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Kolmogorov complexity

e C(x) = the length of the shortest program p producing x.

e Depends on programming language:
Cu(x) = min{|p|: U(p) = x} where U is the interpreter
(decompressor, description mode,.. .)

e (Solomonoff — Kolmogorov theorem) There is an optimal
U that makes Cy minimal up to O(1) additive term: for any
other method U’ there exists ¢ such that

Cu(X) < Cul(X) +c

for all x.

Definition
Fix some optimal U and call Cy(x) the Kolmogorov
complexity of a string x. Notation: C(x).
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Conditional complexity

e C(x|y) = conditional complexity of x given y

e the minimal length of a program that produces x given y

e again there exists an optimal programming language that
makes C(x|y) minimal up to an additive O(1)-term

e C(x): amount of information in x

e C(x|y): amount of information in x missing in y
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Basic properties of Kolmogorov complexity

» C(x) < |x| + O(1): compare the optimal decompressor
with a trivial one

» for every k € N there are at most 2% — 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

» most strings of length n have complexity close to n
(2~ 9-fraction of strings can be compressed by d bits)

» Algorithmic transformation does not increase complexity:
C(A(x)) < C(x) 4+ O(1) for computable A

» Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

» "the minimal string of complexity greater than N" (Berry)
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Kolmogorov complexity approximations

Approximating complexity for most inputs

e (d, e)-approximation: |C(x) — C(x)| < d for all x of
length n except ¢ = 27¢ fraction
e C(x) =|x| is a (d, d)-approximation
e cheap trick: C(x) = |x| — d is a (d, 2d)-approximation
e disclaimer: O(1) is omitted everywhere
Theorem

This is essentially optimal: no significantly better computable
approximation exists.
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Kolmogorov complexity approximations

Formal statement (uniform setting)

e Let d(n) and e(n) be computable functions

e Let C(x) be a computable function on strings of all
lengths that for every n is a (d(n), e(n))-approximation of
C(x) for n-bit strings.

Theorem
e(n) <2d(n)+ O(1)
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Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Theorem (B)

Given an oracle (“external procedure”) that computes
Kolmogorov complexity function, one can solve the halting
problem.

obviously B implies A, but in general B is a stronger statement
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Oracle setting

Mass problems: warning

Theorem (A)

Nontrivial lower bounds for Kolmogorov complexity are not
computable.

Theorem (B)

(FALSE!) Given an oracle that computes a nontrivial lower
bound for Kolmogorov complexity, one can solve the halting
problem.

still some results about Kolmogorov complexity are true in
(B)-version
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Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting
problem

Theorem

Let d(n) and e(n) be two computable functions such that
e(n) — 2d(n) — oco. Let C(x) be a function on strings that
(d(n), e(n))-approximates C(x) for every n. Then there is a
machine that computes C using C as an oracle.

Note: the machine does not depend on C, only on d and e.
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Finite case

Theorem
If e — 2d is large, then every (finite) function that
(d, e)-approximates C(x) for n-bit inputs has high complexity

Why is this enough? If € is a computable approximation, then
its restriction on n-bit strings cannot have high complexity.

Proof idea: if C approximates C, then one can construct a
complex object knowing C and few bits of advice
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More details

Let xq,...,xn be an enumeration of n-bit strings in
C-descending order. Among the first 27~¢ of them there is a
string X such that |C(8) — C(%)| < d

In particular, C(%) > C(8) — d

Assuming e > 2, for at least % of all n-bit strings their
C-values are close to their complexity, and at least a half of
the strings have complexity at least n — 1. Thus for at least a
quarter of the strings their C-value is at least n — d.

Since % is taken from 27¢ strings with the biggest C-value,
C(X) = n—dand C(X) > n—2d.

Given C, the string X can be encoded by its index in
enumeration: C(X|C) < n—e+ O(1).

these inequalities imply C(C) > e — 2d + O(log n).
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How to prove oracle results

e Main tool: busy beaver numbers

e BB(n) = the maximal time needed by programs of size at
most n

e B(n) = the maximal number of complexity at most n

e B(n) =~ BB(n=+ O(1))

e if we know some approximation for C, we wait until CT
(Kolmogorov complexity with time bound T) becomes
compatible with this approximation

e this T is larger than some busy beaver number since all
numbers greater than T have large complexity (finite case),
and B ~ BB

e knowing busy beaver number, we know which programs
halt / do not halt

e ...and can compute C exactly
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