
RaCAF ANR-15-CE40-0016-01: Dépasser les
frontières de l’aléatoire et du calculable

(Randomness and Computability:
Advancing the Frontiers)

Alexander Shen,
LIRMM CNRS & Univ. Montpellier

March 22, 2018

Random objects from different perspectives

I Classical probability theory: random variables

I Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

I Numerical computations: pseudorandom number
generators and statistical tests

I Complexity theory and computational
cryptography: pseudorandom number generators
(Blum, Micali)

I Combinatorics: randomness extractors

Random objects from different perspectives

I Classical probability theory: random variables

I Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

I Numerical computations: pseudorandom number
generators and statistical tests

I Complexity theory and computational
cryptography: pseudorandom number generators
(Blum, Micali)

I Combinatorics: randomness extractors

Random objects from different perspectives

I Classical probability theory: random variables

I Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

I Numerical computations: pseudorandom number
generators and statistical tests

I Complexity theory and computational
cryptography: pseudorandom number generators
(Blum, Micali)

I Combinatorics: randomness extractors

Random objects from different perspectives

I Classical probability theory: random variables

I Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

I Numerical computations: pseudorandom number
generators and statistical tests

I Complexity theory and computational
cryptography: pseudorandom number generators
(Blum, Micali)

I Combinatorics: randomness extractors

Random objects from different perspectives

I Classical probability theory: random variables

I Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

I Numerical computations: pseudorandom number
generators and statistical tests

I Complexity theory and computational
cryptography: pseudorandom number generators
(Blum, Micali)

I Combinatorics: randomness extractors

Random objects from different perspectives

I Classical probability theory: random variables

I Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

I Numerical computations: pseudorandom number
generators and statistical tests

I Complexity theory and computational
cryptography: pseudorandom number generators
(Blum, Micali)

I Combinatorics: randomness extractors

Classical probability theory

I Random variable: mapping defined on a
probability space

I No such thing as an individual random object

I of course, we usually speak about sequences,
not individual digits

Classical probability theory

I Random variable: mapping defined on a
probability space

I No such thing as an individual random object

I of course, we usually speak about sequences,
not individual digits

Classical probability theory

I Random variable: mapping defined on a
probability space

I No such thing as an individual random object

I of course, we usually speak about sequences,
not individual digits

Classical probability theory

I Random variable: mapping defined on a
probability space

I No such thing as an individual random object

I of course, we usually speak about sequences,
not individual digits

Classical probability theory

I Random variable: mapping defined on a
probability space

I No such thing as an individual random object

I of course, we usually speak about sequences,
not individual digits

Tables of random numbers

. . . but the question remains:

($600 hardcover, $41 paperback, $9 digital)
can we complain to amazon if “non-random”?

Tables of random numbers

. . . but the question remains:

($600 hardcover, $41 paperback, $9 digital)

can we complain to amazon if “non-random”?

Tables of random numbers

. . . but the question remains:

($600 hardcover, $41 paperback, $9 digital)
can we complain to amazon if “non-random”?

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Algorithmic randomness

I finite or infinite objects

I sharp boundary for infinite (Martin-Löf)

I “randomness deficiency” for finite

I randomness=incompressibility

I Kolmogorov complexity = length of the
generating program

I randomness deficiency=length−complexity

I non-computable

I dependence on the programming language

I (our main field of expertise)

Pseudo-random number generators

I xn+1 = (1103515245 · xn + 12345) mod 232

I many other generators (not only linear)

I used for simulations

I Monte-Carlo method

I easily computable and predictable

I why better than xn+1 = xn + 1 mod 232?

Pseudo-random number generators

I xn+1 = (1103515245 · xn + 12345) mod 232

I many other generators (not only linear)

I used for simulations

I Monte-Carlo method

I easily computable and predictable

I why better than xn+1 = xn + 1 mod 232?

Pseudo-random number generators

I xn+1 = (1103515245 · xn + 12345) mod 232

I many other generators (not only linear)

I used for simulations

I Monte-Carlo method

I easily computable and predictable

I why better than xn+1 = xn + 1 mod 232?

Pseudo-random number generators

I xn+1 = (1103515245 · xn + 12345) mod 232

I many other generators (not only linear)

I used for simulations

I Monte-Carlo method

I easily computable and predictable

I why better than xn+1 = xn + 1 mod 232?

Pseudo-random number generators

I xn+1 = (1103515245 · xn + 12345) mod 232

I many other generators (not only linear)

I used for simulations

I Monte-Carlo method

I easily computable and predictable

I why better than xn+1 = xn + 1 mod 232?

Pseudo-random number generators

I xn+1 = (1103515245 · xn + 12345) mod 232

I many other generators (not only linear)

I used for simulations

I Monte-Carlo method

I easily computable and predictable

I why better than xn+1 = xn + 1 mod 232?

Pseudo-random number generators

I xn+1 = (1103515245 · xn + 12345) mod 232

I many other generators (not only linear)

I used for simulations

I Monte-Carlo method

I easily computable and predictable

I why better than xn+1 = xn + 1 mod 232?

Statistical tests

I diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

I dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/

General/dieharder.php

I NIST, https://csrc.nist.gov/projects/
random-bit-generation/

documentation-and-software

I TestU01, https://www.iro.umontreal.ca/

~lecuyer/myftp/papers/testu01.pdf

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

I diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

I dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/

General/dieharder.php

I NIST, https://csrc.nist.gov/projects/
random-bit-generation/

documentation-and-software

I TestU01, https://www.iro.umontreal.ca/

~lecuyer/myftp/papers/testu01.pdf

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

I diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

I dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/

General/dieharder.php

I NIST, https://csrc.nist.gov/projects/
random-bit-generation/

documentation-and-software

I TestU01, https://www.iro.umontreal.ca/

~lecuyer/myftp/papers/testu01.pdf

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

I diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

I dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/

General/dieharder.php

I NIST, https://csrc.nist.gov/projects/
random-bit-generation/

documentation-and-software

I TestU01, https://www.iro.umontreal.ca/

~lecuyer/myftp/papers/testu01.pdf

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

I diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

I dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/

General/dieharder.php

I NIST, https://csrc.nist.gov/projects/
random-bit-generation/

documentation-and-software

I TestU01, https://www.iro.umontreal.ca/

~lecuyer/myftp/papers/testu01.pdf

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

What is a statistical test?

I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k

What is a statistical test?

I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k

What is a statistical test?

I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k

What is a statistical test?

I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k

What is a statistical test?

I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k

What is a statistical test?

I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k

What is a statistical test?

I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator?

seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)

Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work

Randomness tests: problems

I p-value function requires exact answer for
probabilities;

I in many cases only a bound available or even an
empirical estimate

I unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov–Smirnov test

I diehard uses dependent inputs when
independence is required

Randomness tests: problems

I p-value function requires exact answer for
probabilities;

I in many cases only a bound available or even an
empirical estimate

I unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov–Smirnov test

I diehard uses dependent inputs when
independence is required

Randomness tests: problems

I p-value function requires exact answer for
probabilities;

I in many cases only a bound available or even an
empirical estimate

I unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov–Smirnov test

I diehard uses dependent inputs when
independence is required

Randomness tests: problems

I p-value function requires exact answer for
probabilities;

I in many cases only a bound available or even an
empirical estimate

I unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov–Smirnov test

I diehard uses dependent inputs when
independence is required

Randomness tests: problems

I p-value function requires exact answer for
probabilities;

I in many cases only a bound available or even an
empirical estimate

I unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov–Smirnov test

I diehard uses dependent inputs when
independence is required

dieharder documentation

speaks about “test failures”

Many dieharder tests, despite our best efforts, are numerically
unstable or have only approximately known target statistics or
are straight up asymptotic results, and will eventually return a
failing result even for a gold-standard generator (such as AES),
or for the hypercautious the XOR generator with AES,
threefish, kiss, all loaded at once and xor’d together. 〈. . .〉
Failure with numbers of psamples within an order of
magnitude of the AES thresholds should probably be
considered possible test failures, not generator failures.
Failures at levels significantly less than the known gold
standard generator failure thresholds are, of course, probably
failures of the generator.

More reliable approach needed

I any function p (no assumptions about having
p-value properties)

I p(r1), . . . , p(rn) (where ri are independent parts
of a test stream) compared with
p(R1), . . . , p(Rn) where Ri are true random
strings

I we may use Kolmogorov–Smirnov criterion for
two distributions

I guaranteed to be reliable (assuming true
randomness)

I almost as sensitive as the original test

More reliable approach needed

I any function p (no assumptions about having
p-value properties)

I p(r1), . . . , p(rn) (where ri are independent parts
of a test stream) compared with
p(R1), . . . , p(Rn) where Ri are true random
strings

I we may use Kolmogorov–Smirnov criterion for
two distributions

I guaranteed to be reliable (assuming true
randomness)

I almost as sensitive as the original test

More reliable approach needed

I any function p (no assumptions about having
p-value properties)

I p(r1), . . . , p(rn) (where ri are independent parts
of a test stream) compared with
p(R1), . . . , p(Rn) where Ri are true random
strings

I we may use Kolmogorov–Smirnov criterion for
two distributions

I guaranteed to be reliable (assuming true
randomness)

I almost as sensitive as the original test

More reliable approach needed

I any function p (no assumptions about having
p-value properties)

I p(r1), . . . , p(rn) (where ri are independent parts
of a test stream) compared with
p(R1), . . . , p(Rn) where Ri are true random
strings

I we may use Kolmogorov–Smirnov criterion for
two distributions

I guaranteed to be reliable (assuming true
randomness)

I almost as sensitive as the original test

More reliable approach needed

I any function p (no assumptions about having
p-value properties)

I p(r1), . . . , p(rn) (where ri are independent parts
of a test stream) compared with
p(R1), . . . , p(Rn) where Ri are true random
strings

I we may use Kolmogorov–Smirnov criterion for
two distributions

I guaranteed to be reliable (assuming true
randomness)

I almost as sensitive as the original test

More reliable approach needed

I any function p (no assumptions about having
p-value properties)

I p(r1), . . . , p(rn) (where ri are independent parts
of a test stream) compared with
p(R1), . . . , p(Rn) where Ri are true random
strings

I we may use Kolmogorov–Smirnov criterion for
two distributions

I guaranteed to be reliable (assuming true
randomness)

I almost as sensitive as the original test

Testing without etalon randomness

I correctness depends on the etalon randomness

I improvement: p(r1), . . . , p(rn) (where ri are
independent parts of a test stream) compared
with p(rn+1 ⊕ R1), . . . , p(r2n ⊕ Rn) where Ri are
presumably true random strings

I guaranteed to be reliable (no assumptions about
Ri)

I equally sensitive if Ri are truly random

Testing without etalon randomness

I correctness depends on the etalon randomness

I improvement: p(r1), . . . , p(rn) (where ri are
independent parts of a test stream) compared
with p(rn+1 ⊕ R1), . . . , p(r2n ⊕ Rn) where Ri are
presumably true random strings

I guaranteed to be reliable (no assumptions about
Ri)

I equally sensitive if Ri are truly random

Testing without etalon randomness

I correctness depends on the etalon randomness

I improvement: p(r1), . . . , p(rn) (where ri are
independent parts of a test stream) compared
with p(rn+1 ⊕ R1), . . . , p(r2n ⊕ Rn) where Ri are
presumably true random strings

I guaranteed to be reliable (no assumptions about
Ri)

I equally sensitive if Ri are truly random

Testing without etalon randomness

I correctness depends on the etalon randomness

I improvement: p(r1), . . . , p(rn) (where ri are
independent parts of a test stream) compared
with p(rn+1 ⊕ R1), . . . , p(r2n ⊕ Rn) where Ri are
presumably true random strings

I guaranteed to be reliable (no assumptions about
Ri)

I equally sensitive if Ri are truly random

Testing without etalon randomness

I correctness depends on the etalon randomness

I improvement: p(r1), . . . , p(rn) (where ri are
independent parts of a test stream) compared
with p(rn+1 ⊕ R1), . . . , p(r2n ⊕ Rn) where Ri are
presumably true random strings

I guaranteed to be reliable (no assumptions about
Ri)

I equally sensitive if Ri are truly random

Probabilistic arguments as random tests

I combinatorial results obtained by a probabilistic
method

I object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

I testing bit string r : use it as a random string in
the algorithm and measure the properties of the
object generated by it

I suitable for our scheme even if nothing is
formally proved about the algorithm

I some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)

Probabilistic arguments as random tests

I combinatorial results obtained by a probabilistic
method

I object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

I testing bit string r : use it as a random string in
the algorithm and measure the properties of the
object generated by it

I suitable for our scheme even if nothing is
formally proved about the algorithm

I some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)

Probabilistic arguments as random tests

I combinatorial results obtained by a probabilistic
method

I object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

I testing bit string r : use it as a random string in
the algorithm and measure the properties of the
object generated by it

I suitable for our scheme even if nothing is
formally proved about the algorithm

I some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)

Probabilistic arguments as random tests

I combinatorial results obtained by a probabilistic
method

I object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

I testing bit string r : use it as a random string in
the algorithm and measure the properties of the
object generated by it

I suitable for our scheme even if nothing is
formally proved about the algorithm

I some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)

Probabilistic arguments as random tests

I combinatorial results obtained by a probabilistic
method

I object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

I testing bit string r : use it as a random string in
the algorithm and measure the properties of the
object generated by it

I suitable for our scheme even if nothing is
formally proved about the algorithm

I some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)

Probabilistic arguments as random tests

I combinatorial results obtained by a probabilistic
method

I object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

I testing bit string r : use it as a random string in
the algorithm and measure the properties of the
object generated by it

I suitable for our scheme even if nothing is
formally proved about the algorithm

I some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)

Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory

Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory

Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory

Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory

RFC 4086

on extracting randomness from weak random
source:

For an example of using a strong mixing function, reconsider
the case of a string of 308 bits, each of which is biased 99%
toward zero. The parity technique 〈. . .〉 reduces this to one bit,
with only a 1/1000 deviance from being equally likely a zero or
one. But, applying the equation for information 〈. . .〉 [Shannon
entropy], this 308-bit skewed sequence contains over 5 bits of
information. Thus, hashing it with SHA-1 and taking the
bottom 5 bits of the result would yield 5 unbiased random bits
and not the single bit given by calculating the parity of the
string.

[Not justified: parity argument uses independence, and SHA-1 trick is not
justified even in the independence case]

RFC 4086

on extracting randomness from weak random
source:

For an example of using a strong mixing function, reconsider
the case of a string of 308 bits, each of which is biased 99%
toward zero. The parity technique 〈. . .〉 reduces this to one bit,
with only a 1/1000 deviance from being equally likely a zero or
one. But, applying the equation for information 〈. . .〉 [Shannon
entropy], this 308-bit skewed sequence contains over 5 bits of
information. Thus, hashing it with SHA-1 and taking the
bottom 5 bits of the result would yield 5 unbiased random bits
and not the single bit given by calculating the parity of the
string.

[Not justified: parity argument uses independence, and SHA-1 trick is not
justified even in the independence case]

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done

Planned work

I convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

I adding some new tests based on probabilistic constructions

I making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

I last, but not least: theoretical work to understand properties
of randomness (algorithmic information theory, computability
theory approach to randomness, models of computation,
randomness in game-theoretic approach to probability theory,
etc.)

Planned work

I convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

I adding some new tests based on probabilistic constructions

I making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

I last, but not least: theoretical work to understand properties
of randomness (algorithmic information theory, computability
theory approach to randomness, models of computation,
randomness in game-theoretic approach to probability theory,
etc.)

Planned work

I convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

I adding some new tests based on probabilistic constructions

I making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

I last, but not least: theoretical work to understand properties
of randomness (algorithmic information theory, computability
theory approach to randomness, models of computation,
randomness in game-theoretic approach to probability theory,
etc.)

Planned work

I convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

I adding some new tests based on probabilistic constructions

I making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

I last, but not least: theoretical work to understand properties
of randomness (algorithmic information theory, computability
theory approach to randomness, models of computation,
randomness in game-theoretic approach to probability theory,
etc.)

Planned work

I convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

I adding some new tests based on probabilistic constructions

I making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

I last, but not least: theoretical work to understand properties
of randomness (algorithmic information theory, computability
theory approach to randomness, models of computation,
randomness in game-theoretic approach to probability theory,
etc.)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

Chronological report about RaCAF progress, including references
and texts of RaCAF-related papers,
http:www.lirmm.fr/~ashen/racaf.html

M. Andreev, G. Posobin, A. Shen, Plain stopping time and
conditional complexities revisited, preprint,
https://arxiv.org/abs/1708.08100

O. Bournez, D.S. Gracça, A. Pouly, Polynomial Time corresponds to
Solutions of Polynomial Ordinary Differential Equations of
Polynomial Length, Journal of the ACM, Volume 64, Issue 6,
November 2017, Article No. 38

O. Bournez, A. Pouly, A Universal Ordinary Differential Equation,
International Colloquium on Automata, Language and Programming,
ICALP’2017, 116:1–116:14

B. Bauwens, A. Shen, H. Takahashi, Conditional Probabilities and
van Lambalgens Theorem Revisited, Theory of Computing Systems,
2017, doi:10.1007/s00224-017-9789-2

M. Carl, B. Durand, G. Lafitte, S. Ouazzani, Admissible in Gaps, CiE
2017: Unveiling Dynamics and Complexity, Proceedings, Lecture

http:www.lirmm.fr/~ashen/racaf.html
https://arxiv.org/abs/1708.08100

Notes in Computer Science, 10307, Springer, 2017, 175–186.
https://doi.org/10.1007/978-3-319-58741-7_18

J. Cervelle, G. Lafitte, On shift-invariant maximal filters and
hormonal cellular automata, 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, 1–10,
https://doi.org/10.1109/LICS.2017.8005145

O. Defrain, B. Durand, G. Lafitte, Infinite Time Busy Beavers, CiE
2017: Unveiling Dynamics and Complexity, Proceedings, Lecture
Notes in Computer Science, 10307, Springer, 2017, 221–233.
https://doi.org/10.1007/978-3-319-58741-7_22

B. Durand, A. Romashchenko, On the Expressive Power of
Quasi-Periodic SFT, Mathematical Foundations of Computer
Science, 2017, https://doi.org/10.4230/LIPIcs.MFCS.2017.5

L. Bienvenu, M. Hoyrup, A. Shen, Layerwise Computability and
Image Randomness, Theory of Computing Systems, 2017,
doi:10.1007/s00224-017-9791-8

Guilhem Marion, Le hasard et sa production, report de stage,
LIRMM, see RaCAF diary above.

https://doi.org/10.1007/978-3-319-58741-7_18
https://doi.org/10.1109/LICS.2017.8005145
https://doi.org/10.1007/978-3-319-58741-7_22
https://doi.org/10.4230/LIPIcs.MFCS.2017.5

A. Milovanov, Algorithmic Statistics: Normal Objects and Universal
Models, Computer Science in Russia 2016, Lecture Notes in
Computer Science, v. 9691 (2016), 280–293.

A. Milovanov, Some Properties of Antistochastic Strings, Theory of
Computing Systems, published online 21 June 2016, DOI
10.1007/s00224-016-9695-z.

A. Milovanov, On Algorithmic Statistics for space-bounded
algorithms. In Proceedings of 12th International Computer Science
Symposium in Russia (CSR 2017) LNCS, vol. 10304, pp. 232–234,
2017.

A. Milovanov, N. Vereshchagin, Stochasticity in Algorithmic
Statistics for Polynomial Time, 32nd Computational Complexity
Conference(CCC 2017) proceedings (Leibniz International
Proceedings in Informatics, LIPIcs),
doi:10.4230/LIPIcs.CCC.2017.17, 17:1–17:18

G. Novikov, Randomness Deficiences, CiE 2017: Unveiling Dynamics
and Complexity, Proceedings, Lecture Notes in Computer Science,
10307, Springer, 2017, 338–350. https://link.springer.com/
chapter/10.1007/978-3-319-58741-7_32

https://link.springer.com/chapter/10.1007/978-3-319-58741-7_32
https://link.springer.com/chapter/10.1007/978-3-319-58741-7_32

A. Romashchenko, Coding in the fork network in the framework of
Kolmogorov complexity, preprint, arXiv:1602.02648.

A. Shen, Algorithmic Information Theory, book section in The
Routledge handbook of philosophy of information, Routletge, 2016,
37–43.

A. Shen, Automatic Kolmogorov complexity and normality revisited,
FCT 2017 Conference, Bordeaux, France, Proceedings, full version:
https://arxiv.org/pdf/1701.09060.pdf

A. Shen, V. Uspensky, N. Vereshchagin, Kolmogorov Complexity and
Algorithmic Randomness. A book accepted for publication (in 2017)
by the American Mathematical Society. Draft:
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

N. Vereshchagin, A. Shen, Algorithmic statistics: forty years later.
Book chapter in Computability and Complexity. Essays Dedicated to
Rodney G. Downey on the Occasion of His 60th Birthday. Lecture
Notes in Computer Science, v. 10010, Springer, 2017, p. 669–737.

arXiv:1602.02648
https://arxiv.org/pdf/1701.09060.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

