Appr

K v plexity function

Approximating Kolmogorov complexity function

Ruslan Ishkuvatov
(joint work with Daniil Musatov, CiE 2019)

Approxi ing Kol v plexity function

Kolmogorov complexity

e C(x) = the length of the shortest program p producing x.

Approxi ing Kol v plexity function

Kolmogorov complexity

e C(x) = the length of the shortest program p producing x.
e Depends on programming language:
Cu(x) = min{|p|: U(p) = x} where U is the interpreter
(decompressor, description mode,.. .)

Approxil ing K. v plexity function

Kolmogorov complexity

e C(x) = the length of the shortest program p producing x.

e Depends on programming language:
Cu(x) = min{|p|: U(p) = x} where U is the interpreter
(decompressor, description mode,.. .)

e (Solomonoff — Kolmogorov theorem) There is an optimal
U that makes Cy minimal up to O(1) additive term: for any
other method U’ there exists ¢ such that

Cu(X) < Cul(X) +c

for all x.

Approxil ing Kol v plexity function

Kolmogorov complexity

e C(x) = the length of the shortest program p producing x.

e Depends on programming language:
Cu(x) = min{|p|: U(p) = x} where U is the interpreter
(decompressor, description mode,.. .)

e (Solomonoff — Kolmogorov theorem) There is an optimal
U that makes Cy minimal up to O(1) additive term: for any
other method U’ there exists ¢ such that

Cu(X) < Cul(X) +c

for all x.

Definition
Fix some optimal U and call Cy(x) the Kolmogorov
complexity of a string x. Notation: C(x).

Approxi ing Kol ov plexity function

Conditional complexity

e C(x|y) = conditional complexity of x given y

Approxi ing Kol v plexity function

Conditional complexity

e C(x|y) = conditional complexity of x given y
e the minimal length of a program that produces x given y

Approxi ing Kol v plexity function

Conditional complexity

e C(x|y) = conditional complexity of x given y

e the minimal length of a program that produces x given y

e again there exists an optimal programming language that
makes C(x|y) minimal up to an additive O(1)-term

Approxil ing Kol v plexity function

Conditional complexity

e C(x|y) = conditional complexity of x given y

e the minimal length of a program that produces x given y

e again there exists an optimal programming language that
makes C(x|y) minimal up to an additive O(1)-term

e C(x): amount of information in x

Approxil ing Kol v plexity function

Conditional complexity

e C(x|y) = conditional complexity of x given y

e the minimal length of a program that produces x given y

e again there exists an optimal programming language that
makes C(x|y) minimal up to an additive O(1)-term

e C(x): amount of information in x

e C(x|y): amount of information in x missing in y

Approxi ing Kol ov plexity function

Basic properties of Kolmogorov complexity

Approxi ing Kol ov plexity function

Basic properties of Kolmogorov complexity

» C(x) < |x| + O(1): compare the optimal decompressor
with a trivial one

Approxi ing Kol v plexity function

Basic properties of Kolmogorov complexity

» C(x) < |x| + O(1): compare the optimal decompressor
with a trivial one

» for every k € N there are at most 2% — 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

Approxil ing Kol v plexity function

Basic properties of Kolmogorov complexity

» C(x) < |x| + O(1): compare the optimal decompressor
with a trivial one

» for every k € N there are at most 2% — 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

» most strings of length n have complexity close to n
(2~ 9-fraction of strings can be compressed by d bits)

Kol v lexity function

Appr p

Basic properties of Kolmogorov complexity

» C(x) < |x| + O(1): compare the optimal decompressor
with a trivial one

» for every k € N there are at most 2% — 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

» most strings of length n have complexity close to n
(2~ 9-fraction of strings can be compressed by d bits)

» Algorithmic transformation does not increase complexity:
C(A(x)) < C(x) 4+ O(1) for computable A

Approxil ing Kol v plexity function

Basic properties of Kolmogorov complexity

» C(x) < |x| + O(1): compare the optimal decompressor
with a trivial one

» for every k € N there are at most 2% — 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

» most strings of length n have complexity close to n
(2~ 9-fraction of strings can be compressed by d bits)

» Algorithmic transformation does not increase complexity:
C(A(x)) < C(x) 4+ O(1) for computable A

» Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

Approxil ing Kol v plexity function

Basic properties of Kolmogorov complexity

» C(x) < |x| + O(1): compare the optimal decompressor
with a trivial one

» for every k € N there are at most 2% — 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

» most strings of length n have complexity close to n
(2~ 9-fraction of strings can be compressed by d bits)

» Algorithmic transformation does not increase complexity:
C(A(x)) < C(x) 4+ O(1) for computable A

» Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

» "the minimal string of complexity greater than N" (Berry)

Approxi ing Kol ov plexity function

Kolmogorov complexity approximations

Approximating complexity for most inputs

Approxi ing Kol ov plexity function

Kolmogorov complexity approximations

Approximating complexity for most inputs

e (d, e)-approximation: |C(x) — C(x)| < d for all x of
length n except ¢ = 27¢ fraction

Approxi ing Kol v plexity function

Kolmogorov complexity approximations

Approximating complexity for most inputs

e (d, e)-approximation: |C(x) — C(x)| < d for all x of
length n except ¢ = 27¢ fraction
e C(x) =|x| is a (d, d)-approximation

Approxi ing Kol v plexity function

Kolmogorov complexity approximations

Approximating complexity for most inputs

e (d, e)-approximation: |C(x) — C(x)| < d for all x of
length n except ¢ = 27¢ fraction

e C(x) =|x| is a (d, d)-approximation

e cheap trick: C(x) = |x| — d is a (d, 2d)-approximation

Approxil ing Kol v plexity function

Kolmogorov complexity approximations

Approximating complexity for most inputs

e (d, e)-approximation: |C(x) — C(x)| < d for all x of
length n except ¢ = 27¢ fraction
e C(x) =|x| is a (d, d)-approximation
e cheap trick: C(x) = |x| — d is a (d, 2d)-approximation
e disclaimer: O(1) is omitted everywhere
Theorem

This is essentially optimal: no significantly better computable
approximation exists.

Approxi ing Kol ov plexity function

Kolmogorov complexity approximations

Formal statement (uniform setting)

Approxi ing Kol ov plexity function

Kolmogorov complexity approximations

Formal statement (uniform setting)

e Let d(n) and e(n) be computable functions

Approxi ing Kol v plexity function

Kolmogorov complexity approximations

Formal statement (uniform setting)

e Let d(n) and e(n) be computable functions

e Let C(x) be a computable function on strings of all
lengths that for every n is a (d(n), e(n))-approximation of
C(x) for n-bit strings.

Theorem
e(n) <2d(n)+ O(1)

Approxi ing Kol ov plexity function

Oracle setting

Mass problems: example

Approxi ing Kol ov plexity function

Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Approxi ing Kol plexity function

Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Theorem (B)

Given an oracle (“external procedure”) that computes
Kolmogorov complexity function, one can solve the halting
problem.

Approxi ing Kol v plexity function

Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Theorem (B)

Given an oracle (“external procedure”) that computes
Kolmogorov complexity function, one can solve the halting
problem.

obviously B implies A, but in general B is a stronger statement

Approxi ing Kol ov plexity function

Oracle setting

Mass problems: warning

Approxi ing Kol v plexity function

Oracle setting

Mass problems: warning

Theorem (A)

Nontrivial lower bounds for Kolmogorov complexity are not
computable.

Approxi ing Kol v plexity function

Oracle setting

Mass problems: warning

Theorem (A)
Nontrivial lower bounds for Kolmogorov complexity are not
computable.
Theorem (B)

(FALSE!) Given an oracle that computes a nontrivial lower
bound for Kolmogorov complexity, one can solve the halting
problem.

Approxi ing Kol v plexity function

Oracle setting

Mass problems: warning

Theorem (A)

Nontrivial lower bounds for Kolmogorov complexity are not
computable.

Theorem (B)

(FALSE!) Given an oracle that computes a nontrivial lower
bound for Kolmogorov complexity, one can solve the halting
problem.

still some results about Kolmogorov complexity are true in
(B)-version

Approxi ing Kol ov plexity function

Oracle setting

Approximating C is as difficult as computing it

Approxi ing Kol v plexity function

Approximating C is as difficult as computing it
Theorem

There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly

Approxi ing Kol v plexity function

Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting
problem

Approxil ing Kol v plexity function

Oracle setting

Approximating C is as difficult as computing it

Theorem

There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting
problem

Theorem

Let d(n) and e(n) be two computable functions such that
e(n) — 2d(n) — oco. Let C(x) be a function on strings that
(d(n), e(n))-approximates C(x) for every n. Then there is a
machine that computes C using C as an oracle.

Approxil ing Kol v plexity function

Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting
problem

Theorem

Let d(n) and e(n) be two computable functions such that
e(n) — 2d(n) — oco. Let C(x) be a function on strings that
(d(n), e(n))-approximates C(x) for every n. Then there is a
machine that computes C using C as an oracle.

Note: the machine does not depend on C, only on d and e.

Approxi ing Kol v plexity function

Finite case

Theorem
If e — 2d is large, then every (finite) function that
(d, e)-approximates C(x) for n-bit inputs has high complexity

Approxil ing Kol v plexity function

Finite case

Theorem
If e — 2d is large, then every (finite) function that
(d, e)-approximates C(x) for n-bit inputs has high complexity

Why is this enough? If € is a computable approximation, then
its restriction on n-bit strings cannot have high complexity.

Approxil ing Kol v plexity function

Finite case

Theorem
If e — 2d is large, then every (finite) function that
(d, e)-approximates C(x) for n-bit inputs has high complexity

Why is this enough? If € is a computable approximation, then
its restriction on n-bit strings cannot have high complexity.

Proof idea: if C approximates C, then one can construct a
complex object knowing C and few bits of advice

Approxi ing Kol ov plexity function

More details

Approxi ing Kol v plexity function

More details

_Let xi,...,xn be an enumeration of n-bit strings in
C-descending order. Among the first 2"~¢ of them there is a
string X such that |C(X) — C(X)| < d

Approxi ing Kol v plexity function

More details

_Let xi,...,xn be an enumeration of n-bit strings in
C-descending order. Among the first 2"~¢ of them there is a
string X such that |C(X) — C(X)| < d

In particular, C(%) > C(8) — d

Approxil ing Kol v plexity function

More details

Let xq,...,xn be an enumeration of n-bit strings in
C-descending order. Among the first 27~¢ of them there is a
string X such that |C(8) — C(%)| < d

In particular, C(A) > C(8) - d

Assuming e > 2, for at least 2 of all n-bit strings their
C-values are close to their compleX|ty, and at least a half of
the strings have complexity at least n — 1. Thus for at least a
quarter of the strings their C-value is at least n — d.

Approxil ing Kol v plexity function

More details

Let xq,...,xn be an enumeration of n-bit strings in
C-descending order. Among the first 27~¢ of them there is a
string X such that |C(8) — C(%)| < d

In particular, C(A) > C(8) - d

Assuming e > 2, for at least 2 of all n-bit strings their
C-values are close to their compleX|ty, and at least a half of
the strings have complexity at least n — 1. Thus for at least a
quarter of the strings their C-value is at least n — d.

_Since X is taken from 2"~¢ strings with the biggest C-value,
C(X) > n—dand C(X) >n—2d.

Approxil ing Kol v plexity function

More details

_Let xi,...,xn be an enumeration of n-bit strings in
C-descending order. Among the first 2"~¢ of them there is a
string X such that |C(X) — C(X)| < d

In particular, C(A) > C(R) — d

Assuming e > 2, for at least 2 of all n-bit strings their
C-values are close to their compleX|ty, and at least a half of
the strings have complexity at least n — 1. Thus for at least a
quarter of the strings their C-value is at least n — d.

Since % is taken from 27¢ strings with the biggest C-value,
C(X) = n—dand C(X) > n—2d.

Given C, the string X can be encoded by its index in
enumeration: C(X|C) < n—e+ O(1).

Kol v lexity function

Approxil i p

More details

Let xq,...,xn be an enumeration of n-bit strings in
C-descending order. Among the first 27~¢ of them there is a
string X such that |C(8) — C(%)| < d

In particular, C(%) > C(8) — d

Assuming e > 2, for at least % of all n-bit strings their
C-values are close to their complexity, and at least a half of
the strings have complexity at least n — 1. Thus for at least a
quarter of the strings their C-value is at least n — d.

Since % is taken from 27¢ strings with the biggest C-value,
C(X) = n—dand C(X) > n—2d.

Given C, the string X can be encoded by its index in
enumeration: C(X|C) < n—e+ O(1).

these inequalities imply C(C) > e — 2d + O(log n).

Approxi ing Kol ov plexity function

How to prove oracle results

Approxi ing Kol ov plexity function

How to prove oracle results

e Main tool: busy beaver numbers

Approxi ing Kol v plexity function

How to prove oracle results

e Main tool: busy beaver numbers
e BB(n) = the maximal time needed by programs of size at
most n

Approxi ing Kol v plexity function

How to prove oracle results

e Main tool: busy beaver numbers

e BB(n) = the maximal time needed by programs of size at
most n

e B(n) = the maximal number of complexity at most n

Approxi ing Kol v plexity function

How to prove oracle results

e Main tool: busy beaver numbers
e BB(n) = the maximal time needed by programs of size at
most n

e B(n) = the maximal number of complexity at most n
e B(n) =~ BB(n+ 0O(1))

Approxil ing Kol v plexity function

How to prove oracle results

e Main tool: busy beaver numbers

e BB(n) = the maximal time needed by programs of size at
most n

e B(n) = the maximal number of complexity at most n

e B(n) =~ BB(n=+ O(1))

e if we know some approximation for C, we wait until CT
(Kolmogorov complexity with time bound T) becomes
compatible with this approximation

Approxil ing Kol v plexity function

How to prove oracle results

e Main tool: busy beaver numbers

e BB(n) = the maximal time needed by programs of size at
most n

e B(n) = the maximal number of complexity at most n

e B(n) =~ BB(n=+ O(1))

e if we know some approximation for C, we wait until CT
(Kolmogorov complexity with time bound T) becomes
compatible with this approximation

e this T is larger than some busy beaver number since all
numbers greater than T have large complexity (finite case),
and B ~ BB

Approxil ing Kol v plexity function

How to prove oracle results

e Main tool: busy beaver numbers

e BB(n) = the maximal time needed by programs of size at
most n

e B(n) = the maximal number of complexity at most n

e B(n) =~ BB(n=+ O(1))

e if we know some approximation for C, we wait until CT
(Kolmogorov complexity with time bound T) becomes
compatible with this approximation

e this T is larger than some busy beaver number since all
numbers greater than T have large complexity (finite case),
and B ~ BB

e knowing busy beaver number, we know which programs
halt / do not halt

Approxil ing Kol v plexity function

How to prove oracle results

e Main tool: busy beaver numbers

e BB(n) = the maximal time needed by programs of size at
most n

e B(n) = the maximal number of complexity at most n

e B(n) =~ BB(n=+ O(1))

e if we know some approximation for C, we wait until CT
(Kolmogorov complexity with time bound T) becomes
compatible with this approximation

e this T is larger than some busy beaver number since all
numbers greater than T have large complexity (finite case),
and B ~ BB

e knowing busy beaver number, we know which programs
halt / do not halt

e ...and can compute C exactly

	Preliminaries
	Kolmogorov complexity approximations
	Oracle setting
	``Proofs''

