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Centauric tilings?
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We mean tilings with seemingly mutually exclusive properties.
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Shifts of finite type / Wang tilings

The idea: Simple local rules imply the global properties of an infinite
structure.

More specifically: in an SFT we have a finite set of
forbidden finite patterns
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Wang tiles

Formal definitions:

Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Tile: a unit square with colored sides,

i.e, element of C 4

Tile set: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ
that respects the matching rules
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Tiling: a mapping f : Z2 → τ such that

f (i , j).right = f (i + 1, j).left, e.g., +

f (i , j).top = f (i , j + 1).bottom, e.g., +

Example. A finite pattern from a valid tiling:
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One point of view:
local rules can enforce high algorithmic complexity

I There exists a tile set τ such that:

I all τ -tilings are aperiodic [Berger, 1966]

I no computable τ -tiling [Hanf, Myers, 1974]

I high information density: each N × N-square in a τ -tiling has
high Komogorov complexity [Durand, Levin, Shen, 2001]

I Every effectively closed shift in 1D can be simulated by vertical
columns of a 2D tiling [Aubrun-Sablik, Durand-R.-Shen]
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Another point of view:
local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of finite patterns
(a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite
pattern either never appears or appears in all large enough squares.
(a uniformly recurrent dynamical system)

9 / 33



Another point of view:
local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of finite patterns

(a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite
pattern either never appears or appears in all large enough squares.
(a uniformly recurrent dynamical system)

9 / 33



Another point of view:
local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of finite patterns
(a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite
pattern either never appears or appears in all large enough squares.
(a uniformly recurrent dynamical system)

9 / 33



Another point of view:
local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of finite patterns
(a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic

, i.e., each finite
pattern either never appears or appears in all large enough squares.
(a uniformly recurrent dynamical system)

9 / 33



Another point of view:
local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of finite patterns
(a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite
pattern either never appears or appears in all large enough squares.

(a uniformly recurrent dynamical system)

9 / 33



Another point of view:
local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of finite patterns
(a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite
pattern either never appears or appears in all large enough squares.
(a uniformly recurrent dynamical system)

9 / 33



Stereoscopic picture: merging together both views

Can we enforce at the same time

(1) high algorithmic complexity

(aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure
(quasiperiodicity, minimality, etc.)?
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Stereoscopic picture: merging together both views

Some restrictions:

an irreducible SFT cannot be too complex,

I for every minimal SFT the set of finite patterns is computable

I every minimal SFT contains a computable configuration

I for every quasiperiodic SFT the function of quasiperiodicity is
computable [Ballier, Jeandel]

I Turing spectrum of quasiperiodic SFT must be upward close
[Jeandel, Vanier]

I after all, the standard constructions does not work!
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Stereoscopic picture: merging together both views

Can we enforce at the same time

(1) high algorithmic complexity
(aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure
(quasiperiodicity, minimality, etc.)?

Theorem. There exists a tile set τ such that all tilings are aperiodic and
quasiperiodic.
Moreover, exactly the same finite patterns appear in all τ -tilings
(minimality).

(Ballier and Ollinger [2009] did it with a version of Robinson’s tile set)
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Stereoscopic picture: merging together both views

Can we enforce at the same time

(1) high algorithmic complexity
(aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure
(quasiperiodicity, minimality, etc.)?

Theorem [Durand-R. 2015] There exists a tile set τ such that all
tilings are non computable and quasiperiodic.
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Stereoscopic picture: merging together both views

Can we enforce at the same time

(1) high algorithmic complexity
(aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure
(quasiperiodicity, minimality, etc.)?

Question: Can we enforce by local rules non computability and
minimality?

Answer: NO! Every minimal SFT contains a computable point.
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The message of this talk

Theorem 1. There exists a tile set τ such that all τ -tilings are non
computable and quasiperiodic.
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A stronger positive result

Theorem 2. There exists a tile set τ such that Kolmogorov complexity
of every finite pattern is large and all tilings are quasiperiodic.
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Another positive result (motivated by Pascal Vanier)

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway
effectively closed.

Preliminary remark 2: For every quasiperiodic tile set the Turing
spectrum of these tilings is alway upward closed. (Thanks, Pascal!)

Theorem 3. For every effectively closed set A there exists a tile set τ
such that

I all τ -tilings are quasiperiodic,

I the Turing spectrum of all τ -tilings = the upper closure of A.

(upper closure := all degrees in A + the degrees above them)
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Another positive result (motivated by Emmanuel Jeandel)

Theorem 4. For every minimal 1D subshift A
there exists a tile set τ such that

I the set of τ -tilings is minimal

I A is simulated by vertical columns of τ -tilings
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Once again, the first nontrivial statement:

Theorem. There exists a tile set τ such that
all τ -tilings are aperiodic and quasiperiodic.
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Sketch of the proof:

In what follows we explain how to guarantee aperiodicity +
quasiperiodicity of a tiling.

The plan:

I enforce self-similarity of a tiling

self-simulation: using ideas of S. Kleene, J. von Neumann, P. Gács

(Remember Linda’s talk!)

I enforce replication of all patterns that you may have in a tiling
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Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an N × N square made of matching
τ -tiles.

Definition 2. A tile set ρ is simulated by τ : there exists a family of
τ -macro-tiles R isomorphic to ρ such that every τ -tiling can be uniquely
split by an N × N grid into macro-tiles from R.
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Self-similar tile set: a tile set that simulates a set of macrotiles
isomorphic to itself.

Theorem. Self-similar tile set is aperiodic.
Sketch of the proof:
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Simulating a given tile set ρ by macro-tiles.

Representation of the tile set ρ:

� colors of a tile set ρ =⇒ k-bits strings

� a tile set ρ =⇒
a predicate
P(x1, x2, x3, x4)

on 4-tuples of colorsww�
a TM that accepts

only 4-tuples of colors
for the ρ-tiles
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Implementation scheme:

Turing

machine
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A more generic construction:
universal TM + program

Universal

Turing

machine

program

A fixed point: simulating tile set = simulated tile set

28 / 33



A more generic construction:
universal TM + program

Universal

Turing

machine

program

A fixed point: simulating tile set = simulated tile set

28 / 33



A similar metaphor in pop culture:

(Picture by Worker, http://OpenClipArt.org/detail/102679/organize)

...but we need (infinitely) many levels of self-simulation.
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What about quasiperiodicity?

Universal

Turing

machine

program

Good news: for self-similar tilings it is enough to prove that each
2× 2-pattern in a tiling has “siblings” hereabouts.
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What about quasiperiodicity?

Universal

Turing

machine

program

Bad news: the problematic parts are the computation zone and the
communication wires.
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Replicate all 2× 2 patterns that may appear in the computational zone!

Universal

Turing

machine

program

A slot for a 2× 2 pattern from the comput. zone:

(i, j)

(i, j + 1)

(i, j) (i, j + 1)

(i+ 1, j)

(s, t)

(i+ 1, j) (i+ 2, j)

(i+ 2, j)

(s+ 1, t)

(i+ 2, j) (i+ 3, j)

(i+ 3, j)

(i+ 3, j + 1)

(i+ 3, j) (i+ 4, j)

(i, j + 1)

(i, j + 2)

(i, j + 1) (s, t)

(s, t)

(s, t+ 1)

(s, t) (s+ 1, t)

(s+ 1, t)

(s+ 1, t+ 1)

(s+ 1, t) (s+ 2, t)

(i+ 3, j + 1)

(i+ 3, j + 2)

(s+ 2, t) (i+ 4, j + 1)

(i, j + 2)

(i, j + 3)

(i, j + 2) (s, t+ 1)

(s, t+ 1)

(s, t+ 2)

(s, t+ 1) (s+ 1, t+ 1)

(s+ 1, t+ 1)

(s+ 1, t+ 2)

(s+ 1, t+ 1) (s+ 2, t+ 1)

(i+ 3, j + 2)

(i+ 3, j + 3)

(s+ 2, t+ 1) (i+ 4, j + 2)

(i, j + 3)

(i, j + 4)

(i, j + 3) (i+ 1, j + 3)

(s, t+ 2)

(i+ 1, j + 4)

(i+ 1, j + 3) (i+ 2, j + 3)

(s+ 1, t+ 2)

(i+ 2, j + 4)

(i+ 2, j + 3) (i+ 3, j + 3)

(i+ 3, j + 3)

(i+ 3, j + 4)

(i+ 3, j + 3) (i+ 4, j + 3)
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Replicate all 2× 2 patterns that may appear in the computational zone!

Universal

Turing

machine

program

A slot for a 2× 2 pattern from the comput. zone:

(i, j)

(i, j + 1)

(i, j) (i, j + 1)

(i+ 1, j)

(s, t)

(i+ 1, j) (i+ 2, j)

(i+ 2, j)

(s+ 1, t)

(i+ 2, j) (i+ 3, j)

(i+ 3, j)

(i+ 3, j + 1)

(i+ 3, j) (i+ 4, j)

(i, j + 1)

(i, j + 2)

(i, j + 1) (s, t)

(s, t)

(s, t+ 1)

(s, t) (s+ 1, t)

(s+ 1, t)

(s+ 1, t+ 1)

(s+ 1, t) (s+ 2, t)

(i+ 3, j + 1)

(i+ 3, j + 2)

(s+ 2, t) (i+ 4, j + 1)

(i, j + 2)

(i, j + 3)

(i, j + 2) (s, t+ 1)

(s, t+ 1)

(s, t+ 2)

(s, t+ 1) (s+ 1, t+ 1)

(s+ 1, t+ 1)

(s+ 1, t+ 2)

(s+ 1, t+ 1) (s+ 2, t+ 1)

(i+ 3, j + 2)

(i+ 3, j + 3)

(s+ 2, t+ 1) (i+ 4, j + 2)

(i, j + 3)

(i, j + 4)

(i, j + 3) (i+ 1, j + 3)

(s, t+ 2)

(i+ 1, j + 4)

(i+ 1, j + 3) (i+ 2, j + 3)

(s+ 1, t+ 2)

(i+ 2, j + 4)

(i+ 2, j + 3) (i+ 3, j + 3)

(i+ 3, j + 3)

(i+ 3, j + 4)

(i+ 3, j + 3) (i+ 4, j + 3)
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Theorem 1. There exists a tile set τ such that all tilings are
quasiperiodic and non computable.

Proof: The same technique + variable zoom factor + embed in a tiling
an (infinite) verification of a separator for a pair of recursively non
separable sets.

Proofs of Theorems 2-4:
The same idea + more technical tricks.

That’s all!
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