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This column is devoted to mathematics
Jor fun. What better purpose is there
Jor mathematics? To appear here,

a theorem or problem or remark does
not need to be profound (but it is
allowed to be); it may not be directed
only at specialists; it must attract

and fascinate.

We welcome, encourage, and
Srequently publish contributions
Srom readers—either new notes, or
replies to past columns.

Please send all submissions to the
Mathematical Entertainments Editor,
Alexander Shen, Institute for Problems of
Information Transmission, Ermolovoi 19,
K-51 Moscow GSP-4, 101447 Russia;
e-mail:shen@landau.ac.ru

t is always nice to see a simple solu-

tion for a difficult problem. Simple
but hard to find—otherwise the prob-
lem wouldn't be that difficult. The so-
lution may require an unexpected con-
struction, or use some seemingly
unrelated theory. In the latter case we
often feel uncomfortable: Is this theory
really relevant? Or is there some other
simple solution which does not use it
at all? Here are some examples of such
“mysterious solutions.”

Semi-Integer Rectangles

This problem is well known among
people running the Moscow Olympiad.
We call a rectangle semi-integer (for
lack of a better name) if one of its sides
has integer length.

PROBLEM. A rectangle is cut into sev-
eral semi-integer rectangles (whose
sides are parallel to the sides of the
initial rectangle). Prove that the ini-
tial rectangle is also a semi-integer
one.

Here is one example.

If the upper-left rectangle also has
integer vertical side, we are done: the
vertical side of the initial rectangle is
a sum of two integers and therefore is
an integer. Otherwise, we get the fol-
lowing picture:

The same reasoning shows that the
only nontrivial case is the following
one:

If all five small rectangles in the pic-
ture are semi-integer, then the big one
is semi-integer too. Let us check that.
Consider the lower-left rectangle.
Assume that its vertical side is an in-
teger. (On the picture, we indicate a
semi-integer rectangle by covering it
with lines parallel to the integer side.)
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Now we recall that the interior rec-
tangle is a semi-integer one; assume,
for example, that its horizontal side is
an integer:

l«— ¢ ——

Then the horizontal side of the big
rectangle has length a + b — ¢, which
is an integer.

Now I give a (rather unexpected)
proof for the general case. The proof uses
periodic functions f: R — R with period
1 and mean value 0 (so f2™! flx) dx

= (0 for any a). Let us call them test
functions. If fis a test functionand T C
R is an interval of integer length, then
Jr fix) dx = 0. This property is char-
acteristic for intervals of integer
length: if U is an interval whose length
is not an integer, it is easy to construct
atest function fsuch that [ fix) dx #
0. For example, if U = [a,a + h] where
h & 7, take f(x) = sin 27(x — a); then

h
| faydw = [ sin 2t at =
U o
—1—-(1—cos27rh)>0
2m

Now we approach the main point of
the proof. Consider two test functions
fand g, and combine them into a func-
tion of two variables:

¢(x,y) = flx)9(y)

Such a function will also be called a
test function (of two variables, so no
confusion arises).

LEMMA 1 For any semi-integer rec-
tangle D C R2 (with sides parallel to
OX and OY) and for any test function
& of two variables,

| ¢y dw ay =o.
D

Indeed, if D =S X Twhere S,T C R
are intervals, then

| oty dwdy =
D

[, f@@) dvdy =
( J, @ dx)( [ 9w dy)

One of the factors in the right-hand side
is 0 because one of the intervals S and
T has integer length. (End of proof.)
Now, if some rectangle H can be cut
into semi-integer rectangles, the state-
ment of the lemma remains valid: for any
test function ¢ of two variables we have

| ¢@y) deay =o.
H

Indeed, the integral is the sum of inte-
grals over small rectangles. Therefore,
it remains to prove the following

LEMMA 2 A rectangle H is given. If for
any test function ¢ of two variables
we have [y ¢(x,y) drdy =0, then H
is a semi-inleger rectangle.

Indeed, if D =S X T and ¢(x,y) =
J(x)-g(), then

[ ¢ay) drdy
- [ f@ o [ o) ay

If neither of the intervals S and T has
integer length, one can find test func-
tions f and g such that both factors in
the right-hand side are non-zero. (See
the discussion above.)

Remark. We can make an elemen-
tary proof out of this one in the fol-
lowing way. Using “meanders” as test
functions f and g, we get a black and
white board made of 1/2 X 1/2 squares:

i ]
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LEMMA 3 The rectangle is a semi-
integer one if and only if it covers
equal amounts of black and while for
any placement of the rectangle on the
board. (We assume that in any such
placement the rectangle sides are par-
allel to the board lines.) )

There is another elementary proof
similar in spirit. Instead of a black and
white board lemma, consider a series
of black straight lines with slope 1 go-
ing through all integer points:

]

/

/

LEMMA 4 The semi-integer rectangle
covers the same amount of black lines
independent of the placement; this
property is characteristic for semi-
integer rectangles.

However, all these proofs make us
(at least me) uncomfortable: the result
is obtained by a simple trick which
does not seem to be relevant to the
“essence of the problem.”

Question: Can one find a natural,
“comfortable” solution for this problem?

Another question: Can we replace Z
by an arbitrary subgroup G of the addi-
tive group R and consider “semi-G-rec-
tangles” (one of the sides has length in
G) instead of semi-integer rectangles?

Reformulation: assume that a rec-
tangle is cut into smaller rectangles;
we select one of the sides for each of
small rectangles. Prove that at least
one of the sides of the big rectangle is
an integer linear combination of the
sides selected.

Cube and Tetrahedron

While the problem in the preceding
section is a pastime, the next example
is famous theorem:

THEOREM 1 A cube cannot be decom-
posed into polyhedral parts which can
Sform a regular tetrahedron of the
same volume.
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(This statement is in contrast with
the two-dimensional situation, where
for any two polygons of the same area
such a polygonal decomposition is pos-
sible.)

The simple (but rather strange)
proof goes as follows. We find a “quasi-
volume” invariant, i.e., a function v de-
fined on polyhedra which has proper-
ties similar to the volume function:

(1) if polyhedra A and B are con-
gruent, then wA) = UB);

(2) vis additive: if a polyhedron A
is cut into pieces A, ..., A,, then

oA = UAD + -+ oAy

If a cube C and a tetrahedron T were
cut into congruent pieces, then not
only would their volumes be equal, but
also v(C) and v(T) would be equal for
the same reason.

Therefore, it is enough to find a
function v satisfying (1) and (2) such

that «(C) # «(T). This function is con-

structed as follows.

Let a polyhedron P be given.
Consider all edges e;,..., e, of the
polyhedron P. For each edge e; con-
sider the angle o; at e; (i.e., the angle
formed by the planes that meet at e;).
Then we define

uP) = 2. ef (),

where f'is some function which will be
specified later. It is evident that v(A) =
v B) for congruent A and B (for any
function f). However, to meet the re-
quirement (2) we need a very special
function. It should satisfy the follow-
ing conditions:

@) fla + B) =fle) + f(B);
(b) flm) =0

(Why must such a function exist at
all? This question will be discussed
later.) Let me explain why vis additive.
For example, consider a tetrahedron
ABCD which is divided by a plane BCE
into two tetrahedra ABCE and BCDE.

Let us compare wABCD) and
WABCE) + (BCDE). What is the dif-
ference between these two sums? The
edge AD in the first one is replaced by
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two edges AE and ED, but the angle is
the same, so the corresponding terms
sum up quite nicely. The angle « at the
edge BC is now divided into two an-
gles B and v, but « = B + y and there-
fore fla) = f(B) + f(y). Two new edges
BE and EC appeared. Each of them ap-
pears twice, both in ®(ABCE) and
WBCDE), and the sum of the corre-
sponding angles is equal to 7. Recalling
that fla) + f(B) is equal to fla + B)
and therefore is equal to 0 when
a + 3 = m, we are done.

Of course, the additive property of
v should be checked for the general
case, but the idea is more or less clear,
s0 we stop here.

Now, how to construct a function f
with the required properties (a) and
(b) above? It is easy to see that these
conditions imply f(27) = 0, {#/3) = 0
and, in general, f(rw) = 0 for any ra-
tional 7. Therefore, the only continu-
ous function with this property is the
zero function, and we have to look for
a discontinuous one.

In fact, the word “construct” is mis-
leading; we cannot construct such a
function, we can only prove its exis-
tence using the axiom of choice.
Consider R as a vector space over the
field @ (having infinite dimension).

Using the axiom of choice, we prove
that any Q-independent subset of R
can be extended to a Q-basis. Then the
values of f on a basis may be chosen
arbitrarily; after that f is extended
uniquely onto R using Q-linearity. It re-
mains to apply this procedure using { 7}
as the Q-independent set and to de-

mand that f{7r) = 0; we still have a lot
of freedom choosing values of f on the
other basis vectors.

Now return to our cube C and tetra-
hedron T. All the angles at the cube
edges are right angles, so «(C) = 0.
(Indeed, f(#/2) + f(7w/2) = f(mw) = 0, as
mentioned above.) It remains to show
that f{a) # 0 where « is the angle at T~
edges. More precisely, we have to
check that f can be chosen in such a
way that fla) # 0. To do that we need
the ratio o/ to be irrational, so the set
{a,7} will be Q-independent, which is
indeed the case.

So goes the proof. Isn’t it very
strange that a geometric question
about polyhedra has something to do
with the axiom of choice?

There are general arguments that
show that the axiom of choice can be
eliminated from any proof of the theo-
rem. (Indeed, for any given number of
vertices used in the decomposition, the
question whether this decomposition
is possible or not can be formulated in
the elementary theory of reals, which
is, according to a famous Tarski result,
decidable. Therefore the existence of
a decomposition (for a given number
of vertices) can be rephrased as an
arithmetic statement. And we know
from Godel that any arithmetic state-
ment which can be proven with the ax-
iom of choice can be proven without
it.)

The question remains: why does
such a nice short proof use such a
plainly irrelevant tool as the axiom of
choice?



