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The talk in two phrases:

To apply new non-Shannon type inequalities
you do not need to prove them.

Toy example: secret sharing on the Vámos matroid.

IEEE ISIT 2019 Undiscovered Information Inequalities in Use July 09, IEEE ISIT 2019 2 / 17



General definition of secret sharing

secret S0 (e.g., uniformly distributed on {0, 1}k)

n participants

access structure: a family of authorized groups C1, . . . ,Cm

perfect secret sharing scheme: a distribution (S0,S1, . . . ,Sn) such that

a collection of shares Si from each authorized group gives

all information on S0

a collection of shares Si from any non-authorized group gives

no information on S0
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Secret sharing for n participants
secret key: S0 uniformly distributed on {0, 1}k

Standard example:

any group of ≥ t participants knows the secret

any group of < t participants know nothing about the secret

Classical solution (Shamir scheme):

fix points x0, x1, . . . , xn in F2k

(public information)

choose a secret random
polynomial Q(x) of degree ≤ t− 1

the i-th participant obtains
Si = Q(xi ), i = 1, . . . , n

let the secret S0 = Q(x0)

S0 S1

S2

S3
S4

S5
S6

S7

S8
S9

S10

Fq

Fq
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Given ≥ t pairs (xi ,Q(xi )) we reconstruct Q(x) and S0.
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Given < t pairs (xi ,Q(xi )) we know nothing about S0:
all values of S0 remain possible and even equiprobable.
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Computing the information ratio

Information ratio of a secret sharing scheme: max H(Si )
H(S0) .

Fundamental problem: minimize information ratio for a given access structure.

Very simple example:

4 participants

minimal authorized groups:

{1, 2}, {2, 3}, {3, 4}

Question: What is the optimal information ratio for this access structure?

There is a simple construction with information ratio = 3/2.

Shannon’s inequalities =⇒ we cannot do better.

IEEE ISIT 2019 Undiscovered Information Inequalities in Use July 09, IEEE ISIT 2019 5 / 17



Computing the information ratio

Information ratio of a secret sharing scheme: max H(Si )
H(S0) .

Fundamental problem: minimize information ratio for a given access structure.

Very simple example:

4 participants

minimal authorized groups:

{1, 2}, {2, 3}, {3, 4}

Question: What is the optimal information ratio for this access structure?

There is a simple construction with information ratio = 3/2.

Shannon’s inequalities =⇒ we cannot do better.

IEEE ISIT 2019 Undiscovered Information Inequalities in Use July 09, IEEE ISIT 2019 5 / 17



Computing the information ratio

Very simple example:

4 participants

minimal authorized groups:

{1, 2}, {2, 3}, {3, 4}

Question: What is the optimal information ratio for this access structure?

Shannon’s inequalities: information ratio ≥ 3/2.

Computer-assisted proof:

write down all equations that define the access structure

write down all basic inequalities for Shannon’s entropy of (S0,S1,S2,S3,S4)

write that H(Si ) ≤ T for i = 1, 2, 3, 4

ask your favorite linear programming solver to find min(T )

The answer: minimal T = (3/2)H(S0).
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Ideal secret sharing: from linear structures to matroids

Ideal secret sharing scheme: information ratio = 1.

usual examples of ideal secret sharing: linear schemes / linear access structures

Linear access structure: there is a family of vectors v0, v1 . . . , vs such that

{i1, . . . , is} know the secret IFF v0 is in the span of vi1 , . . . , vis .
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Ideal secret sharing: from linear structures to matroids

Matroid on the ground set U: a function rk on subsets of U such that

rk(A) is a non negative integer

rk(A) ≤ |A|

rk(A ∪ {x}) ≤ rk(A) + 1

rk(A) ≤ rk(A ∪ B)

rk(A ∪ B ∪ C ) + rk(C ) ≤ rk(A ∪ C ) + rk(B ∪ C )

Examples: vector matroids; graphic matroids; algebraic matroid...

An access structure on a matroid: the ground set is the set of participants, and

i1, . . . , is know the secret IFF adding v0 to {vi1 , . . . , vis} preserves the rank
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matroids and ideal secret sharing

[Brickell–Davenport]: The access structure of every ideal secret sharing scheme
can be defined on a matroid.

Natural conjecture: For every access structure on a matroid there is an ideal
secret sharing scheme

The conjecture looks plausible: This is true for linear access structures.

very plausible: Shannon’s inequalities cannot disprove it.

But there is a counter-example [Seymour]: Vámos matroid
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Vámos matroid

ground set = {0, 1, 2, 3, 4, 5, 6, 7}

6

7

3
2

0
1

5

4

rk(one point) = 1

rk(two points) = 2

rk(three points) = 3

rk({0, 1, 2, 3}) = rk({0, 1, 4, 5}) = rk({2, 3, 6, 7}) = rk({4, 5, 6, 7}) = rk({2, 3, 4, 5}) = 3

rk(other sets) = 4
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Our toy problem: secret sharing on Vámos matroid

upper bound: information ratio ≤ 4/3

lower bound:
Seymour 1992 > 1

Beimel–Livne 2006 ≥ 1 + Ω(1/
√
k) for a secret of size k

Beimel–Livne–Padro 2008 ≥ 11/10
Metcalf-Burton 2011 ≥ 9/8 = 1.125
Hadian 2013 ≥ 67/59 ≈ 1.135593
Farràs–Kaced–Mart́ın–Padró 2018 ≥ 33/29 ≈ 1.137931
this talk ≥ 561/491 ≈ 1.142566

Our bound follows from new (unknown!) inequalities for Shannon’s entropy.
They still remain undiscovered, but we have already applied them.
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Classical approach

Write a linear program as follows.

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities for entropy, I (∗ : ∗ | ∗) ≥ 0

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
H(secret)

]

Answer: trivial, information ratio ≥ 1
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Modern approach

Write a linear program as follows
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all Shannon-type inequalities I (∗ : ∗ | ∗) ≥ 0

some known non-Shannon-type inequalities

(optional) symmetry conditions

Objective function:

minimize
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H(secret sharei )
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]

Answer: some non-trivial bounds!
[Beimel-Livne-Padro 2008], [Metcalf-Burton 2011], [Hadian 2013]
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PostModern approach

Write a linear program as follows

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities I (∗ : ∗ | ∗) ≥ 0

some known non-Shannon-type inequalities

new variables and constraints borrowed from proofs of
non-Shannon-type inequalities

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
H(secret)

]

Answer: [Farràs-Kaced-Mart́ın-Padró 2018] and this paper
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PostModern approach

Write a linear program as follows

Constraints:

equations from the definition of a perfect secret sharing

all Shannon-type inequalities I (∗ : ∗ | ∗) ≥ 0

some known non-Shannon-type inequalities

oversimplified technical explanation:
make clones of (S0,S1, S6,S7) conditional on (S2,S3,S4, S5) (twice!)

(optional) symmetry conditions

Objective function:

minimize
[

max
i

H(secret sharei )
]

Answer: information ratio ≥ 561/491 ≈ 1.142566
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Modern approach vs. PostModern approach

Modern approach:

Stage 1: computer-aided search of non-Shannon type inequalities

[cloning (Copy Lemma) + linear programming]

Stage 2: computer-aided linear programming for secret sharing involving
inequalities found on Stage 1

PostModern approach:

One Shot: computer-aided linear programming for a secret sharing problem
involving cloning

Remark 1: this work
Farràs–Kaced–Mart́ın–Padró = copy lemma + symmetries

Ahlswde–Körner lemma

Remark 2: This technique gives a “cheap” proof of the previously known bound
for the Ingleton score.
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In one picture: our technique vs. usual technique

non-Shannon
type inequality 1

non-Shannon
type inequality 2

non-Shannon
type inequality 3

...

some interesting application
(in our example, to secret sharing)

good old
Shannon type inequalities

tricks (cloning)
+

linear programming

tricks (cloning)
+

linear programming

linear programming

Questions?
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