
Approximating Kolmogorov complexity function

Approximating Kolmogorov complexity function

Ruslan Ishkuvatov
(joint work with Daniil Musatov, CiE 2019)

Approximating Kolmogorov complexity function
Preliminaries

Kolmogorov complexity

• C (x) = the length of the shortest program p producing x .

• Depends on programming language:
CU(x) = min{|p| : U(p) = x} where U is the interpreter
(decompressor, description mode,. . .)
• (Solomonoff – Kolmogorov theorem) There is an optimal

U that makes CU minimal up to O(1) additive term: for any
other method U ′ there exists c such that

CU(x) 6 CU′(x) + c

for all x .

Definition
Fix some optimal U and call CU(x) the Kolmogorov
complexity of a string x . Notation: C (x).

Approximating Kolmogorov complexity function
Preliminaries

Kolmogorov complexity

• C (x) = the length of the shortest program p producing x .
• Depends on programming language:

CU(x) = min{|p| : U(p) = x} where U is the interpreter
(decompressor, description mode,. . .)

• (Solomonoff – Kolmogorov theorem) There is an optimal
U that makes CU minimal up to O(1) additive term: for any
other method U ′ there exists c such that

CU(x) 6 CU′(x) + c

for all x .

Definition
Fix some optimal U and call CU(x) the Kolmogorov
complexity of a string x . Notation: C (x).

Approximating Kolmogorov complexity function
Preliminaries

Kolmogorov complexity

• C (x) = the length of the shortest program p producing x .
• Depends on programming language:

CU(x) = min{|p| : U(p) = x} where U is the interpreter
(decompressor, description mode,. . .)
• (Solomonoff – Kolmogorov theorem) There is an optimal

U that makes CU minimal up to O(1) additive term: for any
other method U ′ there exists c such that

CU(x) 6 CU′(x) + c

for all x .

Definition
Fix some optimal U and call CU(x) the Kolmogorov
complexity of a string x . Notation: C (x).

Approximating Kolmogorov complexity function
Preliminaries

Kolmogorov complexity

• C (x) = the length of the shortest program p producing x .
• Depends on programming language:

CU(x) = min{|p| : U(p) = x} where U is the interpreter
(decompressor, description mode,. . .)
• (Solomonoff – Kolmogorov theorem) There is an optimal

U that makes CU minimal up to O(1) additive term: for any
other method U ′ there exists c such that

CU(x) 6 CU′(x) + c

for all x .

Definition
Fix some optimal U and call CU(x) the Kolmogorov
complexity of a string x . Notation: C (x).

Approximating Kolmogorov complexity function
Preliminaries

Conditional complexity

• C (x |y) = conditional complexity of x given y

• the minimal length of a program that produces x given y
• again there exists an optimal programming language that

makes C (x |y) minimal up to an additive O(1)-term
• C (x): amount of information in x
• C (x |y): amount of information in x missing in y

Approximating Kolmogorov complexity function
Preliminaries

Conditional complexity

• C (x |y) = conditional complexity of x given y
• the minimal length of a program that produces x given y

• again there exists an optimal programming language that
makes C (x |y) minimal up to an additive O(1)-term
• C (x): amount of information in x
• C (x |y): amount of information in x missing in y

Approximating Kolmogorov complexity function
Preliminaries

Conditional complexity

• C (x |y) = conditional complexity of x given y
• the minimal length of a program that produces x given y
• again there exists an optimal programming language that

makes C (x |y) minimal up to an additive O(1)-term

• C (x): amount of information in x
• C (x |y): amount of information in x missing in y

Approximating Kolmogorov complexity function
Preliminaries

Conditional complexity

• C (x |y) = conditional complexity of x given y
• the minimal length of a program that produces x given y
• again there exists an optimal programming language that

makes C (x |y) minimal up to an additive O(1)-term
• C (x): amount of information in x

• C (x |y): amount of information in x missing in y

Approximating Kolmogorov complexity function
Preliminaries

Conditional complexity

• C (x |y) = conditional complexity of x given y
• the minimal length of a program that produces x given y
• again there exists an optimal programming language that

makes C (x |y) minimal up to an additive O(1)-term
• C (x): amount of information in x
• C (x |y): amount of information in x missing in y

Approximating Kolmogorov complexity function
Preliminaries

Basic properties of Kolmogorov complexity

I C (x) 6 |x |+ O(1): compare the optimal decompressor
with a trivial one

I for every k ∈ N there are at most 2k − 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

I most strings of length n have complexity close to n
(2−d -fraction of strings can be compressed by d bits)

I Algorithmic transformation does not increase complexity:
C (A(x)) 6 C (x) + O(1) for computable A

I Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

I "the minimal string of complexity greater than N” (Berry)

Approximating Kolmogorov complexity function
Preliminaries

Basic properties of Kolmogorov complexity

I C (x) 6 |x |+ O(1): compare the optimal decompressor
with a trivial one

I for every k ∈ N there are at most 2k − 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

I most strings of length n have complexity close to n
(2−d -fraction of strings can be compressed by d bits)

I Algorithmic transformation does not increase complexity:
C (A(x)) 6 C (x) + O(1) for computable A

I Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

I "the minimal string of complexity greater than N” (Berry)

Approximating Kolmogorov complexity function
Preliminaries

Basic properties of Kolmogorov complexity

I C (x) 6 |x |+ O(1): compare the optimal decompressor
with a trivial one

I for every k ∈ N there are at most 2k − 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

I most strings of length n have complexity close to n
(2−d -fraction of strings can be compressed by d bits)

I Algorithmic transformation does not increase complexity:
C (A(x)) 6 C (x) + O(1) for computable A

I Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

I "the minimal string of complexity greater than N” (Berry)

Approximating Kolmogorov complexity function
Preliminaries

Basic properties of Kolmogorov complexity

I C (x) 6 |x |+ O(1): compare the optimal decompressor
with a trivial one

I for every k ∈ N there are at most 2k − 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

I most strings of length n have complexity close to n
(2−d -fraction of strings can be compressed by d bits)

I Algorithmic transformation does not increase complexity:
C (A(x)) 6 C (x) + O(1) for computable A

I Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

I "the minimal string of complexity greater than N” (Berry)

Approximating Kolmogorov complexity function
Preliminaries

Basic properties of Kolmogorov complexity

I C (x) 6 |x |+ O(1): compare the optimal decompressor
with a trivial one

I for every k ∈ N there are at most 2k − 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

I most strings of length n have complexity close to n
(2−d -fraction of strings can be compressed by d bits)

I Algorithmic transformation does not increase complexity:
C (A(x)) 6 C (x) + O(1) for computable A

I Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

I "the minimal string of complexity greater than N” (Berry)

Approximating Kolmogorov complexity function
Preliminaries

Basic properties of Kolmogorov complexity

I C (x) 6 |x |+ O(1): compare the optimal decompressor
with a trivial one

I for every k ∈ N there are at most 2k − 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

I most strings of length n have complexity close to n
(2−d -fraction of strings can be compressed by d bits)

I Algorithmic transformation does not increase complexity:
C (A(x)) 6 C (x) + O(1) for computable A

I Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

I "the minimal string of complexity greater than N” (Berry)

Approximating Kolmogorov complexity function
Preliminaries

Basic properties of Kolmogorov complexity

I C (x) 6 |x |+ O(1): compare the optimal decompressor
with a trivial one

I for every k ∈ N there are at most 2k − 1 strings of
Kolmogorov complexity less than k (not enough short
programs).

I most strings of length n have complexity close to n
(2−d -fraction of strings can be compressed by d bits)

I Algorithmic transformation does not increase complexity:
C (A(x)) 6 C (x) + O(1) for computable A

I Kolmogorov complexity is not computable and does not
have nontrivial computable lower bounds

I "the minimal string of complexity greater than N” (Berry)

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Approximating complexity for most inputs

• (d , e)-approximation: |C̃ (x)− C (x)| < d for all x of
length n except ε = 2−e fraction
• C̃ (x) = |x | is a (d , d)-approximation
• cheap trick: C̃ (x) = |x | − d is a (d , 2d)-approximation
• disclaimer: O(1) is omitted everywhere

Theorem
This is essentially optimal: no significantly better computable
approximation exists.

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Approximating complexity for most inputs

• (d , e)-approximation: |C̃ (x)− C (x)| < d for all x of
length n except ε = 2−e fraction

• C̃ (x) = |x | is a (d , d)-approximation
• cheap trick: C̃ (x) = |x | − d is a (d , 2d)-approximation
• disclaimer: O(1) is omitted everywhere

Theorem
This is essentially optimal: no significantly better computable
approximation exists.

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Approximating complexity for most inputs

• (d , e)-approximation: |C̃ (x)− C (x)| < d for all x of
length n except ε = 2−e fraction
• C̃ (x) = |x | is a (d , d)-approximation

• cheap trick: C̃ (x) = |x | − d is a (d , 2d)-approximation
• disclaimer: O(1) is omitted everywhere

Theorem
This is essentially optimal: no significantly better computable
approximation exists.

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Approximating complexity for most inputs

• (d , e)-approximation: |C̃ (x)− C (x)| < d for all x of
length n except ε = 2−e fraction
• C̃ (x) = |x | is a (d , d)-approximation
• cheap trick: C̃ (x) = |x | − d is a (d , 2d)-approximation

• disclaimer: O(1) is omitted everywhere

Theorem
This is essentially optimal: no significantly better computable
approximation exists.

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Approximating complexity for most inputs

• (d , e)-approximation: |C̃ (x)− C (x)| < d for all x of
length n except ε = 2−e fraction
• C̃ (x) = |x | is a (d , d)-approximation
• cheap trick: C̃ (x) = |x | − d is a (d , 2d)-approximation
• disclaimer: O(1) is omitted everywhere

Theorem
This is essentially optimal: no significantly better computable
approximation exists.

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Formal statement (uniform setting)

• Let d(n) and e(n) be computable functions
• Let C̃ (x) be a computable function on strings of all

lengths that for every n is a (d(n), e(n))-approximation of
C (x) for n-bit strings.

Theorem
e(n) 6 2d(n) + O(1)

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Formal statement (uniform setting)

• Let d(n) and e(n) be computable functions

• Let C̃ (x) be a computable function on strings of all
lengths that for every n is a (d(n), e(n))-approximation of
C (x) for n-bit strings.

Theorem
e(n) 6 2d(n) + O(1)

Approximating Kolmogorov complexity function
Kolmogorov complexity approximations

Formal statement (uniform setting)

• Let d(n) and e(n) be computable functions
• Let C̃ (x) be a computable function on strings of all

lengths that for every n is a (d(n), e(n))-approximation of
C (x) for n-bit strings.

Theorem
e(n) 6 2d(n) + O(1)

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Theorem (B)
Given an oracle (“external procedure”) that computes
Kolmogorov complexity function, one can solve the halting
problem.
obviously B implies A, but in general B is a stronger statement

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Theorem (B)
Given an oracle (“external procedure”) that computes
Kolmogorov complexity function, one can solve the halting
problem.
obviously B implies A, but in general B is a stronger statement

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Theorem (B)
Given an oracle (“external procedure”) that computes
Kolmogorov complexity function, one can solve the halting
problem.

obviously B implies A, but in general B is a stronger statement

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: example

Theorem (A)
Kolmogorov complexity is not computable.

Theorem (B)
Given an oracle (“external procedure”) that computes
Kolmogorov complexity function, one can solve the halting
problem.
obviously B implies A, but in general B is a stronger statement

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: warning

Theorem (A)
Nontrivial lower bounds for Kolmogorov complexity are not
computable.

Theorem (B)
(FALSE!) Given an oracle that computes a nontrivial lower
bound for Kolmogorov complexity, one can solve the halting
problem.
still some results about Kolmogorov complexity are true in
(B)-version

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: warning

Theorem (A)
Nontrivial lower bounds for Kolmogorov complexity are not
computable.

Theorem (B)
(FALSE!) Given an oracle that computes a nontrivial lower
bound for Kolmogorov complexity, one can solve the halting
problem.
still some results about Kolmogorov complexity are true in
(B)-version

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: warning

Theorem (A)
Nontrivial lower bounds for Kolmogorov complexity are not
computable.

Theorem (B)
(FALSE!) Given an oracle that computes a nontrivial lower
bound for Kolmogorov complexity, one can solve the halting
problem.

still some results about Kolmogorov complexity are true in
(B)-version

Approximating Kolmogorov complexity function
Oracle setting

Mass problems: warning

Theorem (A)
Nontrivial lower bounds for Kolmogorov complexity are not
computable.

Theorem (B)
(FALSE!) Given an oracle that computes a nontrivial lower
bound for Kolmogorov complexity, one can solve the halting
problem.
still some results about Kolmogorov complexity are true in
(B)-version

Approximating Kolmogorov complexity function
Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly
Note: exact computation of C is equivalent to solving halting
problem

Theorem
Let d(n) and e(n) be two computable functions such that
e(n)− 2d(n)→∞. Let C̃ (x) be a function on strings that
(d(n), e(n))-approximates C (x) for every n. Then there is a
machine that computes C using C̃ as an oracle.
Note: the machine does not depend on C̃ , only on d and e.

Approximating Kolmogorov complexity function
Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly

Note: exact computation of C is equivalent to solving halting
problem

Theorem
Let d(n) and e(n) be two computable functions such that
e(n)− 2d(n)→∞. Let C̃ (x) be a function on strings that
(d(n), e(n))-approximates C (x) for every n. Then there is a
machine that computes C using C̃ as an oracle.
Note: the machine does not depend on C̃ , only on d and e.

Approximating Kolmogorov complexity function
Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly
Note: exact computation of C is equivalent to solving halting
problem

Theorem
Let d(n) and e(n) be two computable functions such that
e(n)− 2d(n)→∞. Let C̃ (x) be a function on strings that
(d(n), e(n))-approximates C (x) for every n. Then there is a
machine that computes C using C̃ as an oracle.
Note: the machine does not depend on C̃ , only on d and e.

Approximating Kolmogorov complexity function
Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly
Note: exact computation of C is equivalent to solving halting
problem

Theorem
Let d(n) and e(n) be two computable functions such that
e(n)− 2d(n)→∞. Let C̃ (x) be a function on strings that
(d(n), e(n))-approximates C (x) for every n. Then there is a
machine that computes C using C̃ as an oracle.

Note: the machine does not depend on C̃ , only on d and e.

Approximating Kolmogorov complexity function
Oracle setting

Approximating C is as difficult as computing it

Theorem
There is a machine that, given an oracle that computes C up
to factor 100, computes C exactly
Note: exact computation of C is equivalent to solving halting
problem

Theorem
Let d(n) and e(n) be two computable functions such that
e(n)− 2d(n)→∞. Let C̃ (x) be a function on strings that
(d(n), e(n))-approximates C (x) for every n. Then there is a
machine that computes C using C̃ as an oracle.
Note: the machine does not depend on C̃ , only on d and e.

Approximating Kolmogorov complexity function
“Proofs”

Finite case

Theorem
If e − 2d is large, then every (finite) function that
(d , e)-approximates C (x) for n-bit inputs has high complexity

Why is this enough? If C̃ is a computable approximation, then
its restriction on n-bit strings cannot have high complexity.

Proof idea: if C̃ approximates C , then one can construct a
complex object knowing C̃ and few bits of advice

Approximating Kolmogorov complexity function
“Proofs”

Finite case

Theorem
If e − 2d is large, then every (finite) function that
(d , e)-approximates C (x) for n-bit inputs has high complexity

Why is this enough? If C̃ is a computable approximation, then
its restriction on n-bit strings cannot have high complexity.

Proof idea: if C̃ approximates C , then one can construct a
complex object knowing C̃ and few bits of advice

Approximating Kolmogorov complexity function
“Proofs”

Finite case

Theorem
If e − 2d is large, then every (finite) function that
(d , e)-approximates C (x) for n-bit inputs has high complexity

Why is this enough? If C̃ is a computable approximation, then
its restriction on n-bit strings cannot have high complexity.

Proof idea: if C̃ approximates C , then one can construct a
complex object knowing C̃ and few bits of advice

Approximating Kolmogorov complexity function
“Proofs”

More details

Let x1, . . . , x2n be an enumeration of n-bit strings in
C̃ -descending order. Among the first 2n−e of them there is a
string x̂ such that |C̃ (x̂)− C (x̂)| < d
In particular, C (x̂) > C̃ (x̂)− d
Assuming e > 2, for at least 3

4 of all n-bit strings their
C̃ -values are close to their complexity, and at least a half of
the strings have complexity at least n − 1. Thus for at least a
quarter of the strings their C̃ -value is at least n − d .

Since x̂ is taken from 2n−e strings with the biggest C̃ -value,
C̃ (x̂) > n − d and C (x̂) > n − 2d .
Given C̃ , the string x̂ can be encoded by its index in

enumeration: C (x̂ |C̃) < n − e + O(1).
these inequalities imply C (C̃) > e − 2d + O(log n).

Approximating Kolmogorov complexity function
“Proofs”

More details

Let x1, . . . , x2n be an enumeration of n-bit strings in
C̃ -descending order. Among the first 2n−e of them there is a
string x̂ such that |C̃ (x̂)− C (x̂)| < d

In particular, C (x̂) > C̃ (x̂)− d
Assuming e > 2, for at least 3

4 of all n-bit strings their
C̃ -values are close to their complexity, and at least a half of
the strings have complexity at least n − 1. Thus for at least a
quarter of the strings their C̃ -value is at least n − d .

Since x̂ is taken from 2n−e strings with the biggest C̃ -value,
C̃ (x̂) > n − d and C (x̂) > n − 2d .
Given C̃ , the string x̂ can be encoded by its index in

enumeration: C (x̂ |C̃) < n − e + O(1).
these inequalities imply C (C̃) > e − 2d + O(log n).

Approximating Kolmogorov complexity function
“Proofs”

More details

Let x1, . . . , x2n be an enumeration of n-bit strings in
C̃ -descending order. Among the first 2n−e of them there is a
string x̂ such that |C̃ (x̂)− C (x̂)| < d
In particular, C (x̂) > C̃ (x̂)− d

Assuming e > 2, for at least 3
4 of all n-bit strings their

C̃ -values are close to their complexity, and at least a half of
the strings have complexity at least n − 1. Thus for at least a
quarter of the strings their C̃ -value is at least n − d .

Since x̂ is taken from 2n−e strings with the biggest C̃ -value,
C̃ (x̂) > n − d and C (x̂) > n − 2d .
Given C̃ , the string x̂ can be encoded by its index in

enumeration: C (x̂ |C̃) < n − e + O(1).
these inequalities imply C (C̃) > e − 2d + O(log n).

Approximating Kolmogorov complexity function
“Proofs”

More details

Let x1, . . . , x2n be an enumeration of n-bit strings in
C̃ -descending order. Among the first 2n−e of them there is a
string x̂ such that |C̃ (x̂)− C (x̂)| < d
In particular, C (x̂) > C̃ (x̂)− d
Assuming e > 2, for at least 3

4 of all n-bit strings their
C̃ -values are close to their complexity, and at least a half of
the strings have complexity at least n − 1. Thus for at least a
quarter of the strings their C̃ -value is at least n − d .

Since x̂ is taken from 2n−e strings with the biggest C̃ -value,
C̃ (x̂) > n − d and C (x̂) > n − 2d .
Given C̃ , the string x̂ can be encoded by its index in

enumeration: C (x̂ |C̃) < n − e + O(1).
these inequalities imply C (C̃) > e − 2d + O(log n).

Approximating Kolmogorov complexity function
“Proofs”

More details

Let x1, . . . , x2n be an enumeration of n-bit strings in
C̃ -descending order. Among the first 2n−e of them there is a
string x̂ such that |C̃ (x̂)− C (x̂)| < d
In particular, C (x̂) > C̃ (x̂)− d
Assuming e > 2, for at least 3

4 of all n-bit strings their
C̃ -values are close to their complexity, and at least a half of
the strings have complexity at least n − 1. Thus for at least a
quarter of the strings their C̃ -value is at least n − d .
Since x̂ is taken from 2n−e strings with the biggest C̃ -value,

C̃ (x̂) > n − d and C (x̂) > n − 2d .

Given C̃ , the string x̂ can be encoded by its index in
enumeration: C (x̂ |C̃) < n − e + O(1).

these inequalities imply C (C̃) > e − 2d + O(log n).

Approximating Kolmogorov complexity function
“Proofs”

More details

Let x1, . . . , x2n be an enumeration of n-bit strings in
C̃ -descending order. Among the first 2n−e of them there is a
string x̂ such that |C̃ (x̂)− C (x̂)| < d
In particular, C (x̂) > C̃ (x̂)− d
Assuming e > 2, for at least 3

4 of all n-bit strings their
C̃ -values are close to their complexity, and at least a half of
the strings have complexity at least n − 1. Thus for at least a
quarter of the strings their C̃ -value is at least n − d .
Since x̂ is taken from 2n−e strings with the biggest C̃ -value,

C̃ (x̂) > n − d and C (x̂) > n − 2d .
Given C̃ , the string x̂ can be encoded by its index in

enumeration: C (x̂ |C̃) < n − e + O(1).

these inequalities imply C (C̃) > e − 2d + O(log n).

Approximating Kolmogorov complexity function
“Proofs”

More details

Let x1, . . . , x2n be an enumeration of n-bit strings in
C̃ -descending order. Among the first 2n−e of them there is a
string x̂ such that |C̃ (x̂)− C (x̂)| < d
In particular, C (x̂) > C̃ (x̂)− d
Assuming e > 2, for at least 3

4 of all n-bit strings their
C̃ -values are close to their complexity, and at least a half of
the strings have complexity at least n − 1. Thus for at least a
quarter of the strings their C̃ -value is at least n − d .
Since x̂ is taken from 2n−e strings with the biggest C̃ -value,

C̃ (x̂) > n − d and C (x̂) > n − 2d .
Given C̃ , the string x̂ can be encoded by its index in

enumeration: C (x̂ |C̃) < n − e + O(1).
these inequalities imply C (C̃) > e − 2d + O(log n).

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n
• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt
• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers

• BB(n) = the maximal time needed by programs of size at
most n
• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt
• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n

• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt
• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n
• B(n) = the maximal number of complexity at most n

• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt
• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n
• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))

• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt
• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n
• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation

• this T is larger than some busy beaver number since all
numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt
• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n
• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB

• knowing busy beaver number, we know which programs
halt / do not halt
• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n
• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt

• . . . and can compute C exactly

Approximating Kolmogorov complexity function
“Proofs”

How to prove oracle results

• Main tool: busy beaver numbers
• BB(n) = the maximal time needed by programs of size at

most n
• B(n) = the maximal number of complexity at most n
• B(n) ≈ BB(n ± O(1))
• if we know some approximation for C̃ , we wait until CT

(Kolmogorov complexity with time bound T) becomes
compatible with this approximation
• this T is larger than some busy beaver number since all

numbers greater than T have large complexity (finite case),
and B ≈ BB
• knowing busy beaver number, we know which programs

halt / do not halt
• . . . and can compute C exactly

	Preliminaries
	Kolmogorov complexity approximations
	Oracle setting
	``Proofs''

