On Centauric Subshifts

Andrei Romashchenko joint work with Bruno Durand

CIRM, 22.06.2016

Centauric tilings?

Centauric tilings?

Casa della Fortuna Annonaria, Ostia. flickr photo by F. Tronchin @ cc-by-nc-nd

Centauric tilings?

Casa della Fortuna Annonaria, Ostia.

flickr photo by F. Tronchin © cc-by-nc-nd

We mean tilings with seemingly mutually exclusive properties.

The idea: Simple local rules imply the global properties of an infinite structure.

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in an **SFT** we have a finite set of *forbidden finite patterns*

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in a **tiling** we have the matching rules for neighboring tiles

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in a **tiling** we have the matching rules for neighboring tiles

Motivation: dynamical systems, computability, mathematical logic, quasi-crystals, . . .

The idea: Simple local rules imply the global properties of an infinite structure.

More specifically: in a **tiling** we have the matching rules for of neighboring tiles

Motivation: dynamical systems, computability, mathematical logic, quasi-crystals, . . .

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Tile: a unit square with colored sides,

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Tile: a unit square with colored sides,

i.e, element of C^4

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Tile: a unit square with colored sides,

i.e, element of C^4

Tile set: a set $\tau \subset C^4$

Formal definitions:

Color: an element of a finite set $C = \{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot, \cdot\}$

Tile: a unit square with colored sides,

i.e, element of C^4

Tile set: a set $\tau \subset C^4$

Tiling: a mapping $f: \mathbb{Z}^2 \to \tau$ that respects the matching rules

Tiling: a mapping $f: \mathbb{Z}^2 \to \tau$ such that

$$f(i,j)$$
.right = $f(i+1,j)$.left, e.g., +

$$f(i,j)$$
.top = $f(i,j+1)$.bottom, e.g., +

Tiling: a mapping $f: \mathbb{Z}^2 \to \tau$ such that

$$f(i,j)$$
.right = $f(i+1,j)$.left, e.g., +

$$f(i,j)$$
.top = $f(i,j+1)$.bottom, e.g., +

Example. A finite pattern from a valid tiling:

local rules can enforce high algorithmic complexity

There exists a tile set τ such that:

- There exists a tile set τ such that:
 - all τ -tilings are aperiodic [Berger, 1966]

- There exists a tile set τ such that:
 - all τ -tilings are aperiodic [Berger, 1966]
 - no computable au-tiling [Hanf, Myers, 1974]

- There exists a tile set τ such that:
 - all τ -tilings are aperiodic [Berger, 1966]
 - ▶ no computable τ -tiling [Hanf, Myers, 1974]
 - ▶ high information density: each $N \times N$ -square in a τ -tiling has high Komogorov complexity [Durand, Levin, Shen, 2001]

- There exists a tile set τ such that:
 - all τ -tilings are aperiodic [Berger, 1966]
 - no computable au-tiling [Hanf, Myers, 1974]
 - ▶ high information density: each $N \times N$ -square in a τ -tiling has high Komogorov complexity [Durand, Levin, Shen, 2001]
- ▶ Every **effectively closed shift** in 1*D* can be *simulated* by vertical columns of a 2*D* tiling [Aubrun-Sablik, Durand-R.-Shen]

local rules can enforce interesting dynamical properties

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns*

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite pattern either *never* appears or appears in *all large enough* squares.

local rules can enforce interesting dynamical properties

An example: all τ -tilings have exactly the same the set of *finite patterns* (a minimal dynamical system)

A weaker version: Every τ -tiling must be quasiperiodic, i.e., each finite pattern either *never* appears or appears in *all large enough* squares. (a uniformly recurrent dynamical system)

Can we enforce at the same time

(1) high algorithmic complexity

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Some restrictions:

Some restrictions: an irreducible SFT cannot be too complex,

Some restrictions: an irreducible SFT cannot be too complex,

▶ for every minimal SFT the set of finite patterns is computable

Some restrictions: an irreducible SFT cannot be too complex,

- ▶ for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration

Some restrictions: an irreducible SFT cannot be too complex,

- ▶ for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration
- for every quasiperiodic SFT the function of quasiperiodicity is computable [Ballier, Jeandel]

Some restrictions: an irreducible SFT cannot be too complex,

- ▶ for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration
- for every quasiperiodic SFT the function of quasiperiodicity is computable [Ballier, Jeandel]
- Turing spectrum of quasiperiodic SFT must be upward close [Jeandel, Vanier]

Some restrictions: an irreducible SFT cannot be too complex,

- ▶ for every minimal SFT the set of finite patterns is computable
- every minimal SFT contains a computable configuration
- for every quasiperiodic SFT the function of quasiperiodicity is computable [Ballier, Jeandel]
- ► Turing spectrum of quasiperiodic SFT must be upward close [Jeandel, Vanier]
- ▶ after all, the standard constructions does not work!

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem. There exists a tile set τ such that all tilings are aperiodic and quasiperiodic.

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem. There exists a tile set τ such that all tilings are aperiodic and quasiperiodic.

Moreover, exactly the same finite patterns appear in all τ -tilings (minimality).

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem. There exists a tile set τ such that all tilings are aperiodic and quasiperiodic.

Moreover, exactly the same finite patterns appear in all τ -tilings (minimality).

(Ballier and Ollinger [2009] did it with a version of Robinson's tile set)

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Theorem [Durand-R. 2015] There exists a tile set τ such that all tilings are *non computable* and *quasiperiodic*.

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Question: Can we enforce by local rules *non computability* and *minimality*?

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Question: Can we enforce by local rules *non computability* and *minimality*?

Answer: NO!

Can we enforce at the same time

(1) high algorithmic complexity (aperiodicity, non-computability, etc.)

and

(2) simple combinatorial structure (quasiperiodicity, minimality, etc.)?

Question: Can we enforce by local rules *non computability* and *minimality*?

Answer: NO! Every minimal SFT contains a computable point.

The message of this talk

Theorem 1. There exists a tile set τ such that all τ -tilings are *non computable* and *quasiperiodic*.

A stronger positive result

Theorem 2. There exists a tile set τ such that Kolmogorov complexity of every finite pattern is large **and** all tilings are quasiperiodic.

What about the Turing spectrum of quasiperiodic tilings?

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

Preliminary remark 2: For every quasiperiodic tile set *the Turing spectrum* of these tilings is alway *upward closed*.

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

Preliminary remark 2: For every quasiperiodic tile set *the Turing spectrum* of these tilings is alway *upward closed*. (Thanks, Pascal!)

What about the Turing spectrum of quasiperiodic tilings?

Preliminary remark 1: For every tile set τ , the set of τ -tilings is alway *effectively closed*.

Preliminary remark 2: For every quasiperiodic tile set *the Turing spectrum* of these tilings is alway *upward closed*. (Thanks, Pascal!)

Theorem 3. For every effectively closed set $\mathcal A$ there exists a tile set τ such that

- ightharpoonup all au-tilings are quasiperiodic,
- ▶ the Turing spectrum of all τ -tilings = the *upper closure* of A.

(upper closure := all degrees in A + the degrees above them)

Another positive result (motivated by Emmanuel Jeandel)

Theorem 4. For every *minimal* 1D subshift \mathcal{A} there exists a tile set τ such that

- the set of τ -tilings is *minimal*
- A is *simulated* by vertical columns of τ -tilings

Another positive result (motivated by Emmanuel Jeandel)

Theorem 4. For every minimal 1D subshift \mathcal{A} (minimal \Rightarrow computable) there exists a tile set τ such that

- the set of τ -tilings is *minimal*
- A is *simulated* by vertical columns of τ -tilings

Another positive result (motivated by Emmanuel Jeandel)

Theorem 4. For every minimal 1D subshift \mathcal{A} (minimal \Rightarrow computable) there exists a tile set τ such that

- the set of τ -tilings is *minimal*
- $ightharpoonup \mathcal{A}$ is *simulated* by vertical columns of au-tilings

cf.

Theorem [Aubrun-Sablik, Durand-R.-Shen 2013]

For every effectively closed 1D subshift $\mathcal A$ there exists a tile set τ such that $\mathcal A$ is simulated by vertical columns of τ -tilings.

Once again, the first nontrivial statement:

Theorem. There exists a tile set τ such that all τ -tilings are aperiodic and quasiperiodic.

In what follows we explain how to guarantee aperiodicity + quasiperiodicity of a tiling.

In what follows we explain how to guarantee aperiodicity + quasiperiodicity of a tiling.

The plan:

enforce self-similarity of a tiling

In what follows we explain how to guarantee aperiodicity + quasiperiodicity of a tiling.

The plan:

 enforce self-similarity of a tiling self-simulation: using ideas of S. Kleene, J. von Neumann, P. Gács

In what follows we explain how to guarantee aperiodicity + quasiperiodicity of a tiling.

The plan:

 enforce self-similarity of a tiling self-simulation: using ideas of S. Kleene, J. von Neumann, P. Gács (Remember Linda's talk!)

In what follows we explain how to guarantee aperiodicity + quasiperiodicity of a tiling.

The plan:

- enforce self-similarity of a tiling self-simulation: using ideas of S. Kleene, J. von Neumann, P. Gács (Remember Linda's talk!)
- enforce replication of all patterns that you may have in a tiling

Fix a tile set τ and an integer N > 1.

Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of matching τ -tiles.

Fix a tile set τ and an integer N > 1.

Definition 1. A τ -macro-tile: an $N \times N$ square made of matching τ -tiles.

Definition 2. A tile set ρ is **simulated** by τ : there exists a family of τ -macro-tiles R isomorphic to ρ such that every τ -tiling can be uniquely split by an $N \times N$ grid into macro-tiles from R.

Theorem. Self-similar tile set is aperiodic.

Theorem. Self-similar tile set is aperiodic. Sketch of the proof:

Theorem. Self-similar tile set is aperiodic.

Sketch of the proof:

Theorem. Self-similar tile set is aperiodic.

Sketch of the proof:

Simulating a given tile set ρ by macro-tiles.

Representation of the tile set ρ :

Representation of the tile set ρ :

ightharpoonup colors of a tile set $ho \implies k$ -bits strings

Representation of the tile set ρ :

- ightharpoonup colors of a tile set $\rho \implies k$ -bits strings
 - a predicate
- ightharpoonup a tile set ho \Longrightarrow $\mathcal{P}(x_1,x_2,x_3,x_4)$ on 4-tuples of colors

Representation of the tile set ρ :

only 4-tuples of colors for the ρ -tiles

Implementation scheme:

A more generic construction: universal $\mathsf{TM} + \mathsf{program}$

A more generic construction: universal TM + program

A fixed point: simulating tile set = simulated tile set

A similar metaphor in pop culture:

(Picture by Worker, http://OpenClipArt.org/detail/102679/organize)

A similar metaphor in pop culture:

(Picture by Worker, http://OpenClipArt.org/detail/102679/organize)

...but we need (infinitely) many levels of self-simulation.

What about quasiperiodicity?

What about quasiperiodicity?

Good news: for self-similar tilings it is enough to prove that each 2×2 -pattern in a tiling has "siblings" hereabouts.

What about quasiperiodicity?

Bad news: the problematic parts are the *computation zone* and the *communication wires*.

Replicate all 2×2 patterns that may appear in the computational zone!

Replicate all 2×2 patterns that may appear in the computational zone!

A slot for a 2×2 pattern from the comput. zone:

Proof: The same technique + variable zoom factor

Proof: The same technique + variable zoom factor + embed in a tiling an (infinite) verification of a separator for a pair of recursively non separable sets.

Proof: The same technique + variable zoom factor + embed in a tiling an (infinite) verification of a separator for a pair of recursively non separable sets.

Proofs of Theorems 2-4:

The same idea + more technical tricks.

Proof: The same technique + variable zoom factor + embed in a tiling an (infinite) verification of a separator for a pair of recursively non separable sets.

Proofs of Theorems 2-4:

The same idea + more technical tricks.

That's all!