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Introduction: law of incompressibility

I Experiment: toss a coin 80000 times, then apply
zip compressor to 10000 bytes obtained

I Claim: more than 1% compression is not possible
I 1% compression: 10000× 8→ 9900× 8
I there are at most 2× 29900×8 files of length
≤ 9900

I at most 2× 29900×8 1%-compressible files of
length 10000

I about 2−799-fraction = impossibility
I as reliable as Ohm’s law (or any other)
I does it follow from known physics’ laws? if yes,
how?
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Classical mechanics: why a fair coin is fair?

I can we prove that a fair coin is indeed fair using
mechanics’ laws?

I physics is more about computations than proofs
I better question: a dice shape and center of
gravity are known; compute p1 . . . p6

I in principle is solvable numerically

I phase space is split into six rather dense sets;
relative measure of each inside a not very small
volume should be almost constant
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Classical mechanics: a point in a billiard

I consider a particle in a billiard with some initial
condition

I and register its position after time T , 2T , 3T , . . .
for some large constant T

I 0/1 = left half / right half
I get a bit sequence that we expect to be ‘random’
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Classical mechanics: revealing randomness

I model system: T : x ∈ [0, 1] 7→ 2x mod 1
I the position of
x ,T (x),T (T (x)),T (T (T (x))), . . . (left or right
half)

I initial condition: real x = x0x1x2 . . . produces bits
x0, x1, x2,. . .

I . . . just reveals bits of x
I initial condition as a source of randomness
I some dynamic systems reveal the randomness
hidden in the initial condition (while other do not)
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Real life: tables of random numbers

I you buy a book with table of random numbers

I you see page filled with zeros
I you complain: “look, this combination has
astronomically small probability”

I but the same is true for any other combination of
digits — answers the publisher

I how do you justify your complaint?
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Real life: randomness of individual objects?

I multiple choice test (twenty A/B questions)
I order of answers randomized before printing each
copy (A/B are exchanged randomly)

I in some copy all correct answers happen to be A
I should it be used?
I one more example: a factory that produces
preshuffled deck of cards

I quality control takes one deck to check it is OK
I what should it check?
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Foundations of probability theory

I probability theory as part of measure theory that
deals with independence: no problems

I what is the relation with ‘real world’?
I observation — statistical model (probability
distribution) — recommendations —. . .

I example of a model: ‘fair coin’ hypothesis
("head and tail have probability 1/2")

I what does it mean?
I what this hypothesis predicts?
I how it can be rejected experimentally?
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Foundations of probability: frequency approach

I probability 1/2: what does it mean?
I if we toss the coin many times, tails and heads
appear equally often

I exactly?
I no, but large deviations happen rarely: difference
more than 10

√
N for N coin tossings is unlikely

I unlikely?
I yes, this happens with small probability
I probability??
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Foundations of probability: Cournot principle I

I how to break this circle?
I Cournot principle: events with very small
probability do not happen

I Borel: . . . je suis arrivé à la conclusion qu’on ne devrait
pas craindre d’employer le mot de certitude pour désigner
une probabilité qui differe de l’unité d’une quantité
suffisamment petite

I more precisely, “other things equal, you should
worry more about more probable events”

I Borel: “Souvent la peur d’un mal fait tomber dans un
pire. Pour savoir distinguer le pire, il est bon de connâıtre
les probabilités des diverses éventualités”
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Foundations of probability: Cournot principle II

I recall the question about random digits table
I seeing zeros we say that an event that has
negligible probability (under the hypothesis)
happened; so the hypothesis is rejected

I but what about the other combinations?
I why we do not reject the hypothesis seeing some
other combination?

I “if a simple event with negligible probability under
the hypothesis happens, reject the hypothesis”

I simple or specified in advance?
I what is simple?
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Borel on hypotheses’ testing

Consider a random integer between 1 000 000 and 2 000 000. The
probability that it is equal to 1342517, is one over million; the probability
that it is equal to 1500000, is also one over million.
. . .When a number like this appears as an angle measured in centesimal
seconds, we do not ask ourselves what is the probability that this angle is
exactly 13◦42′51′′,7 because we never would be interested in such a
question before the measurement. Of course, the angle should have some
value, and whatever this value is (up to a tenth of a second), we may
measure it and say that the a priori probability to get this value is one in
ten millions, so an extraordinary event has happened. . .
The quest is whether the same reservations apply if one of the angles
formed by three starts has a remarkable value, for example, is equal to the
angle in the equilateral triange. . . or the half of the right angle. . . What
can we say about that? one should try hard to avoid the temptation to
consider some event not fixed before the experiment, as a remarkable
one, because a lot of events could look remarkable from some viewpoint.



Digression: real life (I, 2007)

[число участков = number of polling stations
явка в процентах = percentage of voters that participated in the vote]



Digression: real life (II, 2014)

Registered voters: 306258
Participated in the vote: 274101
Voted for: 262041

274101/306258 = 0.895000294
262041/274101 = 0.95600161

0.895 ∗ 306258 = 274100.91
0.956 ∗ 274101 = 262040.556

Other examples:
http://kireev.livejournal.com/1095568.html
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Algorithmic information theory: individual random objects

I which bit strings do not convince us to reject the
hypothesis of a fair coin?

I “individual random bit strings”
I suggested answer: incompressible
I there is no short program (much shorten than the
string itself) that produced the string

I formally: a string x is random if its Kolmogorov
complexity C (x) is close to its length
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Algorithmic information theory: Kolmogorov complexity

I Consider some programming language (binary
strings as programs and outputs; no input)

I Let D be an interpreter of this language
I CD(x) = min{l(p) | D(p) = x}
I (= minimal length of a program that outputs x)
I depends on D

I D is better than D ′ if CD(x) ≤ CD ′(x) + c for
some c and all x

I there exists optimal D that is better that any
other algorithm D ′

I proof: let D be a universal programming language that can simulate
any other one
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Kolmogorov complexity: properties and limitations

I fix some optimal D and call CD(x) “Kolmogorov
complexity” of x

I defined up to O(1) additive term
I “what is more complex: 000111000111 or
010101010101”: a meaningless question

I C (x) ≤ l(x) + O(1)
I for most strings of length n we have C (x) ≈ n

I more precisely, C (x) < n − d for at most
2−d -fraction of n-bit strings

I most strings are incompressible (random)
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Kolmogorov complexity: properties and limitations II

I C has natural properties the measure of
information should have

I for example C (A(x)) ≤ C (x) + O(1) for
algorithmic transformation A

I O(1)-constant depends on A

I bad news: C not computable
I even no computable lower bounds
I Gödel–Chaitin: statement of the form C (x) > n
(for specific x and n) are never provable for large
enough values of n (though most are true)

I Does not take into account the resources used to
produce x
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Shannon entropy

I n possible messages in a channel
I probabilities (frequencies) p1, . . . , pn
I want to develop a uniquely decodable code for
these messages

I to minimize the average length, frequent
messages should have shorter code

I Shannon: lower bound H(p1, . . . , pn) for uniquely
decodable codes

I can be (almost) achieved by prefix codes
I H(p1, . . . , pn) =

∑
pi log(1/pi)
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Shannon entropy and Kolmogorov complexity

I Shannon entropy requires a probability
distribution

I entropy per letter in an English text: not so well
defined

I entropy of “Hamlet”: meaningless
I Kolmogorov complexity of “Hamlet”: meaningful,
no hope to answer

I closely related: for a random source the
Kolmogorov complexity of the output is close to
Shannon entropy

I closely related: the same linear inequalities
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Example: inequalities and equalities

I H(ξ, η) ≤ H(ξ) + H(η)

I proof: convexity of logarithm

I C (x , y) ≤ C (x) + C (y) + O(log(|x |+ |y |))
I proof: concatenate the programs using some separator

I H(ξ, η) = H(ξ) + H(η|ξ)
I proof: by definition

I C (x , y) = C (x) + C (y |x) + . . .

I ≤: concatenation

I ≥: non-trivial: why the shortest program for (x , y) should start by

specifying x?
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Randomness as our ignorance?

I pseudorandom number generators (Yao–Micali)
I G : B1000 → B1000000

I easily computable (polynomial time)
I random 1000-bit seed converted to 106-bit
pseudorandom string: not random (compressible)
but “indistinguishable from random”. . .

I for every feasible test T : B1000000 → B the fraction of s ∈ B1000

such that T (G (s)) = True almost coincides with the fraction of
r ∈ B1000000 such that T (r) = True

I “things seem random because we do not know
they are not”: pseudoentropy.

I PRNG exists if NP6=P and, moreover, one-way functions exist
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Entropy in physics

I Imagine some system, e.g., ideal gas
I ‘Second Law: ‘entropy increases”
I does it mean that entropy is a function of state
(on phase space)?

I how is it compatible with time symmetry?
I can the Second Law be derived from other laws?
I is it equivalent to the nonexistent of a perpetuum
mobile of the second kind?

I is entropy in physics more like Shannon entropy
or Kolmogorov complexity?
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Quantum mechanics

common wisdom: “unlike statistical mechanics, which
is microscopically deterministic, the quantum
mechanics has intrinsic nondeterminism
(randomness)”

random coin vs. radioactive decay

q-Cournot principle: the events with negligible
amplitude do not happen
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Thermodynamics (a layman’s view)

Second Law of Thermodynamics

I entropy can only increase;
I A perpetuum mobile of the second kind does not
exist.

Usual remarks:

I these formulations are equivalent;
I the first one cannot be a corollary of dynamic
laws since it is not time-symmetric
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Perpetuum mobile of the second kind

gaz machine

moves the weight arbitrary high if the reservoir is
large enough (for most states of the gaz in the
reservoir)
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“Proof” of impossibility

Phase space is almost a product S1 × S2

Invariant measure on the phase space:

initial condition: more energy in gaz; final condition:
more energy in the weight

Volume in S1 depends on T much more than in S2
(# of degrees of freedom)

Large set cannot be mapped into a small one
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