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random objects?

paradox of individual random objects

▶ fair coin assumption says that all sequences of N bits
are equiprobable as outcomes of fair coin tossing

▶ still some of them refute the fair coin model while
other (“random bit sequences”) do not

Is randomness real?
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random objects?

randomness around us
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random objects?

more serious efforts

Rand Corporation, A Million Random Digits with 100,000
Normal Deviates (1955)
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random objects?

electronic devices
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relevant mathematics

I: probability theory

▶ test: a set of T⊂ {0,1}N that has very small
probability

▶ if x ∈ A, then x fails the test

▶ large deviations theorems

▶ limit theorems

▶ statistics (χ2, Kolmogorov–Smirnov, …)

▶ “test should be fixed before the experiment”:
unclear but essential

▶ Bonferroni correction
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relevant mathematics

II: algorithmic information theory

▶ randomness ≈ incompressibility

▶ no program shorter than the sequence can produce it

▶ Kolmogorov complexity ≈ length

▶ obstacle I: non-computability of complexity (one can
prove non-randomness but not randomness)

▶ obstacle II: arbitrary constants

▶ still the choice of programming language in advance
is more reasonable than the choice of the test
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III: computational complexity

▶ not individual sequences but mappings (Yao,
Blum–Micali)
▶ G: short n-bit seed 7→ long N-bit sequence
▶ mapping G easy to compute (all images compressible)
▶ no easily computable test T⊂ {0,1}N can distinguish

the output from random N bits:

Pr
x∈{0,1}n[G(x) ∈ T]≈ Pr

y∈{0,1}N[y ∈ T]
▶ easily computable ≈ polynomial-size circuits
▶ exist iff one-way functions exist (Hastad, Impagliazzo,

Luby, Levin)
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IV: combinatorics, randomness extractors

▶ D: Bn×Bd→Bm:
D(reasonable random long,short independent random)
almost random and rather long

▶ if ξ is a random variable in Bn with large
min-entropy, ρ is an independent uniform random
variable in Bd, then D(ξ,ρ) has distribution that is
statistically (L1) close to the uniform on Bm
▶ existence can be proven

▶ some explicit constructions

▶ also two independent weakly random sources
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statistically (L1) close to the uniform on Bm

▶ existence can be proven

▶ some explicit constructions

▶ also two independent weakly random sources
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random bits in practice and theory

randomness generators

random bits

needed for:

▶ random sampling in statistics

▶ draws, lotteries,…

▶ Monte-Carlo computations

▶ more general, simulations

▶ randomized algorithms could be more efficient:
▶ quick sort with random pivot
▶ primality testing
▶ computing an average of some array

▶ cryptographic protocols (one-time pad, secret sharing)
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random bits in practice and theory

randomness generators

“deterministic random bits”

▶ fix f: Bn→Bn, let xn+1 = f(xn)

▶ von Neumann: middle digits of a square

▶ linear/affine mapping in a finite field

▶ not random in any reasonable sense (computable,
predictable)

▶ but still could have good convergence for
Monte-Carlo etc.
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random bits in practice and theory

randomness generators

hardware randomness

▶ also called “non-deterministic random generators”

▶ some process (thermal noise, radioactive decay,
photons reflection, environment, …) is used

▶ physics claims some probability distribution

▶ usually some conditioning/whitening is needed

▶ “centaurs”: hardware seed generation plus
deterministic transformation (Yao, Blum–Micali)

▶ a special type of “whitening”: no hope to get uniform
randomness, just computably indistinguishable
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random bits in practice and theory

randomness tests

what is a test?

▶ hardware RNG: special case of statistical testing

▶ null hypothesis H0 = uniform distribution

▶ test: a small set of binary strings

▶ its elements fail the test

▶ should be specified in advance…

▶ or be so simple that it could be specified in advance

▶ “deterministic RNG” may also pass some tests

▶ conjecture: digits of π form a normal sequence
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randomness tests

history of tests

▶ early history described in Knuth (vol.2, 1969)

▶ law of large numbers (#0≈#1)

▶ χ2-tests for frequencies of bytes, etc.

▶ used when generating tables of random numbers

▶ Marsaglia diehard (1985–1995): still used

▶ Brown dieharder (2005): more flexible

▶ NIST 800-22 (2000, 2010), STS

▶ Simard, l’Ecuyer TestU01 (2007)
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randomness tests

example of tests

▶ incompressibility (gzip as a test)
▶ limit theorems in probability theory
▶ p-values: let S: Bn→R be any function
▶ for each x ∈Bn we compute the p-value for x

pS (x)=Pr[S(r)⩾ S(x)] for random r ∈Bn
▶ if pS (x) is very small, x fails the S-test
▶ if each value of S has negligible probability, pS (x) is

uniformly distributed in [0,1]
▶ so one can use tests (e.g., Kolmogorov–Smirnov) for

independent values of pS (x)
▶ secondary tests (in Knuth, widely used in diehard)
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randomness tests

tests in algorithmic information theory

▶ Martin-Löf: randomness for infinite sequences
▶ test: decreasing sequence of open sets (elements of

Ui have randomness deficiency ⩽ i: Pr[Ui]⩽ 2−i)
▶ probability-bounded and expectation-bounded tests

(Levin, Gács)
▶ universal test: finite for random sequences; adding a

long prefix of zeros increases deficiency but it
remains finite
▶ Schnorr–Levin–Gács theorem: expression for the

universal test in terms of Kolmogorov complexity
▶ quantitative algorithmic randomness theory
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goals of RaCAF

▶ try to bridge the gap between theory and practice

▶ isolate the problematic points

▶ evaluations/recommendations

▶ improvements
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▶ isolate the problematic points
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▶ improvements



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

random bits in practice and theory

RaCAF

goals of RaCAF

▶ try to bridge the gap between theory and practice

▶ isolate the problematic points

▶ evaluations/recommendations
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theory vs. practice: ID Quantique

(white paper)

▶ randomness is mixed with non-computability

▶ (making the last statement false)
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(white paper)

▶ randomness is mixed with non-computability

▶ (making the last statement false)
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(white paper)

▶ randomness is mixed with non-computability

▶ (making the last statement false)
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▶ randomness is mixed with non-computability

▶ (making the last statement false)
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RaCAF

theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version
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theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version
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theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version
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theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version
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theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version
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theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version
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theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version
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theory vs. practice: NIST 800-22-1a

▶ type I error probability of failing the test assuming the null hypothesis
H0 (ok)

▶ “Type II error probability is 〈. . .〉 P(accept H0|H0 is false)” (1-4)

▶ but “H0 is false” does not define any distribution

▶ “Unlike α [the probability of Type I error], β is not a fixed value. 〈. . .〉
The calculation of Type II error β is more difficult than the calculation
of α because of the many possible types of non-randomness”

▶ “If a P-value for a test is determined to be equal to 1, then the
sequence appears to have perfect randomness” (1-4)

▶ “For a P-value ⩾ 0.001, a sequence would be considered to be random
with a confidence of 99.9%. For a P-value < 0.001, a sequence would
be considered to be non-random with a confidence of 99.9%” (1-4)

▶ two incorrect tests deleted from the second version



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

random bits in practice and theory

RaCAF

theory vs. practice: diehard[er]

▶ passing the test guarantees nothing (ok, unavoidable)
▶ what about failing the test?
▶ computation of p-values based on heuristic assumptions
▶ diehard: secondary tests based on incorrect assumptions
▶ dieharder: “At this point I think there is rock solid evidence that

this test [one of the diehard tests] is completely useless in
every sense of the word. It is broken, and it is so broken that
there is no point in trying to fix it. The problem is that the
transformation above is not linear, and doesn’t work. Don’t use
it.”
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theory vs. practice: diehard[er]

▶ passing the test guarantees nothing (ok, unavoidable)

▶ what about failing the test?
▶ computation of p-values based on heuristic assumptions
▶ diehard: secondary tests based on incorrect assumptions
▶ dieharder: “At this point I think there is rock solid evidence that

this test [one of the diehard tests] is completely useless in
every sense of the word. It is broken, and it is so broken that
there is no point in trying to fix it. The problem is that the
transformation above is not linear, and doesn’t work. Don’t use
it.”
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theory vs. practice: diehard[er]

▶ passing the test guarantees nothing (ok, unavoidable)
▶ what about failing the test?

▶ computation of p-values based on heuristic assumptions
▶ diehard: secondary tests based on incorrect assumptions
▶ dieharder: “At this point I think there is rock solid evidence that

this test [one of the diehard tests] is completely useless in
every sense of the word. It is broken, and it is so broken that
there is no point in trying to fix it. The problem is that the
transformation above is not linear, and doesn’t work. Don’t use
it.”



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

random bits in practice and theory

RaCAF

theory vs. practice: diehard[er]

▶ passing the test guarantees nothing (ok, unavoidable)
▶ what about failing the test?
▶ computation of p-values based on heuristic assumptions

▶ diehard: secondary tests based on incorrect assumptions
▶ dieharder: “At this point I think there is rock solid evidence that

this test [one of the diehard tests] is completely useless in
every sense of the word. It is broken, and it is so broken that
there is no point in trying to fix it. The problem is that the
transformation above is not linear, and doesn’t work. Don’t use
it.”
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theory vs. practice: diehard[er]

▶ passing the test guarantees nothing (ok, unavoidable)
▶ what about failing the test?
▶ computation of p-values based on heuristic assumptions
▶ diehard: secondary tests based on incorrect assumptions

▶ dieharder: “At this point I think there is rock solid evidence that
this test [one of the diehard tests] is completely useless in
every sense of the word. It is broken, and it is so broken that
there is no point in trying to fix it. The problem is that the
transformation above is not linear, and doesn’t work. Don’t use
it.”
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RaCAF

theory vs. practice: diehard[er]

▶ passing the test guarantees nothing (ok, unavoidable)
▶ what about failing the test?
▶ computation of p-values based on heuristic assumptions
▶ diehard: secondary tests based on incorrect assumptions
▶ dieharder: “At this point I think there is rock solid evidence that

this test [one of the diehard tests] is completely useless in
every sense of the word. It is broken, and it is so broken that
there is no point in trying to fix it. The problem is that the
transformation above is not linear, and doesn’t work. Don’t use
it.”
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RaCAF

theory vs. practice: entropy

▶ entropy of a distribution (Shannon)

▶ for individual objects: Kolmogorov complexity

▶ a liquid produced by generators and accumulated in pools?
“The central mathematical concept underlying this [NIST]
Recommendation is entropy. Entropy is defined relative to one’s
knowledge of an experiment’s output prior to observation, and reflects
the uncertainty associated with predicting its value – the larger the
amount of entropy, the greater the uncertainty in predicting the value
of an observation”

▶ “Each bit of a bitstring with full entropy has a uniform distribution and
is independent of every other bit of that bitstring. Simplistically, this
means that a bitstring has full entropy if every bit of the bitstring has
one bit of entropy; the amount of entropy in the bitstring is equal to its
length’ (same NIST document)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

random bits in practice and theory

RaCAF

theory vs. practice: entropy

▶ entropy of a distribution (Shannon)

▶ for individual objects: Kolmogorov complexity

▶ a liquid produced by generators and accumulated in pools?
“The central mathematical concept underlying this [NIST]
Recommendation is entropy. Entropy is defined relative to one’s
knowledge of an experiment’s output prior to observation, and reflects
the uncertainty associated with predicting its value – the larger the
amount of entropy, the greater the uncertainty in predicting the value
of an observation”

▶ “Each bit of a bitstring with full entropy has a uniform distribution and
is independent of every other bit of that bitstring. Simplistically, this
means that a bitstring has full entropy if every bit of the bitstring has
one bit of entropy; the amount of entropy in the bitstring is equal to its
length’ (same NIST document)
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theory vs. practice: entropy

▶ entropy of a distribution (Shannon)

▶ for individual objects: Kolmogorov complexity

▶ a liquid produced by generators and accumulated in pools?
“The central mathematical concept underlying this [NIST]
Recommendation is entropy. Entropy is defined relative to one’s
knowledge of an experiment’s output prior to observation, and reflects
the uncertainty associated with predicting its value – the larger the
amount of entropy, the greater the uncertainty in predicting the value
of an observation”

▶ “Each bit of a bitstring with full entropy has a uniform distribution and
is independent of every other bit of that bitstring. Simplistically, this
means that a bitstring has full entropy if every bit of the bitstring has
one bit of entropy; the amount of entropy in the bitstring is equal to its
length’ (same NIST document)
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theory vs. practice: entropy

▶ entropy of a distribution (Shannon)

▶ for individual objects: Kolmogorov complexity

▶ a liquid produced by generators and accumulated in pools?
“The central mathematical concept underlying this [NIST]
Recommendation is entropy. Entropy is defined relative to one’s
knowledge of an experiment’s output prior to observation, and reflects
the uncertainty associated with predicting its value – the larger the
amount of entropy, the greater the uncertainty in predicting the value
of an observation”

▶ “Each bit of a bitstring with full entropy has a uniform distribution and
is independent of every other bit of that bitstring. Simplistically, this
means that a bitstring has full entropy if every bit of the bitstring has
one bit of entropy; the amount of entropy in the bitstring is equal to its
length’ (same NIST document)
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RaCAF

theory vs. practice: entropy

▶ entropy of a distribution (Shannon)

▶ for individual objects: Kolmogorov complexity

▶ a liquid produced by generators and accumulated in pools?
“The central mathematical concept underlying this [NIST]
Recommendation is entropy. Entropy is defined relative to one’s
knowledge of an experiment’s output prior to observation, and reflects
the uncertainty associated with predicting its value – the larger the
amount of entropy, the greater the uncertainty in predicting the value
of an observation”

▶ “Each bit of a bitstring with full entropy has a uniform distribution and
is independent of every other bit of that bitstring. Simplistically, this
means that a bitstring has full entropy if every bit of the bitstring has
one bit of entropy; the amount of entropy in the bitstring is equal to its
length’ (same NIST document)
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theory vs. practice: whitening

▶ Santha–Vazirani sources: X1, . . . ,Xn

▶ Pr[Xi = 1 |X0 = x0, . . . ,Xi−1 = xi−1] ∈ (1/3,2/3)

▶ “no value can be predicted for sure”

▶ F: a deterministic transformation

▶ can we guarantee that F(X1, . . . ,Xn) is close to a fair
coin?

▶ nothing better than (1/3,2/3)

▶ similar results for k bits: for F: Bn→Bk there is SV
source and some k-bit output string that appear with
probability at least (2/3)k instead of (1/2)k
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theory vs. practice: randomness extraction

▶ F(X,R) is statistically close to uniform randomness if
▶ X is long and has reasonable min-entropy
▶ R is short but perfectly random
▶ X and R are independent

▶ IDquantique uses this approach

▶ but for fixed R (generated, sent with the device)

▶ so nothing is guaranteed

▶ strong extractor: (F(X,R),R)≈ uniform
▶ can be saved, but only with half of the security

parameter
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▶ F(X,R) is statistically close to uniform randomness if
▶ X is long and has reasonable min-entropy
▶ R is short but perfectly random
▶ X and R are independent

▶ IDquantique uses this approach

▶ but for fixed R (generated, sent with the device)

▶ so nothing is guaranteed

▶ strong extractor: (F(X,R),R)≈ uniform

▶ can be saved, but only with half of the security
parameter
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▶ F(X,R) is statistically close to uniform randomness if
▶ X is long and has reasonable min-entropy
▶ R is short but perfectly random
▶ X and R are independent

▶ IDquantique uses this approach

▶ but for fixed R (generated, sent with the device)

▶ so nothing is guaranteed

▶ strong extractor: (F(X,R),R)≈ uniform
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theory vs. practice: using independence

▶ randomness extractors with several independent
sources

▶ exist with good parameters

▶ only the simplest approach seems to be used

▶ if X1, . . . ,Xn are independent and
Pr[Xi = 1] ∈ (1/3,2/3),
X1⊕ . . .⊕Xn is exponentially close to a fair coin

▶ independence is physically plausible
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theory vs. practice: coding

▶ dieharder: non-reproducible results even with fixed seed

▶ wrong computation of Kolmogorov–Smirnov statistics

▶ tests are hard to debug

▶ NIST says:
In practice, many reasons can be given to explain why a data set has
failed a statistical test. The following is a list of possible explanations.
The list was compiled based upon NIST statistical testing efforts.

1. An incorrectly programmed statistical test.
2. An underdeveloped (immature) statistical test.
3. An improper implementation of a random number generator.
4. Improperly written codes to harness test input data.
5. Poor mathematical routines for computing P-values.
6. Incorrect choices for input parameters.
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1. An incorrectly programmed statistical test.
2. An underdeveloped (immature) statistical test.
3. An improper implementation of a random number generator.
4. Improperly written codes to harness test input data.
5. Poor mathematical routines for computing P-values.
6. Incorrect choices for input parameters.
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RaCAF

how to make tests robust

▶ we do not know the exact distribution of a statistic S
and p-values are unreliable

▶ for secondary test it is not necessary if we use
Kolmogorov–Smirnov test for two samples:
S(x1), . . . ,S(xn) and S(y1), . . . ,S(ym)

▶ x1, . . . ,xn from the generator we test,
y1, . . . ,ym from a reference generator

▶ may reject a good generator using a bad reference

▶ S(x1), . . . ,S(xn) vs S(xn+1⊕ y1), . . . ,S(xn+m⊕ ym)
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RaCAF

survey of available generators

parameters to take into account:

▶ noise source

▶ whitening

▶ access to raw noise

▶ rate

▶ cost

▶ software integration

▶ bonus: open source hard/software
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RaCAF

survey of available generators

parameters to take into account:

▶ noise source

▶ whitening

▶ access to raw noise

▶ rate

▶ cost

▶ software integration

▶ bonus: open source hard/software
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RaCAF

Araneus

$$$, zener noise, 100 kbits/s, raw=no, whitening=?
“The raw output bits from the A/D converter are then further processed by an embedded microprocessor
to combine the entropy from multiple samples into each final output bit, resulting in a random bit
stream that is practically free from bias and correlation”



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

random bits in practice and theory

RaCAF

Gniibe

$$, environment noise, 3 mbits/s, access to raw bits, open
source (based on GNU microprocesssor unit),
whitening=CRC32 + SHA-256
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RaCAF

Infinite Noise

$$, electronic noise, x 7→ 2x− 1 digitization, 300 kbits/s,
access to raw bits, whitening=SHA3
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RaCAF

analysis of raw noise bits

infinite noise: measured vs. model
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RaCAF

Bitbabbler

$$–$$$, electronic noise, x 7→ 2x− 1 digitization,
2.5 mbits/s default, 4 independent generators ($150
version), access to raw bits, variable discretization rate,
whitening=XOR
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RaCAF

Bitbabbler: changing rate

100 kHz default rate 2.5 MHz 5 MHz
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RaCAF

2 or3 XOR
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RaCAF

TrueRNG

$$–$$$, zener noise + ADC,
3.2 mbits/s, 2 independent generators ($100 version),
access to raw bits, whitening=XOR/CRC
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RaCAF

TrueRNG raw noise
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RaCAF

DIY approach
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RaCAF

DIY: not all noise sources are the same

two zener diodes from the same roll
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RaCAF

ID Quantique

$$$–$$$$, photon detectors, 4 mbits/s, no access to raw
bits, whitening?, additional randomness extraction
available
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RaCAF

ID Quantique: scheme
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paranoid mode on

certificates as randomness theater?

still fails dieharder/ent tests (before optional randomness
extractor)
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paranoid mode on

security through obscurity

▶ NIST recommends (and insists) on using
cryptographic whitening

▶ “approved hash function”

▶ nothing is proven about them

▶ and even it were, it won’t help
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security through obscurity

▶ NIST recommends (and insists) on using
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▶ “approved hash function”

▶ nothing is proven about them

▶ and even it were, it won’t help
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security through obscurity

▶ NIST recommends (and insists) on using
cryptographic whitening

▶ “approved hash function”

▶ nothing is proven about them

▶ and even it were, it won’t help
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paranoid mode on

NIST says:

Hash_DRBG’s [the random generator based on hash
functions] security depends on the underlying hash
function’s behavior when processing a series of se-
quential input blocks. If the hash function is replaced
by a random oracle, Hash_DRBG is secure. It is diffi-
cult to relate the properties of the hash function re-
quired by Hash_DRBG with common properties, such
as collision resistance, pre-image resistance, or pseu-
dorandomness.
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paranoid mode on

vulnerabilities

▶ software attack if a microprocessor is used

▶ undetected failure of noise source

▶ whitening obscures failures

▶ obscure hash function as a Troyan horse

▶ distribution close to random but still distinguishable

▶ last but not least: stupid errors (e.g., AMD Zen FF
random generator)
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▶ xor of independent devices

▶ possible to make in-house
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