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Color: an element of a finite set C = {·, ·, ·, ·, ·, ·, ·}

Wang Tile: a unit square with colored sides.

i.e, an element of C 4, e.g.,

Set of Wang tiles: a set τ ⊂ C 4

Tiling: a mapping f : Z2 → τ that respects the matching rules
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Theorem. There exists a tile set τ such that
(i) τ -tilings exist, and

(ii) all τ -tilings are aperiodic.
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Existence of an aperiodic tile set:

I define self-similar tile sets

I observe that every self-similar tile set is aperiodic

I construct some self-similar tile set

We know simple explicit example of self-similar tile sets

even in Math. Intelligencer, Durand–Levin–Shen [2004] (for kids!)

last lecture: the fixed-point construction from Durand-R.-Shen
Funny, but... WHY???
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A tile set that simulates itself:

Universal TM

m-colors ◦ program ◦ bin(N)

Parameters:

I N = zoom factor

I k = #[bits in a macro-color]

I m = [size of the computational zone]
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A tile set τN that simulates itself:

Universal TM

m-colors ◦ program ◦ bin(N)

Parameters:

I N = zoom factor (works for all large enough N)

I k = #[bits in a macro-color] := 2 logN + O(1)

I m = [size of the computational zone]:= poly(logN)
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A tile set τN that simulates itself with variable zoom :

Universal TM

m-colors ◦ program ◦ bin(N)

I level 1 (macro-tiles): zoom=N,

I level 2 (macro-maro-tiles): zoom=N + 1,

I level 3 (macro-maro-macro-tiles): zoom=N + 2,

I . . .
9 / 13



[Turing machine π] 7→ tile set τ(π)

Service computrations

m-colors ◦ program ◦ bin(N)

Useful computation

Useful computation = simulating machine π on available space and time

τ -tiling exists ⇐⇒ π never stops
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[Turing machine π] 7→ tile set τ(π)

τ -tiling exists ⇐⇒ π never stops

Theorem [Berger 66]. The tiling problem is undecidable

(given a tile
set we cannot decide algorithmically whether it can tile the plane).
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a sequence embedded in a tiling:

Service computrations

m-colors ◦ program ◦ bin(N)

Useful computation with ω

ω = ω0ω1 . . . ωn . . .

N-macro-colors include the prefix ω[0:logN]
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Definition. ω = ω0ω1 . . . ωn . . . is a separator if

I ωn = 0 for every n s.t. the n-th Turing machine(n) = 0,

I ωn = 1 for every n s.t. the n-th Turing machine(n) = 1.

Lemma. Every separator is non computable.

This is a very standard fact: a pair of r.e. non separable sets.

Theorem [Hanf, Myers 74]. There exists a tile set τ such that

I τ -tilings of the plane exist,

I every τ -tiling is non computable.

Proof:

I embed an ω in our tiling

I useful computation: simulate in parallel n-th TM(n) and check
that the embedded ω is a separator

I every (infinite) tiling must include an incomputable ω
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