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Approximating Kolmogorov complexity function
Preliminaries

Kolmogorov complexity

I Kolmogov complexity of a string x : the minimal length of
a program (without input) producing x

I CU(x) = min{|p| : U(p) = x}: U is the interpreter, p is
the program

I depends on U

I there exists optimal U that makes CU minimal up to O(1)

∃U ∀U ′ ∃c ∀x [CU(x) 6 CU′(x) + c]

I fix some U and forget about it
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Preliminaries

Non-computability

I Kolmogorov complexity is not computable
I Berry – Chaitin argument:

«the first string of complexity more than 101010»
I moreover, every computable lower bound is trivial, even if

partial
I Kolmogorov complexity is not generically computable
I coarse computability: a total algorithm that makes few

errors
I total function f (·) is coarsely computable if there is a total

computable F such that the fraction of errors converges
to 0:

#{i : i < N and f (i) 6= F (i)}
N

→ 0 as N →∞
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Our result

Approximation errors

I Theorem: Kolmogorov complexity function
is not coarsely computable

I C t(x) is the minimal length of a program that produces x
in time at most t

I a computable upper bound for C . . .
I . . . therefore the fraction of errors does not converge to 0
I improvements: . . . is separated from 0
I what if we approximate complexity values?
I difficulty in the Medvedev lattice
I logical implications
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Our result

Trade-off: precision vs #errors

I length is an upper bound: C (x) ≤ |x |+ O(1)
I C (x) < |x | − d : compressible (by d) strings

are rare (fraction: ≈ 2−d)
I increasing d : lower precision required, less errors
I «Theorem»: No approximation is better than length: the

same trade-off
I technical: one-sided error d is two-sided error d/2: take

C (x)− d/2
I Let e(n) and d(n) be two total computable functions with

integer values, e(n)− 2d(n)→∞ and e(n) ≤ n. Then
there is no computable function C̃ (x) that is
(d(n), e(n))-approximation for C (x) on n-bit strings.

I (d , e)-approximation: deviation < d except for
2−e-fraction
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Details

Finite version and proof idea

I looking for a program that approximates complexity for
n-bit strings

I exists (just a table)
I . . . but has high complexity
I (d , e)-approximation for n-bit strings requires complexity

about e − 2d
I why? knowing (a) the approximation; (b) number of

places where approximation has large error [n − e bits] we
can find those places and then find a string of complexity
at least n − 2d , so

(complexity of the approximation) + (n − e) ≥ n − 2d
I many technical details omitted (“one-sided” errors,

logarithmic terms, etc.)
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Details

Approximation as a mass problem

I mass problem (Medvedev): a set of total functions
(“solutions”)

I approximating complexity: a set of good approximations
I Medvedev reducibility A ≤ B: there is a machine M such

that MB ∈ A for each B ∈ B
I Theorem: halting problem is Medvedev-reducible to the

problem of approximating complexity (with any given
non-trivial precision)

I even separating incompressible strings from 100-fold
compressible is above the halting problem
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Details

Approximation and logic

I for every string x and integer n: arithmetical statement
C (x) ≥ n

I they are Π1-statements
I a lot of true statements (most of n-bit strings are almost

incompressible)
I none of them provable (except for bounded values of n)
I what if we add them as axioms?
I Theorem: adding axioms C (x) ≥ |x |/2 for every

incompressible string x , we may derive all true universal
statements

I (a logic counterpart of the difficulty of separation)
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