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This column is devoted to mathematics 

for fun. What better purpose is there 

for mathematics? To appear here, 

a theorem or problem or remark does 

not need to be profound (but it is 

allowed to be); it may not be directed 

only at specialists; it must attract 

and fascinate. 

We welcome, encourage, and 

frequently publish contributions 

from readers--either new notes, or 

replies to past columns. 

I t is a lways  nice  to see a s imple solu- 
t ion for  a difficult problem.  Simple 

but  hard  to f i nd - -o the rwi se  the  prob-  
lem wouldn ' t  be that  difficult. The so- 

lution may  require  an unexpec ted  con- 
struction,  or  use  some seemingly  

unre la ted  theory.  In the la t ter  case  we  
often feel uncomfor table :  Is this theory  
real ly re levant?  Or is there  some o ther  

s imple solut ion which does  not  use  it 
at all? Here are  some examples  of  such 
"myster ious  solutions." 

Semi - In teger  Rectangles 
This p rob lem is well  known among 

people  r tmning the Moscow Olympiad.  
We call  a rec tangle  semi-integer (for 

lack of  a be t t e r  name)  if one of  its s ides  
has  integer  length. 

PROBLEM. A rectangle  is cut  into sev- 
eral  semi- integer  rectangles  (whose  

s ides  are  para l le l  to the s ides  of  the  
initial rectangle) .  Prove that  the  ini- 
t ial  rec tangle  is also a semi- integer  

one. 

Here is one example.  

If the upper-lef t  rec tangle  also has 
integer  ver t ical  side, we are  done: the 

ver t ical  side of  the initial  rectangle  is 
a sum of  two integers  and  therefore  is 
an integer. Otherwise,  we get  the fol- 

lowing picture:  
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If all five small  rec tangles  in the  pic- 
ture are  semi-integer,  then the big one 

is semi- integer  too. Let us check that. 
Consider  the  lower-left  rectangle.  
Assume that  its ver t ical  side is an in- 
teger. (On the picture,  we indicate  a 
semi- integer  rec tangle  by  covering it 

with l ines para l le l  to the integer side.)  

The same reasoning shows  that  the 
only nontrivial  case  is the  following 

one: 
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Now we recal l  that  the in ter ior  rec- 

tangle is a semi-integer  one; assume,  
for  example ,  that  its horizontal  side is 

an integer: 

�9 a c i" jl 

-1 
Then the horizontal  side of  the  big 

rectangle  has  length a + b - c, which 

is an integer.  
Now I give a (rather unexpected) 

proof  for the general case. The proof  uses 
periodic functions f :  R ~ R with per iod 

1 and mean value 0 (so fa+i  f (x)  dx  
= 0 for any  a). Let us call  them test 

functions.  I f f i s  a tes t  funct ion and T C 
R is an interval  of  integer  length, then  

fT f (X)  dx  = 0. This p rope r ty  is char-  
acter is t ic  for  intervals  of  in teger  
length: if U is an interval  whose  length 
is not  an integer,  it is easy  to cons t ruc t  

a tes t  f u n c t i o n f s u c h  that  f u  f (x )  dx  
0. Fo r  example ,  if U = [a,a + h] where  

h ~ 7/, t ake  f (x )  = sin 2v (x  - a); then  

f ( x ) d x  = sin 2 ~ dt = 

1 
2~r (1 - cos 2rrh) > 0 

Now we approach  the main  po in t  of  
the  proof.  Cons ider  two tes t  funct ions  

f a n d  g, and  combine  them into a func- 
t ion of  two variables:  

r = f (x) .g(y)  

Such a funct ion will also be  cal led a 
test funct ion (of  two variables,  so no 

confus ion arises).  

LEMMA 1 For any semi-integer rec- 
tangle D C R 2 (with sides parallel to 
OX and OY) and for  any test funct ion  
4) of  two variables, 

fD r dx dy = O. 

Indeed,  i fD  = S x T w h e r e  S,T C 
are intervals,  then  

fD r dx  dy = 

fs f (x )g(y)  dx dy = 
•  

One of  the factors in the right-hand side 

is 0 because  one of  the intervals S and 

T has integer length. (End of  proof.) 
Now, if some rectangle H can be cut 

into semi-integer rectangles, the state- 
ment  of  the lemma remains valid: for any 

test function 4) of  two variables we have 

fH q~(x,y) dx  dy = O. 

Indeed, the integral  is the  sum of  inte- 
grals over  small  rectangles.  Therefore,  

it remains  to p rove  the following 

LEMMA 2 A rectangle H is given. I f  for  
any test funct ion  r of  two variables 
we have fH r dx  dy = O, then H 
is a semi-integer rectangle. 

Indeed,  if D = S x T and c~(x,y) = 
f(x).g(y),  then 

fD q~(x,y) dx  dy 

If ne i ther  of  the  intervals  S and T has  
integer length, one can  find tes t  func- 

t ions f and  g such  tha t  both  factors  in 
the r ight-hand side are  non-zero. (See 

the d iscuss ion above.)  
Remark.  We can make  an e lemen-  

tary p roo f  out  of  this  one in the fol- 
lowing way. Using "meanders"  as tes t  

funct ions f and  g, we get  a b lack  and 
white  board  made  of  1/2 • 1/2 squares: 

I 

E 

E 

F 

1 

I I I I I F  
I I I I I I  

LEMMA 3 The rectangle is a semi- 
integer one i f  and only i f  i t  covers 
equal amounts of black and white for  
any placement of the rectangle on the 
board. (We assume that in any such 
placement the rectangle sides are par- 
allel to the board lines.) 

There is another  e lementa ry  p roof  

s imilar  in spirit. Ins tead  of  a b lack  and 
white  board  lemma, cons ider  a ser ies  

of  b lack  straight  l ines with s lope 1 go- 
ing through all in teger  points:  

/ / /  
/ / /  
/ / /  

LEMMA 4 The semi-integer rectangle 
covers the same amount  of  black lines 
independent of the placement; this 
property is characteristic f o r  semi- 
integer rectangles. 

However,  all these  proofs  make  us 
(at  least  me) uncomfor table :  the  resul t  

is ob ta ined  by a s imple t r ick  which 
does  not  seem to be  re levant  to the  

"essence of  the problem."  
Question: Can one find a natural, 

"comfortable" solution for this problem? 
Another  question: Can we replace 7/ 

by  an arbi trary subgroup G of  the addi- 
tive group R and consider  "semi-G-rec- 
tangles" (one of the sides has  length in 

G) ins tead of semi-integer rectangles? 
Reformulation:  a s sume that  a rec- 

tangle  is cut  into smal ler  rectangles;  

we  se lec t  one of  the  s ides  for  each of  
small  rectangles.  Prove that  at  least  
one of  the  s ides  of  the  big rectangle  is 
an integer  l inear  combina t ion  of  the 

s ides  selected.  

Cube and Tetrahedron 
While the  p rob lem in the preceding  

sec t ion  is a past ime,  the nex t  example  
is famous  theorem: 

THEOREM 1 A cube cannot be decom- 
posed into polyhedral parts which can 
f o r m  a regular tetrahedron of the 
same volume. 
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(This s ta tement  is in contras t  with 

the two-dimensional  situation, where 
for any two polygons of the same area  
such a polygonal decomposi t ion is pos- 
sible.) 

The s imple (but  ra ther  s t range)  
p r o o f  goes  as follows. We find a "quasi- 

volume" invariant, i.e., a funct ion v de- 
f ined on po lyhedra  which has  proper -  
t ies  s imilar  to the volume function: 

(1) if po tyhedra  A and B are  con- 
gruent,  then v(A) = v(B); 

(2) v is additive: if a po lyhedron  A 

is cut  into p ieces  A1 . . . .  , An, then  

v(A) = v(A1) + "" + v(An) 

B 

A C 

D 

I f a  cube  C a n d  a t e t r ahedron  T w e r e  

cut  into congruent  pieces,  then  not  
only would  their  volumes  be  equal, but  
a lso  v(C) and v(T) would  be  equal for 
the  same  reason. 

Therefore,  it  is enough to f ind a 
funct ion v satisfying (1) and (2) such 

that  v(C) ~ v(T). This funct ion is con- 
s t ruc ted  as follows. 

Let a po lyhedron  P be  given. 

Cons ider  all edges  e l , . . . ,  ek of the 
po lyhedron  P. Fo r  each  edge ei con- 

s ider  the  angle ai  at ei (i.e., the  angle 
fo rmed  by  the p lanes  tha t  mee t  at  ei). 
Then we  define 

v(P) = Z e~(ai ) ,  

w h e r e f i s  some funct ion which  will be 
speci f ied  later. It is evident  that  v(A) = 

v(B) for  congruent  A and B (for any 
funct ion J0. However,  to mee t  the  re- 

qu i rement  (2) we need  a very  special  
function.  It should sat isfy the  follow- 
ing condit ions:  

(a) f ( a  + f~) = f ( a )  + f (~ ) ;  
(b) f(~-) = 0 

(Why must  such a funct ion exis t  at  
all? This question will be d iscussed  
later.)  Let me  explain  why  v is  additive. 
F o r  example,  cons ider  a t e t rahedron  
ABCD which is divided by a p lane  BCE 
into two t e t rahedra  ABCE and BCDE. 

Let us compare  v(ABCD) and 
v(ABCE) + v(BCDE). What is the dif- 
fe rence  be tween  these  two sums? The 
edge  AD in the first  one is r ep laced  by 

two edges  A E  and ED, but  the angle is 

the same, so the cor responding  te rms  
sum up quite nicely. The angle a at the  
edge BC is now divided into two an- 

gles fl and  y, but  a = fl + 7 and there-  
f o r e f ( a )  = f(f i )  + f(7) .  Two new edges  
BE and EC appeared.  Each of them ap- 
pea r s  twice,  both  in v(ABCE) and 
v(BCDE), and the sum of  the  corre-  

sponding angles is equal to ~r. Recall ing 

that  f ( a )  +f( f l )  is equal to f ( a  + [3) 
and therefore  is equal to 0 when  

a + [3 = ~-, we are done. 
Of course ,  the  addit ive p rope r ty  o f  

v should  be checked  for the genera l  
case, but  the  idea  is more  or  less  clear,  
so we s top  here.  

Now, how to cons t ruc t  a f u n c t i o n f  
with the  required proper t ies  (a) and 

(b) above?  It is easy to see  that  these  
condi t ions  implyf(27r) = 0,f(~r/3) = 0 

and, in general ,  f(r~r) = 0 for  any ra- 
t ional  r. Therefore,  the only continu- 
ous funct ion with this p rope r ty  is the  
zero function,  and we have to  look for  
a d i scont inuous  one. 

In fact, the word  "construct" is mis- 
leading; we cannot  cons t ruc t  such  a 
function,  we  can only prove  its exis- 

tence  using the ax iom of  choice.  
Cons ider  R as  a vec tor  space  over  the  
field Q (having infinite dimension) .  

Using the ax iom of  choice,  we prove  
that  any {)- independent  subse t  o f  
can be ex tended  to a {)-basis. Then the 

values  o f f  on a basis  may  be  chosen  
arbitrari ly;  af ter  that  f is ex t ended  
uniquely onto  ~ using Q-linearity. It re- 
mains  to apply  this p rocedure  using { ~r} 
as the  Q- independent  set  and to  de- 

mand  t h a t f ( ~ )  = 0; we still have a lot  
of  f reedom choos ing  values  o f f  on the  
o ther  basis  vectors .  

Now re turn  to our  cube C and tetra-  
hedron  T. All the  angles  at  the cube 

edges are right angles,  so v ( C ) =  0. 

(Indeed, f(~-/2) + f(~r/2) = f(1r) = 0, as  
ment ioned  above.)  It remains  to show 
t h a t f ( a )  # 0 where  a is the  angle at  T- 

edges. More precisely,  we have to 
check that  f can be chosen in such a 

way  t h a t f ( a )  ~ 0. To do that  we need  
the rat io a / ~  to be irrat ional ,  so the set  
{a,~} will be Q-independent ,  which is 
indeed the case. 

So goes  the  proof.  Isn ' t  it  very 
s trange that  a geometr ic  quest ion 

about  po lyhedra  has  something to do 
with the ax iom of  choice? 

There are  genera l  a rguments  that  
show that  the  ax iom of  choice can be 
el iminated f rom any p roo f  of  the theo-  

rem. (Indeed, for  any  given number  of  
ver t ices  used  in the  decomposi t ion ,  the  
quest ion whe the r  this  decompos i t ion  
is poss ib le  or  not  can  be  formula ted  in 

the  e lementary  theory  of  reals, which 
is, according to a famous  Tarski  result ,  
decidable.  Therefore  the  exis tence  of  

a decompos i t ion  (for a given number  
of  ver t ices)  can  be  rephrased  as  an 
ar i thmetic  s ta tement .  And we know 
from G6del  that  any ar i thmet ic  state-  

men t  which can be  p roven  with the ax- 
iom of  choice  can be proven wi thout  
it.) 

The quest ion remains:  why does  
such a nice shor t  p r o o f  use such a 
plainly i r re levant  tool  as the axiom of  
choice? 
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