
Embedding computations in tilings
(a perspective of the course)

Andrei Romashchenko

30 May 2016

1 / 8



What is a tile?

In this mini-course:

Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Wang Tile: a unit square with colored sides.

i.e, an element of C 4, e.g.,

Tile set: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ
that respects the matching rules

2 / 8



What is a tile?

In this mini-course:

Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Wang Tile: a unit square with colored sides.

i.e, an element of C 4, e.g.,

Tile set: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ
that respects the matching rules

2 / 8



What is a tile?

In this mini-course:

Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Wang Tile: a unit square with colored sides.

i.e, an element of C 4, e.g.,

Tile set: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ
that respects the matching rules

2 / 8



What is a tile?

In this mini-course:

Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Wang Tile: a unit square with colored sides.

i.e, an element of C 4, e.g.,

Tile set: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ
that respects the matching rules

2 / 8



What is a tile?

In this mini-course:

Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Wang Tile: a unit square with colored sides.

i.e, an element of C 4, e.g.,

Tile set: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ
that respects the matching rules

2 / 8



What is a tile?

In this mini-course:

Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Wang Tile: a unit square with colored sides.

i.e, an element of C 4, e.g.,

Tile set: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ
that respects the matching rules

2 / 8



A shift of finite type (SFT):

I a finite set of letters τ

I a finite set of forbidden (finite) patterns F

I SFT: the set of all configurations f : Z2 → τ that does not contain
forbidden patterns

Remark: for every set of Wang tiles τ the set of all τ -tilings is an SFT

3 / 8



A shift of finite type (SFT):

I a finite set of letters τ

I a finite set of forbidden (finite) patterns F

I SFT: the set of all configurations f : Z2 → τ that does not contain
forbidden patterns

Remark: for every set of Wang tiles τ the set of all τ -tilings is an SFT

3 / 8



A shift of finite type (SFT):

I a finite set of letters τ

I a finite set of forbidden (finite) patterns F

I SFT: the set of all configurations f : Z2 → τ that does not contain
forbidden patterns

Remark: for every set of Wang tiles τ the set of all τ -tilings is an SFT

3 / 8



A shift of finite type (SFT):

I a finite set of letters τ

I a finite set of forbidden (finite) patterns F

I SFT: the set of all configurations f : Z2 → τ that does not contain
forbidden patterns

Remark: for every set of Wang tiles τ the set of all τ -tilings is an SFT

3 / 8



τ -tiling:
a mapping f : Z2 → τ that respects the local rules.

T ∈ Z2 is a period if f (x + T ) = f (x) for all x .

4 / 8



τ -tiling:
a mapping f : Z2 → τ that respects the local rules.

T ∈ Z2 is a period if f (x + T ) = f (x) for all x .

4 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



super-classic facts:

I SFT ∼ tilings

I if you can tile arbitrarily large square, than you can tile the infinite
plane (compacteness)

I if there exists a τ -tiling with one period T , then there exists another
tiling with two non collinear periods T1,T2

I there exist tile sets τ s.t. all τ -tilings are aperiodic

I there exists a tile set τ s.t. all τ -tilings are non-computable

I given a tile set τ we cannot algorithmically decide whether there
exists a τ -tiling of Z2

other super-classic facts:

I in any reasonable programming language you can write a program π
that prints its own text

I in any reasonable programming language you may assume that your
program has an access to its own text

I any effective (polynomial time) real-life algorithm can be performed
by a Turing machine in polynomial time

5 / 8



This mini-course:

Two techniques of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity (and even minimality)

6 / 8



This mini-course:

Two techniques

of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity (and even minimality)

6 / 8



This mini-course:

Two techniques of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity (and even minimality)

6 / 8



This mini-course:

Two techniques of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity (and even minimality)

6 / 8



This mini-course:

Two techniques of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity (and even minimality)

6 / 8



This mini-course:

Two techniques of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity (and even minimality)

6 / 8



This mini-course:

Two techniques of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity

(and even minimality)

6 / 8



This mini-course:

Two techniques of embedding a computation in a tiling

I from self-referential programs to self-similar tilings

[goes back to J. von Neumann]

I from arithmetic in Sturmian numeration system to tilings

[J. Kari]

Very standard application:

I a construction of an aperiodic tile set

Less standard application:

I aperiodicity + quasiperiodicity (and even minimality)

6 / 8



Possible topics of this min-course

Some applications of the self-simulating tilings:

I the tiling problem is undecidable [Berger 1966]

I a tile set with only non computable tilings [Hanf & Myers 1974]

I a tile set with highly aperiodic tilings [?]

I robust (error-correcting) tilings [?]

I an effective shift is isomorphic to a subaction of a sofic shift
[Hochman 2009, Aubrun & Sablik 2013]

I a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

I Kari’s technique gives non self-similar tilings [T. Monteil]

7 / 8



Possible topics of this min-course

Some applications of the self-simulating tilings:

I the tiling problem is undecidable [Berger 1966]

I a tile set with only non computable tilings [Hanf & Myers 1974]

I a tile set with highly aperiodic tilings [?]

I robust (error-correcting) tilings [?]

I an effective shift is isomorphic to a subaction of a sofic shift
[Hochman 2009, Aubrun & Sablik 2013]

I a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

I Kari’s technique gives non self-similar tilings [T. Monteil]

7 / 8



Possible topics of this min-course

Some applications of the self-simulating tilings:

I the tiling problem is undecidable [Berger 1966]

I a tile set with only non computable tilings [Hanf & Myers 1974]

I a tile set with highly aperiodic tilings [?]

I robust (error-correcting) tilings [?]

I an effective shift is isomorphic to a subaction of a sofic shift
[Hochman 2009, Aubrun & Sablik 2013]

I a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

I Kari’s technique gives non self-similar tilings [T. Monteil]

7 / 8



Possible topics of this min-course

Some applications of the self-simulating tilings:

I the tiling problem is undecidable [Berger 1966]

I a tile set with only non computable tilings [Hanf & Myers 1974]

I a tile set with highly aperiodic tilings [?]

I robust (error-correcting) tilings [?]

I an effective shift is isomorphic to a subaction of a sofic shift
[Hochman 2009, Aubrun & Sablik 2013]

I a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

I Kari’s technique gives non self-similar tilings [T. Monteil]

7 / 8



Possible topics of this min-course

Some applications of the self-simulating tilings:

I the tiling problem is undecidable [Berger 1966]

I a tile set with only non computable tilings [Hanf & Myers 1974]

I a tile set with highly aperiodic tilings [?]

I robust (error-correcting) tilings [?]

I an effective shift is isomorphic to a subaction of a sofic shift
[Hochman 2009, Aubrun & Sablik 2013]

I a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

I Kari’s technique gives non self-similar tilings [T. Monteil]

7 / 8



Possible topics of this min-course

Some applications of the self-simulating tilings:

I the tiling problem is undecidable [Berger 1966]

I a tile set with only non computable tilings [Hanf & Myers 1974]

I a tile set with highly aperiodic tilings [?]

I robust (error-correcting) tilings [?]

I an effective shift is isomorphic to a subaction of a sofic shift
[Hochman 2009, Aubrun & Sablik 2013]

I a minimal effective shift can be simulated by a minimal SFT [?]

Another remarkable result:

I Kari’s technique gives non self-similar tilings [T. Monteil]

7 / 8



Come to the lectures!

8 / 8


