RaCAF ANR-15-CE40-0016-01: Dépasser les
frontieres de I'aléatoire et du calculable
(Randomness and Computability:
Advancing the Frontiers)

Alexander Shen,
LIRMM CNRS & Univ. Montpellier

March 22, 2018

Random objects from different perspectives

Random objects from different perspectives

» Classical probability theory: random variables

Random objects from different perspectives

» Classical probability theory: random variables

» Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

Random objects from different perspectives

» Classical probability theory: random variables

» Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

» Numerical computations: pseudorandom number
generators and statistical tests

Random objects from different perspectives

» Classical probability theory: random variables

» Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

» Numerical computations: pseudorandom number
generators and statistical tests

» Complexity theory and computational
cryptography: pseudorandom number generators

(Blum, Micali)

Random objects from different perspectives

» Classical probability theory: random variables

» Algorithmic randomness: random bit sequence,
real number in (0, 1), bit string

» Numerical computations: pseudorandom number
generators and statistical tests

» Complexity theory and computational
cryptography: pseudorandom number generators

(Blum, Micali)

» Combinatorics: randomness extractors

Classical probability theory

Classical probability theory

» Random variable: mapping defined on a
probability space

Classical probability theory

» Random variable: mapping defined on a
probability space
» No such thing as an individual random object

Classical probability theory

» Random variable: mapping defined on a
probability space
» No such thing as an individual random object

int getRandomNumber ()

return Y/ chosen by fair dice roll.
/ quaranteed to be random.

Classical probability theory

» Random variable: mapping defined on a
probability space
» No such thing as an individual random object

int getRandomNumber ()

return Y, // chosen by fair dice roll.
/ quaranteed to be random.

» of course, we usually speak about sequences,
not individual digits

Tables of random numbers

... but the question remains:

Tables of random numbers

... but the question remains:

A MILLION

Random Digits

100,000 Normal Deviates
TasiE of mangow oisaTs f

00100 D39SI 10461 SITIG 18P GOSN 34083 B460D BEZIZ 8BE1E 19181
55 55854 321 780 08355 B0BSO I8TIS ATTA T12B8 13853
17340 TITO4 2032 40213 3511 HNIAL BSO7S OTONE 27954 58903
32843 0EBS1 (00A11 98835 7633 BITTH BOSED
9372 68777 39310 35005 14060 40E19 19549 E961E 3I35E4 EOTHD
sales 2elia satel 7% 04 aess #1958 77100 90899 75754
30832
781

4ss72

30231 92863 81773 41838 3382 1TA6T 70043 THOIE TO36T

231 5 23303 10081 3330 55336 66485

57553 7O86T 30717 74416 33106 35
53152

00108 33374 87539 OBaZ3
00108 48338 0IITY GGTEI 4TS 67433 35663 52972 16818 60311
RAND 00110 00365 94653 35075 3348 42614 39297 01918 JeL6 9EG33 TIL
90111 EITWP 42403 306E) 36443 340%4 41374 70071 14736 03958 16083
00117 32960 07403 38405 3231 59383 41800 11133 OTSBE 13917 06233
00113 18332 83843 3T6a0 97 66640 78138 66350 15640 53413

32608 064 56 66359
00114 11220 B4747 07399 37408 48509 23020 27483 AN4TE

$600 hardcover, $41 paperback, $9 digital)

Tables of random numbers

. but the question remains:

A MILLION

Random Digits

100,000 Normal Deviates
Tasie oF manDON DIGITS s

ouon ommEi lodsl samie leens ek auasy sates saziz sasis 19le)
00101 38485 S8854 32888 BB7E0 (04355 B0BSQ 19133 ATTEI T1IES 13BEI
oolor 7l Tamod Bas duas SSifl Bl GS0n crsas s seses
00103 32643 52841 95813 DSES1 0CO11 G8B

G151 33543 SI9% 3000 S%aos eoao doRis aeses mssis 3%aee soras
DoleS 24133 GE5P1 ITORD 08404 14845 4672 €195E 77100 S50EI8 TETHY
GO1GE S1196 30231 BIBE3 81773 41638 5336 17207 70043 TROIE To36T
00107 30832 21704 10274 12201 3D6ES 13303 10081 GSBIB 538EE GEARS
00108 (3788 57555 TOBGT 30717 74416 33106 39208 33IT4 BISIP DBSEI
00108 48338 01379 G67EI 47613 531ST 67431 35663 52972 16818 60311

RAND 00110 60368 HH! :san :!su 42614 29397 OL91E 29316 PEOSI TN

20111 E379R 424 24084 41374 70070 14138 pams 18088
Solii 33080 orecs xm um Ba383 1133 07386 13917 00233
20113 le3ss S3ses s7ea saeos ssisy seads TEioE 3

66359 19640 SD4L.
SN0 13238 5747 oross ohice dsioe shds riss dsar e 39ibd

($600 hardcover, $41 paperback, $9 digital)
can we complain to amazon if “non-random”?

Algorithmic randomness

Algorithmic randomness

» finite or infinite objects

Algorithmic randomness

» finite or infinite objects

» sharp boundary for infinite (Martin-Lof)

Algorithmic randomness

» finite or infinite objects
» sharp boundary for infinite (Martin-Lof)

» “randomness deficiency” for finite

Algorithmic randomness

finite or infinite objects

v

sharp boundary for infinite (Martin-Lof)

v

v

“randomness deficiency” for finite

v

randomness=incompressibility

Algorithmic randomness

finite or infinite objects

v

sharp boundary for infinite (Martin-Lof)

v

v

“randomness deficiency” for finite

v

randomness=incompressibility

v

Kolmogorov complexity = length of the
generating program

Algorithmic randomness

finite or infinite objects

v

sharp boundary for infinite (Martin-Lof)

v

v

“randomness deficiency” for finite

v

randomness=incompressibility

v

Kolmogorov complexity = length of the
generating program

» randomness deficiency=length—complexity

Algorithmic randomness

» finite or infinite objects

v

sharp boundary for infinite (Martin-Lof)

v

“randomness deficiency” for finite

v

randomness=incompressibility

v

Kolmogorov complexity = length of the
generating program

» randomness deficiency=length—complexity

» non-computable

Algorithmic randomness

» finite or infinite objects

v

sharp boundary for infinite (Martin-Lof)

v

“randomness deficiency” for finite

v

randomness=incompressibility

v

Kolmogorov complexity = length of the
generating program

» randomness deficiency=length—complexity
» non-computable

» dependence on the programming language

Algorithmic randomness

» finite or infinite objects

v

sharp boundary for infinite (Martin-Lof)

v

“randomness deficiency” for finite

v

randomness=incompressibility

v

Kolmogorov complexity = length of the
generating program

» randomness deficiency=length—complexity
» non-computable

» dependence on the programming language
» (our main field of expertise)

Pseudo-random number generators

Pseudo-random number generators

> Xns1 = (1103515245 - x, + 12345) mod 2%

Pseudo-random number generators

> Xns1 = (1103515245 - x, + 12345) mod 2%

» many other generators (not only linear)

Pseudo-random number generators

v Xpi1 = (1103515245 - x, + 12345) mod 232
» many other generators (not only linear)

» used for simulations

Pseudo-random number generators

v

Xni1 = (1103515245 - x, + 12345) mod 232

many other generators (not only linear)

v

used for simulations
Monte-Carlo method

v

v

Pseudo-random number generators

v

Xni1 = (1103515245 - x, + 12345) mod 232

many other generators (not only linear)

v

used for simulations
Monte-Carlo method

v

v

v

easily computable and predictable

Pseudo-random number generators

> Xpp1 = (1103515245 - x, + 12345) mod 232
» many other generators (not only linear)

» used for simulations

» Monte-Carlo method

» easily computable and predictable

» why better than x,,1 = x, + 1 mod 2327

Statistical tests

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

» diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

» diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

» dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/
General/dieharder.php

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

» diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

» dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/
General/dieharder.php

» NIST, https://csrc.nist.gov/projects/
random-bit-generation/
documentation-and-software

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

Statistical tests

» diehard (G. Marsaglia, originally available at
http://stat.fsu.edu/pub/diehard)

» dieharder linux package (R. Brown,
https://webhome.phy.duke.edu/~rgb/
General/dieharder.php

» NIST, https://csrc.nist.gov/projects/
random-bit-generation/
documentation-and-software

» TestUOL, https://www.iro.umontreal.ca/
~lecuyer/myftp/papers/testull.pdf

http://stat.fsu.edu/pub/diehard
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

What is a statistical test?

What is a statistical test?

> input: bit sequence r (typical length: 107)

What is a statistical test?

> input: bit sequence r (typical length: 107)

» output: not just “pass’ or “fail”, but some real
p(r) €(0,1)

What is a statistical test?

> input: bit sequence r (typical length: 107)

» output: not just “pass’ or “fail”, but some real
p(r) €(0,1)

» “p-value”: Pr,/[p(r) <e]=¢

What is a statistical test?

> input: bit sequence r (typical length: 107)

» output: not just “pass’ or “fail”, but some real
p(r) €(0,1)

» “p-value”: Pr[p(r) <e]=¢

» if p-value is below some threshold, say, 107>, we
say that r looks non-random with p-value 10>

What is a statistical test?

> input: bit sequence r (typical length: 107)

» output: not just “pass’ or “fail”, but some real
p(r) €(0,1)

» “p-value”: Pr,/[p(r) <e]=¢

» if p-value is below some threshold, say, 107>, we
say that r looks non-random with p-value 10>

» “r is random with probability 107>": misleading

What is a statistical test?

> input: bit sequence r (typical length: 107)

» output: not just “pass’ or “fail”, but some real
p(r) €(0,1)

» “p-value”: Pr[p(r) <e]=¢

» if p-value is below some threshold, say, 107>, we
say that r looks non-random with p-value 10>

» “r is random with probability 107>": misleading

» compressors as random tests: compression by k
bits corresponds to p-value below 27

Randomness and cryptography

Randomness and cryptography

» password /secret key from the random table
book: a bad idea

Randomness and cryptography

» password /secret key from the random table
book: a bad idea

» password generated by a pseudorandom number
generator?

Randomness and cryptography

» password /secret key from the random table
book: a bad idea

» password generated by a pseudorandom number
generator? seeds needed

Randomness and cryptography

» password /secret key from the random table
book: a bad idea

» password generated by a pseudorandom number
generator? seeds needed

» complexity-based cryptography: Yao — Blum —
Micali

Randomness and cryptography

» password /secret key from the random table
book: a bad idea

» password generated by a pseudorandom number
generator? seeds needed

» complexity-based cryptography: Yao — Blum —
Micali

» PRNG: short seed — long bit string

Randomness and cryptography

» password /secret key from the random table
book: a bad idea

» password generated by a pseudorandom number
generator? seeds needed

» complexity-based cryptography: Yao — Blum —
Micali
» PRNG: short seed — long bit string

» indistinguishable by tests of bounded circuit
complexity

Randomness and cryptography

» password /secret key from the random table
book: a bad idea

» password generated by a pseudorandom number
generator? seeds needed

» complexity-based cryptography: Yao — Blum —
Micali

» PRNG: short seed — long bit string

» indistinguishable by tests of bounded circuit
complexity

» conditional existence (factoring is hard, the
existence of one-way functions)

Physical randomness

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

» “fast electronic coin”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

» “fast electronic coin”

> exarnpﬂes: https://en.wikipedia.org/wiki/Comparison_

of _hardware_random_number_generators

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

» “fast electronic coin”
> exarnpﬂes: https://en.wikipedia.org/wiki/Comparison_
of _hardware_random_number_generators

» more exotic solutions: lava lamps at CloudFlare

https://wuw.youtube.com/watch?v=1cUUfMeOijg

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

» “fast electronic coin”

> exarnpﬂes: https://en.wikipedia.org/wiki/Comparison_
of _hardware_random_number_generators
» more exotic solutions: lava lamps at CloudFlare

https://wuw.youtube.com/watch?v=1cUUfMeOijg

basic problem: distribution not under control

v

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

Physical randomness

» “fast electronic coin”

> exam pIes: https://en.wikipedia.org/wiki/Comparison_
of _hardware_random_number_generators

» more exotic solutions: lava lamps at CloudFlare
https://wuw.youtube.com/watch?v=1cUUfMeOijg

» basic problem: distribution not under control

» solution attempt: “extracting randomness from
weak randomness”

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://www.youtube.com/watch?v=1cUUfMeOijg

The project goals

The project goals

» understanding relations between different
approaches

The project goals

» understanding relations between different
approaches

» better understanding of existing practices and
their weaknesses

The project goals

» understanding relations between different
approaches

» better understanding of existing practices and
their weaknesses

» making tests robust

The project goals

v

understanding relations between different
approaches

better understanding of existing practices and
their weaknesses

v

v

making tests robust

trying new type of tests

v

The project goals

v

understanding relations between different
approaches

better understanding of existing practices and
their weaknesses

v

v

making tests robust

trying new type of tests

v

trying new ways of randomness extraction

v

The project goals

v

understanding relations between different
approaches

better understanding of existing practices and
their weaknesses

v

making tests robust

v

trying new type of tests

v

trying new ways of randomness extraction

v

this report: mostly practical aspects

v

The project goals

» understanding relations between different
approaches

» better understanding of existing practices and
their weaknesses

» making tests robust

» trying new type of tests

» trying new ways of randomness extraction
» this report: mostly practical aspects

» see below (and also pdf report) for more
theoretical work

Randomness tests: problems

Randomness tests: problems

» p-value function requires exact answer for
probabilities;

Randomness tests: problems

» p-value function requires exact answer for
probabilities;

» in many cases only a bound available or even an
empirical estimate

Randomness tests: problems

» p-value function requires exact answer for
probabilities;

» in many cases only a bound available or even an
empirical estimate

» unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov—Smirnov test

Randomness tests: problems

» p-value function requires exact answer for
probabilities;

» in many cases only a bound available or even an
empirical estimate

» unsuitable for “secondary test” when several
p-values on independent inputs are tested
against a uniform distribution on (0, 1) with
Kolmogorov—Smirnov test

» diehard uses dependent inputs when
independence is required

dieharder documentation

speaks about “test failures”

Many dieharder tests, despite our best efforts, are numerically
unstable or have only approximately known target statistics or
are straight up asymptotic results, and will eventually return a
failing result even for a gold-standard generator (such as AES),
or for the hypercautious the XOR generator with AES,
threefish, kiss, all loaded at once and xor'd together. {...)
Failure with numbers of psamples within an order of
magnitude of the AES thresholds should probably be
considered possible test failures, not generator failures.
Failures at levels significantly less than the known gold
standard generator failure thresholds are, of course, probably
failures of the generator.

More reliable approach needed

More reliable approach needed

» any function p (no assumptions about having
p-value properties)

More reliable approach needed

» any function p (no assumptions about having
p-value properties)

» p(r),...,p(rs) (where r; are independent parts
of a test stream) compared with
p(R1),...,p(R,) where R; are true random
strings

More reliable approach needed

» any function p (no assumptions about having
p-value properties)

» p(r),...,p(rs) (where r; are independent parts
of a test stream) compared with
p(R1),...,p(R,) where R; are true random
strings

» we may use Kolmogorov—Smirnov criterion for
two distributions

More reliable approach needed

» any function p (no assumptions about having
p-value properties)

» p(r),...,p(rs) (where r; are independent parts
of a test stream) compared with
p(R1),...,p(R,) where R; are true random
strings

» we may use Kolmogorov—Smirnov criterion for
two distributions

» guaranteed to be reliable (assuming true
randomness)

More reliable approach needed

» any function p (no assumptions about having
p-value properties)

» p(r),...,p(rs) (where r; are independent parts
of a test stream) compared with
p(R1),...,p(R,) where R; are true random
strings

» we may use Kolmogorov—Smirnov criterion for
two distributions

» guaranteed to be reliable (assuming true
randomness)

» almost as sensitive as the original test

Testing without etalon randomness

Testing without etalon randomness

» correctness depends on the etalon randomness

Testing without etalon randomness

» correctness depends on the etalon randomness
» improvement: p(r),...,p(r,) (where r; are
independent parts of a test stream) compared

with p(rp1 ® R1), ..., p(r, @ R,) where R; are
presumably true random strings

Testing without etalon randomness

» correctness depends on the etalon randomness

» improvement: p(r),...,p(r,) (where r; are
independent parts of a test stream) compared
with p(rp1 ® R1), ..., p(r, @ R,) where R; are
presumably true random strings

» guaranteed to be reliable (no assumptions about
R;)

Testing without etalon randomness

» correctness depends on the etalon randomness

» improvement: p(r),...,p(r,) (where r; are
independent parts of a test stream) compared
with p(rp1 ® R1), ..., p(r, @ R,) where R; are
presumably true random strings

» guaranteed to be reliable (no assumptions about
R;)

» equally sensitive if R; are truly random

Probabilistic arguments as random tests

Probabilistic arguments as random tests

» combinatorial results obtained by a probabilistic
method

Probabilistic arguments as random tests

» combinatorial results obtained by a probabilistic
method

» object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

Probabilistic arguments as random tests

» combinatorial results obtained by a probabilistic
method

» object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

» testing bit string r: use it as a random string in
the algorithm and measure the properties of the
object generated by it

Probabilistic arguments as random tests

» combinatorial results obtained by a probabilistic
method

» object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

» testing bit string r: use it as a random string in
the algorithm and measure the properties of the
object generated by it

» suitable for our scheme even if nothing is
formally proved about the algorithm

Probabilistic arguments as random tests

» combinatorial results obtained by a probabilistic
method

» object with some combinatorial properties (e.g.,
expander graphs) generated with high
probability using random bits

» testing bit string r: use it as a random string in
the algorithm and measure the properties of the
object generated by it

» suitable for our scheme even if nothing is
formally proved about the algorithm

» some preliminary results (M.Popov, master
thesis under supervision of A.Romashchenko)

Physical random number generators

Physical random number generators

» goal: add some “unpredictability” or “entropy”
from physical sources

Physical random number generators

» goal: add some “unpredictability” or “entropy”
from physical sources

» “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of

bits of noise in the entropy pool”, etc.
(wikipedia)

Physical random number generators

» goal: add some “unpredictability” or “entropy”
from physical sources

» “/dev/random typically blocks if there is less
entropy available than requested”, “the
generator keeps an estimate of the number of
bits of noise in the entropy pool”, etc.
(wikipedia)

» (naive) idea of “entropy” as some kind of liquid
that can be measured, kept in a pool, etc.
similar to caloric theory

RFC 4086

on extracting randomness from weak random
source:

For an example of using a strong mixing function, reconsider
the case of a string of 308 bits, each of which is biased 99%
toward zero. The parity technique (...) reduces this to one bit,
with only a 1/1000 deviance from being equally likely a zero or
one. But, applying the equation for information (...) [Shannon
entropy], this 308-bit skewed sequence contains over 5 bits of
information. Thus, hashing it with SHA-1 and taking the
bottom 5 bits of the result would yield 5 unbiased random bits
and not the single bit given by calculating the parity of the
string.

RFC 4086

on extracting randomness from weak random
source:

For an example of using a strong mixing function, reconsider
the case of a string of 308 bits, each of which is biased 99%
toward zero. The parity technique (...) reduces this to one bit,
with only a 1/1000 deviance from being equally likely a zero or
one. But, applying the equation for information (...) [Shannon
entropy], this 308-bit skewed sequence contains over 5 bits of
information. Thus, hashing it with SHA-1 and taking the
bottom 5 bits of the result would yield 5 unbiased random bits
and not the single bit given by calculating the parity of the
string.

[Not justified: parity argument uses independence, and SHA-1 trick is not
justified even in the independence case]

Alternative ways to extract randomness

Alternative ways to extract randomness

» theoretical work: randomness extractors

Alternative ways to extract randomness

» theoretical work: randomness extractors

» two inputs: long weak random and independent
short truly random

Alternative ways to extract randomness

» theoretical work: randomness extractors

» two inputs: long weak random and independent
short truly random

» or two long independent weak random sources

Alternative ways to extract randomness

theoretical work: randomness extractors

v

v

two inputs: long weak random and independent
short truly random

v

or two long independent weak random sources

v

not directly practical

Alternative ways to extract randomness

theoretical work: randomness extractors

v

v

two inputs: long weak random and independent
short truly random

v

or two long independent weak random sources

v

not directly practical

v

some practical approaches inspired by them

Alternative ways to extract randomness

» theoretical work: randomness extractors

» two inputs: long weak random and independent
short truly random

» or two long independent weak random sources
» not directly practical
» some practical approaches inspired by them

» using expander walk over weakly random edges

Alternative ways to extract randomness

» theoretical work: randomness extractors

» two inputs: long weak random and independent
short truly random

» or two long independent weak random sources
» not directly practical

» some practical approaches inspired by them

» using expander walk over weakly random edges

» using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

Alternative ways to extract randomness

» theoretical work: randomness extractors

» two inputs: long weak random and independent
short truly random

» or two long independent weak random sources
» not directly practical

» some practical approaches inspired by them

» using expander walk over weakly random edges

» using B[x][y] where B is a balanced matrix and
x and y are independent weak random sources

» some preliminary experiments done

Planned work

Planned work

» convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

Planned work

» convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

» adding some new tests based on probabilistic constructions

Planned work

» convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

» adding some new tests based on probabilistic constructions

» making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

Planned work

» convert some tests from standard suites in a robust form (may
be incorporating them in the existing open source software)

» adding some new tests based on probabilistic constructions

» making experiments with existing physical randomness inputs
(sound cards, physical devices) and analyzing their properties
and ways to extract good random bits out of them

» last, but not least: theoretical work to understand properties
of randomness (algorithmic information theory, computability
theory approach to randomness, models of computation,
randomness in game-theoretic approach to probability theory,
etc.)

Theoretical work

Theoretical work

» physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

Theoretical work

» physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

> properties of randomness tests in algorithmic information
theory (G.Novikov)

Theoretical work

» physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

> properties of randomness tests in algorithmic information
theory (G.Novikov)

> detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

Theoretical work

» physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

> properties of randomness tests in algorithmic information
theory (G.Novikov)

> detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

» conditional and image randomness (L.Bienvenu, A.Shen)

Theoretical work

» physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

> properties of randomness tests in algorithmic information
theory (G.Novikov)

> detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

» conditional and image randomness (L.Bienvenu, A.Shen)

» randomness, normality, automatic complexity (A.Shen)

Theoretical work

» physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

> properties of randomness tests in algorithmic information
theory (G.Novikov)

> detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

» conditional and image randomness (L.Bienvenu, A.Shen)
» randomness, normality, automatic complexity (A.Shen)

» randomness and expanders (A.Romashchenko)

Theoretical work

» physical models of computation (work of O.Bournez and his
group, accepted by JACM); other non-standard models of
computation (B.Durand, G.Lafitte and others)

> properties of randomness tests in algorithmic information
theory (G.Novikov)

> detection of regularities and algorithmic statistics
(A.Milovanov, N.Vereshchagin), presented at CCC 2017)

» conditional and image randomness (L.Bienvenu, A.Shen)
» randomness, normality, automatic complexity (A.Shen)
» randomness and expanders (A.Romashchenko)

» mutual information and its operational characterization
(A.Romashchenko, with M.Zimand, Towson University)

@ Chronological report about RaCAF progress, including references
and texts of RaCAF-related papers,
http:www.lirmm.fr/~ashen/racaf.html

@ M. Andreev, G. Posobin, A. Shen, Plain stopping time and
conditional complexities revisited, preprint,
https://arxiv.org/abs/1708.08100

@ O. Bournez, D.S. Gracga, A. Pouly, Polynomial Time corresponds to
Solutions of Polynomial Ordinary Differential Equations of
Polynomial Length, Journal of the ACM, Volume 64, Issue 6,
November 2017, Article No. 38

@ O. Bournez, A. Pouly, A Universal Ordinary Differential Equation,
International Colloquium on Automata, Language and Programming,
ICALP'2017, 116:1-116:14

@ B. Bauwens, A. Shen, H. Takahashi, Conditional Probabilities and
van Lambalgens Theorem Revisited, Theory of Computing Systems,
2017, doi:10.1007/s00224-017-9789-2

@ M. Carl, B. Durand, G. Lafitte, S. Ouazzani, Admissible in Gaps, CiE
2017: Unveiling Dynamics and Complexity, Proceedings, Lecture

http:www.lirmm.fr/~ashen/racaf.html
https://arxiv.org/abs/1708.08100

Notes in Computer Science, 10307, Springer, 2017, 175-186.
https://doi.org/10.1007/978-3-319-58741-7_18

J. Cervelle, G. Lafitte, On shift-invariant maximal filters and
hormonal cellular automata, 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, 1-10,
https://doi.org/10.1109/LICS.2017.8005145

O. Defrain, B. Durand, G. Lafitte, Infinite Time Busy Beavers, CiE
2017: Unveiling Dynamics and Complexity, Proceedings, Lecture
Notes in Computer Science, 10307, Springer, 2017, 221-233.
https://doi.org/10.1007/978-3-319-58741-7_22

B. Durand, A. Romashchenko, On the Expressive Power of
Quasi-Periodic SFT, Mathematical Foundations of Computer
Science, 2017, https://doi.org/10.4230/LIPIcs.MFCS.2017.5

L. Bienvenu, M. Hoyrup, A. Shen, Layerwise Computability and
Image Randomness, Theory of Computing Systems, 2017,
doi:10.1007/s00224-017-9791-8

Guilhem Marion, Le hasard et sa production, report de stage,
LIRMM, see RaCAF diary above.

https://doi.org/10.1007/978-3-319-58741-7_18
https://doi.org/10.1109/LICS.2017.8005145
https://doi.org/10.1007/978-3-319-58741-7_22
https://doi.org/10.4230/LIPIcs.MFCS.2017.5

@ A. Milovanov, Algorithmic Statistics: Normal Objects and Universal
Models, Computer Science in Russia 2016, Lecture Notes in
Computer Science, v. 9691 (2016), 280-293.

@ A. Milovanov, Some Properties of Antistochastic Strings, Theory of
Computing Systems, published online 21 June 2016, DOI
10.1007/s00224-016-9695-z.

@ A. Milovanov, On Algorithmic Statistics for space-bounded
algorithms. In Proceedings of 12th International Computer Science
Symposium in Russia (CSR 2017) LNCS, vol. 10304, pp. 232-234,
2017.

@ A. Milovanov, N. Vereshchagin, Stochasticity in Algorithmic
Statistics for Polynomial Time, 32nd Computational Complexity
Conference(CCC 2017) proceedings (Leibniz International
Proceedings in Informatics, LIPIcs),
doi:10.4230/LIPlcs.CCC.2017.17, 17:1-17:18

@ G. Novikov, Randomness Deficiences, CiE 2017: Unveiling Dynamics
and Complexity, Proceedings, Lecture Notes in Computer Science,
10307, Springer, 2017, 338-350. https://link.springer.com/
chapter/10.1007/978-3-319-58741-7_32

https://link.springer.com/chapter/10.1007/978-3-319-58741-7_32
https://link.springer.com/chapter/10.1007/978-3-319-58741-7_32

B
B

A. Romashchenko, Coding in the fork network in the framework of
Kolmogorov complexity, preprint, arXiv:1602.02648.

A. Shen, Algorithmic Information Theory, book section in The
Routledge handbook of philosophy of information, Routletge, 2016,
37-43.

A. Shen, Automatic Kolmogorov complexity and normality revisited,
FCT 2017 Conference, Bordeaux, France, Proceedings, full version:
https://arxiv.org/pdf/1701.09060.pdf

A. Shen, V. Uspensky, N. Vereshchagin, Kolmogorov Complexity and
Algorithmic Randomness. A book accepted for publication (in 2017)
by the American Mathematical Society. Draft:
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

N. Vereshchagin, A. Shen, Algorithmic statistics: forty years later.
Book chapter in Computability and Complexity. Essays Dedicated to
Rodney G. Downey on the Occasion of His 60th Birthday. Lecture
Notes in Computer Science, v. 10010, Springer, 2017, p. 669-737.

arXiv:1602.02648
https://arxiv.org/pdf/1701.09060.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

