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generating program

I randomness deficiency=length−complexity
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I input: bit sequence r (typical length: 107)

I output: not just “pass” or “fail”, but some real
p(r) ∈ (0, 1)

I “p-value”: Prr [p(r) 6 ε] = ε

I if p-value is below some threshold, say, 10−5, we
say that r looks non-random with p-value 10−5

I “r is random with probability 10−5”: misleading

I compressors as random tests: compression by k
bits corresponds to p-value below 2−k
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I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator?

seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Randomness and cryptography

I password/secret key from the random table
book: a bad idea

I password generated by a pseudorandom number
generator? seeds needed

I complexity-based cryptography: Yao – Blum –
Micali

I PRNG: short seed → long bit string

I indistinguishable by tests of bounded circuit
complexity

I conditional existence (factoring is hard, the
existence of one-way functions)



Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg


Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg


Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg


Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg


Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg


Physical randomness

I “fast electronic coin”

I examples: https://en.wikipedia.org/wiki/Comparison_

of_hardware_random_number_generators

I more exotic solutions: lava lamps at CloudFlare
https://www.youtube.com/watch?v=1cUUfMeOijg

I basic problem: distribution not under control

I solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg


The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



The project goals

I understanding relations between different
approaches

I better understanding of existing practices and
their weaknesses

I making tests robust

I trying new type of tests

I trying new ways of randomness extraction

I this report: mostly practical aspects

I see below (and also pdf report) for more
theoretical work



Randomness tests: problems

I p-value function requires exact answer for
probabilities;

I in many cases only a bound available or even an
empirical estimate

I unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov–Smirnov test

I diehard uses dependent inputs when
independence is required
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dieharder documentation

speaks about “test failures”

Many dieharder tests, despite our best efforts, are numerically
unstable or have only approximately known target statistics or
are straight up asymptotic results, and will eventually return a
failing result even for a gold-standard generator (such as AES),
or for the hypercautious the XOR generator with AES,
threefish, kiss, all loaded at once and xor’d together. 〈. . .〉
Failure with numbers of psamples within an order of
magnitude of the AES thresholds should probably be
considered possible test failures, not generator failures.
Failures at levels significantly less than the known gold
standard generator failure thresholds are, of course, probably
failures of the generator.
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I any function p (no assumptions about having
p-value properties)

I p(r1), . . . , p(rn) (where ri are independent parts
of a test stream) compared with
p(R1), . . . , p(Rn) where Ri are true random
strings

I we may use Kolmogorov–Smirnov criterion for
two distributions

I guaranteed to be reliable (assuming true
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Probabilistic arguments as random tests

I combinatorial results obtained by a probabilistic
method

I object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

I testing bit string r : use it as a random string in
the algorithm and measure the properties of the
object generated by it

I suitable for our scheme even if nothing is
formally proved about the algorithm

I some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)
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Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory



Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory



Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory



Physical random number generators

I goal: add some “unpredictability” or “entropy”
from physical sources

I “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

I (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory



RFC 4086

on extracting randomness from weak random
source:

For an example of using a strong mixing function, reconsider
the case of a string of 308 bits, each of which is biased 99%
toward zero. The parity technique 〈. . .〉 reduces this to one bit,
with only a 1/1000 deviance from being equally likely a zero or
one. But, applying the equation for information 〈. . .〉 [Shannon
entropy], this 308-bit skewed sequence contains over 5 bits of
information. Thus, hashing it with SHA-1 and taking the
bottom 5 bits of the result would yield 5 unbiased random bits
and not the single bit given by calculating the parity of the
string.

[Not justified: parity argument uses independence, and SHA-1 trick is not
justified even in the independence case]
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Alternative ways to extract randomness

I theoretical work: randomness extractors

I two inputs: long weak random and independent
short truly random

I or two long independent weak random sources

I not directly practical

I some practical approaches inspired by them

I using expander walk over weakly random edges

I using B[x ][y ] where B is a balanced matrix and
x and y are independent weak random sources

I some preliminary experiments done
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Planned work

I convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

I adding some new tests based on probabilistic constructions

I making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

I last, but not least: theoretical work to understand properties
of randomness (algorithmic information theory, computability
theory approach to randomness, models of computation,
randomness in game-theoretic approach to probability theory,
etc.)
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Theoretical work

I physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

I properties of randomness tests in algorithmic information
theory (G.Novikov)

I detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

I conditional and image randomness (L.Bienvenu, A.Shen)

I randomness, normality, automatic complexity (A.Shen)

I randomness and expanders (A.Romashchenko)

I mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)
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