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Abstract. Kolmogorov complexity C(x) of a string x is the length of
its shortest possible description. It is well known that C(x) is not com-
putable. Moreover, any computable lower estimate of C(x) is bounded
by a constant. We study the following question: suppose that we want to
compute C with some precision and some amount of errors. For which
parameters is it possible? Our main result is the following: the error
must be at least an inverse exponential function of the precision. It
gives two striking implications. Firstly, no computable function approxi-
mate Kolmogorov complexity much better than the length function does.
Secondly, time-bounded Kolmogorov complexity is sufficiently far from
unbounded Kolmogorov complexity for any particular computable time
bound.

1 Introduction

Kolmogorov complexity C(x) of a string x is the minimal possible length of a
program that generates x for some universal programming language. This notion
was introduced in the 1960s and since then the area was comprehensively studied.
There are many applications in computability theory, computational complexity,
machine learning, statistics etc. Extensive expositions of the subject may be
found in books by Li and Vitányi [6] and by Shen, Uspensky and Vereshchagin [8].

A simple observation similar to the Berry paradox shows that Kolmogorov
complexity is an uncomputable function. Moreover, there are no computable
and unbounded lower estimates. In this paper we study how far is it from be-
ing computable. Firstly, we consider two well-known notions of being close to
computable. The first one is generic computability: there exists a computable
function that is defined almost everywhere and equals to our function on its do-
main. The second one is coarse computability: there exists a totally computable
function that coincides with ours almost everywhere. Then we relax the second
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notion by allowing a computable function to be close to the complexity function,
not necessarily be equal.

The length function is a good approximation for a majority of strings. Specif-
ically, there are two well-known results:

Lemma 1. There is some constant c such that for any string x of length n it
holds that C(x) ≤ n+ c.

Lemma 2. For any constant c there are less than 2n−c strings of length n and
complexity less than n− c.

Thus, for all but a fraction 2−c of strings it holds that |len(x) − C(x)| ≤ c.
Our main question is whether this estimate may be substantially improved by
another computable function instead of len(x). The main (and surprising) result
is that the answer is negative: the fraction 2−c may be replaced by a smaller
constant, but it is still a constant for any constant c. Moreover, this exponential
dependency is preserved for less accurate precisions, where the difference between
a computable function and the complexity function grows superconstantly.

1.1 Related Work

Algorithmic properties of the complexity function were studied in many sources.
Some basic properties are listed in [8, sect. 1.2], [6, sect. 2.7] and [7, sect. 2.1]. The
incomputability of C(x) traces back to the pioneering works by Kolmogorov [4]
and Solomonoff [9]. Kummer [5] studies algorithmic properties of the set of ran-
dom strings (that is, the strings for which the complexity is not less then the
length) and, in particular, proves that this set is not frequency enumerable. This
means that there is no computable function f that gets k strings and guesses for
at least one of them whether it is random or not. A similar in spirit result due
to Beigel et al [2] tells about complexity function itself: if an algorithm produces
a list of numbers that is guaranteed to contain C(x), then the length of this list
must be linear. Bauwens et al [1] show that, given a string x, it is possible to
algorithmically produce a small list of programs, one of which generates x and
is optimal up to a constant additive term. Unfortunately, this list is not short
enough to make any implication about the complexity itself. Fenner and Fort-
now [3] show that it is possible to produce a single optimal program for all strings
of length n if the generator receives a piece of advice of length approximately n.

1.2 Roadmap

The rest of the text is organized as follows. In Sect. 2 we strictly define the
notions we use and state some basic properties. In Sect. 3 we show that there is no
coarsely computable function that approximates C(x) with a constant precision.
In Sect. 4 we prove our main result about the exact relationship between the
precision of approximation and the number of errors. In Sect. 5 we give a brief
conclusion and present some open questions.
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2 Preliminaries

In this section we give precise definitions of the notions we use.

2.1 Kolmogorov Complexity

A simple definition “Kolmogorov complexity of a string is the length of a shortest
program that generates this string” lacks the specification of a programming
language. To address this issue, we consider the notion of a description method,
or a decompressor. We define a more general notion of conditional complexity.

Definition 1. Let D be a computable function with two arguments. The com-
plexity CD(x|y) of a string x ∈ {0, 1}∗ conditional on a string y ∈ {0, 1}∗
with respect to a decompressor D is the minimal length of a string p such that
D(p, y) = x. If there is no such p, then CD(x|y) =∞.

For any particular string x, one may consider a decompressor that hardwires
x and outputs it, say, on the empty program p. Thus, changing the decompressor
may drastically change the complexity. The following celebrated theorem shows
that this change is limited.

Theorem 1 (Kolmogorov-Solomonoff, [4, 9]). There exists a decompressor
U such that for any decompressor D there exists a constant c such that for all x
and y it holds that CU (x|y) ≤ CD(x|y) + c.

Such machine is called a universal decompressor. The proof idea is simple:
U treats a part of its first input as a description of D and launches it on the
rest of the input. Usually a particular U is fixed and the index is omitted. Most
equations are valid up to some additive constant. In the paper we consider two
specific complexities:

Definition 2. Let x be some string. Its unconditional complexity C(x) is just
C(x|ε), where ε is the empty string. The length conditional complexity of x is
C(x|n), where n = |x|.

The idea behind length conditional complexity is the following. Complexity
may be considered as a measure of information contained in a particular string.
If a string is a prefix of a computable sequence, then its complexity equals the
complexity of its length plus some constant. If a string is random, then its
complexity is close to its length. Length condition makes the complexity of a
computable string essentially zero, but keeps the complexity of a random string
close to its length. Thus length condition helps to separate the information about
the length of the string from the information in the string itself.

We consider also a time-bounded version of Kolmogorov complexity.

Definition 3. Let D be a Turing machine. The complexity CtD(x|y) of a string
x ∈ {0, 1}∗ conditional on y in time t with respect to decompressor D is the
minimal length of a string p such that D(p, y) = x and D(p, y) halts in at most
t steps. If there are no such p, then CtD(x|y) =∞.
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For the time-bounded version the universal decompression theorem is the
following:

Theorem 2. There exists a decompressor U such that for any decompressor D
there exist constants c and d such that for all x, y and t it holds that Cdt log tU (x|y) ≤
CtD(x|y) + c.

It is clear that a universal decompressor in the time-bounded framework is
also a universal decompressor in the unbounded framework. In the sequel we fix
some such decompressor, and thus obtain Ct(x|y) ≥ C(x|y) for all x, y and t
without adding a constant.

2.2 Generic and Coarse Computability

Apart from computable functions, one may consider functions that are com-
putable “almost everywhere”. This notion may be formalized in two non-equivalent
ways. Both of them employ the notion of asymptotic density.

Definition 4. Let S ⊂ {0, 1}∗. The density of S in length n is defined as the

fraction of length-n strings that lie in S, i.e., ρn(S) = |S∩{0,1}n|
2n . If the sequence

ρn(S) has a limit ρ(S), then it is called the asymptotic density of S. If ρ(S) = 1,
we call S a generic set. If ρ(S) = 0, we call S a negligible set.

Definition 5. A total function h : {0, 1}∗ → {0, 1}∗ is called generic computable
if there exists a partially computable function f : {0, 1}∗ → {0, 1}∗ such that if
f(x) is defined, then f(x) = h(x), and the domain of f is a generic set.

Definition 6. A total function h : {0, 1}∗ → {0, 1}∗ is called coarsely com-
putable if there exists a total computable function f : {0, 1}∗ → {0, 1}∗ such
that the set {x | f(x) = h(x)} is a generic set.

3 Approximating Kolmogorov Complexity with Constant
Accuracy

The following theorem shows that there does not exist generic computable lower
estimate of C(x) in any sense.

Theorem 3. There is no partially computable function f(x) such that f(x) ≤
C(x) in the domain of f and f(x) takes on arbitrarily large values.

Proof. The standard argument is valid here. Suppose that such function f ex-
ists. From its definition, the set {x | f(x) > n} is non-empty and computably
enumerable. The complexity of the first element x0 in an enumeration is at most
log n+ O(1). On the other hand, C(x0) ≥ f(x0) > n, hence a contradiction for
a sufficiently large n.
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On the other hand, C(x) does have coarsely computable lower estimates.

For instance, f(x) = min
{
|x|
2 , C(x)

}
is not greater than C(x) and coincides

with computable function |x|2 with asymptotic density 1. So, the question arises
how accurately can C(x) be approximated by a coarsely computable function. It
turns out that any computable superconstant accuracy can be achieved: just take
f(x) = min{|x| − α(|x|), C(x)} for any computable function α(·) that tends to
infinity. Such a function is not greater than C(x) and coincides with |x| −α(|x|)
with density O(2−α(|x|)) that tends to zero. We want to show that a constant
accuracy cannot be achieved. We start from showing a similar fact about the
length conditional complexity C(x|n).

Theorem 4. There is no coarsely computable function f(x) such that for some
constant c it holds that C(x|n)− c ≤ f(x) ≤ C(x|n) for all x.

Proof. Suppose that such f(x) exists for some c. Consider a computable function
h that coincides with f with asymptotic density 1. Take an arbitrary number
δ = 2−k, where k > 2. From the definition, there must exist N such that for all
n > N the fraction of strings x of length n with different values f(x) and h(x) is
less than δ. Now fix an arbitrary n > N . Consider a program P that gets n and
enumerates all strings of length n in a specific order. The strings are ordered by
h(x) in a non-increasing manner, and then lexicographically. Denote by xi the
ith string in this enumeration. It is clear that C(xi|n) ≤ C(i) +O(1), where the
constant in O(1) depends on the program that computes h. From the properties
of h and the pigeonhole principle, there must exist some j ≤ 2n−k such that
f(xj) = h(xj). We fix such xj and estimate its complexity. On the one hand,
it has low complexity: C(xj |n) ≤ C(j) + O(1) ≤ n − k + O(1). On the other
hand, it must have high complexity. Specifically, for at least half of the strings
it holds that C(xi|n) ≥ n − 1. Since f(x) ≥ C(x|n) − c, for at least half of the
strings it holds that f(xi) ≥ n− c− 1. Because δ < 1

4 , for at least a quarter of
the strings it holds simultaneously that f(xi) = h(xi) and f(xi) ≥ n − c − 1.
Since the output of P is ordered by the value of h in a non-increasing way, for
all strings in the first quarter of the list it holds that h(xi) ≥ n− c−1. Thus, for
the previously fixed j it holds that C(xj |n) ≥ f(xj) ≥ n− c− 1. Now we obtain
a contradiction: on the one hand, C(xj |n) ≤ n − k + O(1). On the other hand,
C(xj |n) ≥ n− c−1. Since c is fixed and k is arbitrary, we obtain a contradiction
for large enough k.

This proof cannot be literally reproduced for the unconditional complexity,
because a logarithmic term should be added to the upper bound, but not to the
lower one, and with this addition the contradiction vanishes. Instead, we employ
the following lemma that compares the complexities C(x) and C(x|n).

Lemma 3. Suppose that C(x|n) < n− k. Then C(x) ≤ n− k +O(log k).

Proof. Firstly, we modify the description method such that it obtains the fol-
lowing property: if C(x|n) < n − k, then there exists a description of length
exactly n − k. This is done by the following: discard the leading zeros and the



6 R. Ishkuvatov and D. Musatov

first one from a description and then launch a usual decompressor. In this case
any number of zeros may be attached from the beginning without changing the
output, and thus the desired property is satisfied.

Secondly, the description of x now consists of a description of k and a de-
scription of x conditional on n of length exactly n−k. By restoring k and adding
it to the length of the description we may compute n and then obtain x. The
total length of the description is n− k +O(log k), as claimed.

Now we are ready to expand the result to the case of unconditional complex-
ity. It is not a direct corollary of theorem 4, but can be obtained by a similar
argument.

Theorem 5. There is no coarsely computable function f(x) such that for some
constant c it holds that C(x)− c ≤ f(x) ≤ C(x) for all x.

Proof. The proof proceeds like the proof of theorem 4. We suppose that such f(x)
exists, denote by h(x) the respective computable function and define δ = 2−k as
before. Consider a large enough n and the enumeration of all strings of length
n ordered by h(x) in the non-increasing manner, and then lexicographically. As
before, we denote by xj the earliest x such that f(x) = h(x). On the one hand,
we have f(xj) ≥ n−c−1 and thus C(xj) ≥ n−c−1. On the other hand, we have
C(xj |n) ≤ n−k+O(1), as before. By lemma 3 we get C(xj) ≤ n−k+O(log k).
Since c is fixed and k is arbitrary, the two bounds contradict for large enough k.

Note that now we can modify the theorem to be symmetric:

Corollary 1. There is no coarsely computable function f(x) such that for some
constant d it holds that |C(x)− f(x)| ≤ d for all x.

Proof. If such function f(x) exists, then f(x) − d contradicts theorem 5 for
c = 2d.

One interesting corollary deals with computable upper estimates of C(x).

Corollary 2. Suppose that t(n) is some total computable function. Then for
any constant d and all sufficiently large n the density of x ∈ {0, 1}n such that
Ct(n)(x)− C(x) ≥ d is bounded away from zero.

This is more than a direct application of corollary 1, because we claim not only
that the density does not tend to zero but also that it is bounded away from
zero. This is why we repeat a part of the proof.

Proof. Suppose that, on the contrary, there exists a constant d and an increasing
sequence nm, such that the fraction of x ∈ {0, 1}nm such that Ct(nm)(x)−C(x) ≤
d tends to zero. We repeat the argument from the proof of theorem 5 for such
values of n and h(x) = Ct(|x|)(x). All x ∈ {0, 1}n are sorted by h in a non-
increasing order, then lexicographically. Among the first 2n−k strings there must
be xj , such that h(xj) ≤ C(xj) + d. On the one hand, h(xj) must be at least
n − 1, thus C(xj) ≥ n − d − 1. On the other hand, C(xj |n) ≤ n − k and a
contradiction follows.
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This corollary is very meaningful: giving more working time allows to sub-
stantially economize on the program length. It does not matter, how much
time do you already have—polynomial, exponential, power of exponents etc.—
allowing unlimited time may shorten a constant fraction of programs by more
than a constant number of bits.

4 Measuring the Exact Accuracy

In this section we do a more precise analysis. We consider two parameters: a
threshold on the difference between a complexity function and a totally com-
putable function, and the fraction of strings that exceed this difference. Formally,
we use the following definition:

Definition 7. Let F : {0, 1}∗ → N be some function, d : N→ N be a total com-
putable function, and α : N → (0, 1) be another function. We say that F is
approximately computable with precision d(n) and error α(n) if there exists a
total computable function h : {0, 1}∗ → N such that for all large enough n the
fraction of x ∈ {0, 1}n satisfying |F (x) − h(x)| > d(n) does not exceed α(n).
If, moreover, it holds that h(x) ≥ F (x) for all x (resp., h(x) ≤ F (x)), we call
F approximately computable from above (resp., approximately computable from
below).

Note that by modifying h in a finite number of arguments we may replace
“for all large enough n” by “for all n”. In these terms theorems 4 and 5 may be
restated as follows: for any constant d ∈ N and any function α(n) = o(1) the
functions C(x|n) and C(x) are not approximately computable with precision d
and error α. Now we consider the case of a non-constant precision.

4.1 Approximating Length Conditional Complexity

In this section we prove a generalized version of theorem 4. We start by con-
sidering approximate computability from above. This leads to a corollary about
approximation of the plain complexity by the time-bounded complexity.

Theorem 6. Let d(n) < n−Ω(1) be a total computable function. Then C(x|n)
is not approximately computable from above with precision d(n) and error α(n) =
o(2−d(n)).

Note that if d(n) = n − O(1), then the theorem is wrong, at least for some
choice of the decompressor. Indeed, we can think that c1 < C(x|n) < n+ c2 for
arbitrarily large c1 − c2. In this case n + c2 is a computable upper bound. The
length function is also an approximation with an arbitrary precision d(n) and
error O(2−d(n)), so this bound is tight.

Proof. Let h(x) be a computable approximation of C(x|n) from above with
precision d(n) and error α(n) = o(2−d(n)). Take an arbitrary δ = 2−k and
n so large that α(n) < δ · 2−d(n) = 2−d(n)−k. Consider the enumeration of
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{0, 1}n by h(x) in a non-decreasing order, then lexicographically. Among the
first 2n−d(n)−k elements there must exist xj such that h(xj) ≤ C(xj |n) + d(n).
On the one hand, since h(x) ≥ C(x|n) and xj is in the first half of the list, it
must hold that h(xj) ≥ n − 1, and thus C(xj |n) ≥ n − d(n) − 1. On the other
hand, C(xj |n) ≤ n− d(n)− k+O(1), because xj can be specified by its ordinal
number in the enumeration. If k is large enough, we obtain a contradiction.

Now consider the general case of approximate computability.

Theorem 7. Let d(n) < n
2 −Ω(1) be a total computable function. Then C(x|n)

is not approximately computable with precision d(n) and error α(n) = o(2−2d(n)).

Again the claim is wrong for d(n) = n
2 − O(1). The function n

2 + c is a good

approximation. Error O(2−2d(n)) is achieved by a simple approximation n−d(n),
so this bound is also tight.

Proof. Let h(x) be a computable approximation of C(x|n) with precision d(n)
and error α(n) = o(2−2d(n)). Take an arbitrary δ = 2−k, k > 2, and take n so
large that α(n) < δ ·2−2d(n) = 2−2d(n)−k. Consider the enumeration of {0, 1}n by
h(x) in a non-increasing order, then lexicographically. Among the first 2n−2d(n)−k

elements there must exist xj such that |h(xj) − C(xj |n)| ≤ d(n). On the one
hand, for at least half of x it holds that C(x|n) ≥ n − 1, thus for at least a
quarter of x it holds that h(x) ≥ n− d(n)− 1. Since k > 2, the chosen xj must
lie in this quarter. We obtain C(xj |n) ≥ h(xj) − d(n) ≥ n − 2d(n) − 1. On the
other hand, C(xj |n) ≤ n − 2d(n) − k + O(1). If k is large enough, we obtain a
contradiction.

Thus, two-sided approximation can be obtained with an error smaller than
one-sided approximation (note that approximation from below cannot be made
at all). But the order of this approximation is the same: for instance, logarithmic
precision may be achieved for all but inverse polynomial fraction of strings.

4.2 Approximating Plain Complexity

In order to obtain a result about approximating plain complexity C(x), we need
to prove an analogue of lemma 3. Direct application produces logarithmic dis-
crepancies and leads to a weaker theorem. We slightly change the statement and
employ the fact that d(n) is computable.

Lemma 4. Suppose that C(x|n) < n−k. Then C(x) ≤ n−k+C(n|n−k)+O(1).

Proof. The proof proceeds along the lines of the proof of lemma 3. At the last
step we replace the description of k by a description of n conditional on n− k,
that is sufficient to restore n.

When is the complexity C(n|n − d(n)) constant? For instance, if d(n) is
growing slow. Specifically, we use the following mild condition.
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Definition 8. Let d : N → N be a total computable function. Say that d grows
uniformly slower than linearly if there exists a constant c such that for all n and
m such that m > n+ c it holds that d(m)− d(n) < m− n.

It is clear that “usual” functions, like logarithms, polylogarithmic functions,
power functions nδ for δ < 1, linear functions αn for α < 1, etc. all possess this
property.

Lemma 5. If d is totally computable and grows uniformly slower than linearly,
then C(n|n− d(n)) = O(1).

Proof. Let K be some number and n0 be the smallest n such that n−d(n) = K.
If m > n0 + c, then m− d(m) > n0 − d(n0) from the properties of d. Thus, any
n with n− d(n) = K must lie in [n0, n0 + c]. Since c is a constant, one needs a
constant number of bits to specify a particular n.

Now we are ready to prove the theorems.

Theorem 8. Let d(n) < n − Ω(1) be a total computable function that grows
uniformly slower than linearly. Then C(x) is not approximately computable from
above with precision d(n) and error α(n) = o(2−d(n)).

Theorem 9. Let d(n) < n
2 − Ω(1) be a total computable function such that

2d(n) grows uniformly slower than linearly. Then C(x) is not approximately
computable with precision d(n) and error α(n) = o(2−2d(n)).

Proof. The proofs proceed along the same lines up to the condition C(xj |n) ≤
n−d(n)−k+O(1) (resp., C(xj |n) ≤ n−2d(n)−k+O(1)). By applying lemma 4,
we get C(xj) ≤ n−d(n)−k+C(n|n−d(n)−k)+O(1) ≤ n−d(n)−k+C(n|n−
d(n))+C(k)+O(1) ≤ n−d(n)−k+O(log k), where the last inequality employs
lemma 5. The contradiction for large enough k still holds.

As before, we obtain a proposition about time-bounded complexity:

Corollary 3. Suppose that t(n) is some computable function. Then for any com-
putable function d(n) = n − Ω(1) that grows slower then linearly the density of
x such that Ct(|x|)(x)− C(x) ≥ d(|x|) is Ω(2−d(|x|)).

The proof combines the previously used techniques and thus is omitted. The
informal meaning expands that of corollary 2: allowing unlimited time may de-
crease the program length by at least logarithm for an inverse polynomial fraction
of the strings, by at least n−δ for the fraction at least Ω( 1

2n−δ ) etc.

5 Conclusion

In this paper we introduced the notion of approximate computability and ana-
lyzed it for the case of Kolmogorov complexity function. Despite its naturalness,
it seems to have never been appeared in the literature. It would be interesting to
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study the structural properties of approximately computable functions. For in-
stance, what can be done with an oracle that approximately computes C(x) with
sufficiently small precision and error? Can one then compute C(x) exactly? What
other functions that are not approximately computable may be constructed? Are
there natural examples that do not deal with Kolmogorov complexity? How can
these examples be classified? Is there any nice hierarchy?
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nik, A., Stephan, F., Torenvliet, L.: Enumerations of the Kolmogorov function. The
Journal of Symbolic Logic 71(2), 501–528 (2006)

3. Fenner, S., Fortnow, L.: Compression complexity. arXiv preprint arXiv:1702.04779
(2017), https://arxiv.org/abs/1702.04779

4. Kolmogorov, A.N.: Three approaches to the quantitative definition ofinformation’.
Problems of information transmission 1(1), 1–7 (1965)

5. Kummer, M.: On the complexity of random strings. In: Annual Symposium on
Theoretical Aspects of Computer Science. pp. 25–36. Springer (1996)
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