How to Use Undiscovered Information Inequalities: Direct Applications of the Copy Lemma.

Emirhan Gürpınar (ENS de Lyon) and Andrei Romashchenko (LIRMM)

July 09, IEEE ISIT 2019

The talk in two phrases:

To apply new non-Shannon type inequalities you do not need to prove them.

Toy example: secret sharing on the Vámos matroid.

General definition of secret sharing

- secret S_0 (e.g., uniformly distributed on $\{0,1\}^k$)
- n participants
- access structure: a family of authorized groups C_1, \ldots, C_m

General definition of secret sharing

- secret S_0 (e.g., uniformly distributed on $\{0,1\}^k$)
- n participants
- access structure: a family of authorized groups C_1, \ldots, C_m

perfect secret sharing scheme: a distribution (S_0, S_1, \ldots, S_n) such that

- a collection of shares S_i from each authorized group gives all information on S₀
- a collection of shares S_i from any non-authorized group gives no information on S₀

Secret sharing for *n* participants

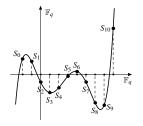
secret key: S_0 uniformly distributed on $\{0,1\}^k$

Standard example:

- any group of $\geq t$ participants knows the secret
- any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

- fix points x₀, x₁, ..., x_n in 𝔽_{2^k} (public information)
- choose a secret random polynomial Q(x) of degree ≤ t − 1
- the *i*-th participant obtains $S_i = Q(x_i), i = 1, ..., n$
- let the secret $S_0 = Q(x_0)$



Secret sharing for *n* participants

secret key: S_0 uniformly distributed on $\{0,1\}^k$

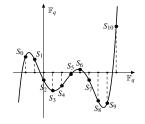
Standard example:

- any group of $\geq t$ participants knows the secret
- any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

- fix points x₀, x₁,..., x_n in 𝔽_{2^k} (public information)
- choose a secret random polynomial Q(x) of degree ≤ t − 1
- the *i*-th participant obtains $S_i = Q(x_i), i = 1, ..., n$
- let the secret $S_0 = Q(x_0)$

Given $\geq t$ pairs $(x_i, Q(x_i))$ we reconstruct Q(x) and S_0 .



Secret sharing for *n* participants

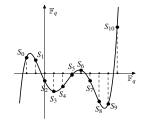
secret key: S_0 uniformly distributed on $\{0,1\}^k$

Standard example:

- any group of $\geq t$ participants knows the secret
- any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

- fix points x₀, x₁, ..., x_n in 𝔽_{2^k} (public information)
- choose a secret random polynomial Q(x) of degree ≤ t − 1
- the *i*-th participant obtains $S_i = Q(x_i), i = 1, ..., n$
- let the secret $S_0 = Q(x_0)$



Given $\langle t | \text{pairs} (x_i, Q(x_i)) \rangle$ we know nothing about S_0 : all values of S_0 remain **possible** and even **equiprobable**.

Computing the information ratio

Information ratio of a secret sharing scheme: $\frac{\max H(S_i)}{H(S_n)}$.

Fundamental problem: minimize information ratio for a given access structure.

Computing the information ratio

Information ratio of a secret sharing scheme: $\frac{\max H(S_i)}{H(S_0)}$.

Fundamental problem: minimize information ratio for a given access structure.

Very simple example:

- 4 participants
- minimal authorized groups: {1,2}, {2,3}, {3,4}

Question: What is the optimal information ratio for this access structure?

There is a simple construction with information ratio = 3/2. Shannon's inequalities \implies we cannot do better.

Computing the information ratio

Very simple example:

- 4 participants
- minimal authorized groups:
 - $\{1,2\},\ \{2,3\},\ \{3,4\}$

Question: What is the optimal information ratio for this access structure? **Shannon's inequalities:** information ratio $\geq 3/2$.

Computer-assisted proof:

- write down all equations that define the access structure
- write down all *basic inequalities* for Shannon's entropy of $(S_0, S_1, S_2, S_3, S_4)$
- write that $H(S_i) \leq T$ for i = 1, 2, 3, 4
- ask your favorite linear programming solver to find min(T)

The answer: minimal $T = (3/2)H(S_0)$.

Ideal secret sharing: from linear structures to matroids

Ideal secret sharing scheme: information ratio = 1.

usual examples of ideal secret sharing: linear schemes / linear access structures

Linear access structure: there is a family of vectors $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_s$ such that

 $\{i_1,\ldots,i_s\}$ know the secret IFF \mathbf{v}_0 is in the span of $\mathbf{v}_{i_1},\ldots,\mathbf{v}_{i_s}$.

Ideal secret sharing: from linear structures to matroids

Matroid on the ground set U: a function \mathbf{rk} on subsets of U such that

- rk(A) is a non negative integer
- $\operatorname{rk}(A) \leq |A|$
- $\operatorname{rk}(A \cup \{x\}) \leq \operatorname{rk}(A) + 1$
- $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup B)$
- $\operatorname{rk}(A \cup B \cup C) + \operatorname{rk}(C) \le \operatorname{rk}(A \cup C) + \operatorname{rk}(B \cup C)$

Examples: vector matroids; graphic matroids; algebraic matroid...

Ideal secret sharing: from linear structures to matroids

Matroid on the ground set U: a function \mathbf{rk} on subsets of U such that

- rk(A) is a non negative integer
- $\operatorname{rk}(A) \leq |A|$
- $\operatorname{rk}(A \cup \{x\}) \leq \operatorname{rk}(A) + 1$
- $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup B)$
- $\operatorname{rk}(A \cup B \cup C) + \operatorname{rk}(C) \le \operatorname{rk}(A \cup C) + \operatorname{rk}(B \cup C)$

Examples: vector matroids; graphic matroids; algebraic matroid...

An access structure on a matroid: the ground set is the set of participants, and

 i_1, \ldots, i_s know the secret IFF adding \mathbf{v}_0 to $\{\mathbf{v}_{i_1}, \ldots, \mathbf{v}_{i_s}\}$ preserves the rank

matroids and ideal secret sharing

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal secret sharing scheme

matroids and ideal secret sharing

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal secret sharing scheme

The conjecture looks plausible: This is true for linear access structures. very plausible: Shannon's inequalities cannot disprove it.

matroids and ideal secret sharing

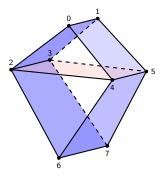
[Brickell–Davenport]: The access structure of every ideal secret sharing scheme can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal secret sharing scheme

The conjecture looks plausible: This is true for linear access structures. very plausible: Shannon's inequalities cannot disprove it. But there is a counter-example [Seymour]: Vámos matroid

Vámos matroid

ground set = $\{0, 1, 2, 3, 4, 5, 6, 7\}$



$$\begin{split} \mathrm{rk}(\text{one point}) &= 1 \\ \mathrm{rk}(\text{two points}) &= 2 \\ \mathrm{rk}(\text{three points}) &= 3 \\ \mathrm{rk}(\{0,1,2,3\}) &= \mathrm{rk}(\{0,1,4,5\}) = \mathrm{rk}(\{2,3,6,7\}) = \mathrm{rk}(\{4,5,6,7\}) = \mathrm{rk}(\{2,3,4,5\}) = 3 \\ \mathrm{rk}(\text{other sets}) &= 4 \end{split}$$

Our toy problem: secret sharing on Vámos matroid

upper bound: information ratio $\leq 4/3$

lower bound:

Seymour 1992	> 1
Beimel–Livne 2006	$\geq 1 + \Omega(1/\sqrt{k})$ for a secret of size k
Beimel–Livne–Padro 2008	$\geq 11/10$
Metcalf-Burton 2011	$\geq 9/8 = 1.125$
Hadian 2013	$\geq 67/59 pprox 1.135593$
Farràs–Kaced–Martín–Padró 2018	$\geq 33/29 pprox 1.137931$
this talk	$\geq 561/491 pprox 1.142566$

Our toy problem: secret sharing on Vámos matroid

upper bound: information ratio $\leq 4/3$

Our bound follows from new (unknown!) inequalities for Shannon's entropy. They still remain undiscovered, but we have already applied them.

Classical approach

Write a linear program as follows.

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities for entropy, $I(*:*|*) \ge 0$
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Classical approach

Write a linear program as follows.

Constraints:

- equations from the definition of a perfect secret sharing
- all **Shannon-type** inequalities for entropy, $I(*:*|*) \ge 0$
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Answer: trivial, information ratio ≥ 1

Modern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Modern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Answer: some non-trivial bounds!

[Beimel-Livne-Padro 2008], [Metcalf-Burton 2011], [Hadian 2013]

PostModern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- new variables and constraints borrowed from proofs of non-Shannon-type inequalities
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

PostModern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- new variables and constraints borrowed from proofs of non-Shannon-type inequalities
- (optional) symmetry conditions

Objective function:

minimize $\left[\max_{i} \frac{H(\text{secret share}_{i})}{H(\text{secret})}\right]$

Answer: [Farràs-Kaced-Martín-Padró 2018] and this paper

PostModern approach

Write a linear program as follows

Constraints:

- equations from the definition of a perfect secret sharing
- all Shannon-type inequalities $I(*:*|*) \ge 0$
- some known non-Shannon-type inequalities
- oversimplified technical explanation: make clones of (S₀, S₁, S₆, S₇) conditional on (S₂, S₃, S₄, S₅) (twice!)
- (optional) symmetry conditions

Objective function:

```
minimize \left[\max_{i} H(\text{secret share}_{i})\right]
```

Answer: information ratio $\geq 561/491 \approx 1.142566$

Modern approach vs. PostModern approach

Modern approach:

Stage 1: computer-aided search of non-Shannon type inequalities [cloning (Copy Lemma) + linear programming]

Stage 2: computer-aided linear programming for secret sharing involving inequalities found on **Stage 1**

PostModern approach:

One Shot: computer-aided linear programming for a secret sharing problem involving **cloning**

Modern approach vs. PostModern approach

Modern approach:

Stage 1: computer-aided search of non-Shannon type inequalities [cloning (Copy Lemma) + linear programming]

Stage 2: computer-aided linear programming for secret sharing involving inequalities found on Stage 1

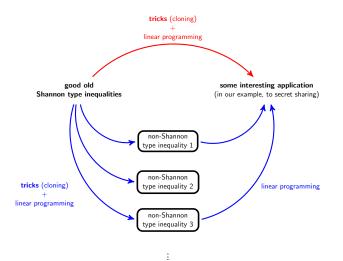
PostModern approach:

One Shot: computer-aided linear programming for a secret sharing problem involving **cloning**

Remark 2: This technique gives a "cheap" proof of the previously known bound for the Ingleton score.

IEEE ISIT 2019

In one picture: our technique vs. usual technique



Questions?

IEEE ISIT 2019