. To get
o(length), we use Y c for some constant c as a period to improve the compression.

Now consider the complexity/length ratio for the prefixes of β if the sequence
ni grows fast enough. Indeed, assume that n1, n2, . . . , nk are already chosen
and we now choose the value of nk+1. We may use the bound explained in
the previous paragraph and let X = (B1)n1 . . . (Bk)nk and Y = Bk+1. For
sufficiently large nk+1 we get arbitrarily small complexity/length ratio. (Note
that good compression is guaranteed only for some prefixes; when increasing k,
we need to switch to another transducer, and we know nothing about the length
of its encoding.)

It remains to apply Theorem 4 to show that for some fast growing sequence
n1, n2, . . . the sequence β is normal. We apply the criterion by splitting Bk into
pieces of length k (so all strings of length k appear once in this decomposition
of Bk). We already know that the average Kolmogorov complexity of the pieces
in Bk is k−O(1) (and the length of all pieces is k). This is enough to satisfy the
conditions of Theorem 4 if x1 . . . xn ends on the boundary of the block Bk. But
this is not guaranteed; in general we need also to consider the last incomplete
group of blocks that form a prefix of some Bk. The total length of these blocks
is bounded by |Bk|, i.e., by k2k. We need this group to be short compared to
the rest, and this will be guaranteed if nk−1 (the lower bound for the length of
the previous part) is much bigger than k2k. And we assume that nk grow very
fast, so this condition is easy to satisfy. Theorem 5 is proven. ut
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