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This column s devoted to mathematics
Jor fun. What better purpose is there
Jor mathematics? To appear here,

a theorem or problem or remark does
not need to be profound (but it is
allowed to be); it may not be directed
only at specialists; it must altract

and fascinate.

We welcome, encourage, and
Srequently publish contributions
[from readers—either new notes, or
replies to past columns.

Please send all submissions to the
Mathematical Entertainments Editor,
Alexander Shen, Institute for Problems of
Information Transmission, Ermolovoi 19,
K-51 Moscow GSP-4, 101447 Russig;
e-mail:shen@landau.ac.ru

Two More Probabilistic Arguments
After the column about probabilistic
arguments was finished, I came across
two problems (both from high-school
mathematical competitions in Russia)
that may be easily solved using nice
probabilistic arguments, and I'd like to
share these.

1. The sets S, Ss, ..., S; are dif-
ferent subsets of a set S that has 200
elements. Moreover, S; ¢ S; for any
i # j. Prove that k < (308).

Here is the solution. Consider the
following process: We start with an
empty set and add random elements of
S one by one until (after 200 steps) we
get the whole set S. For a fixed subset
A, let us compute the probability Pr[A]
that A will appear during this process.
For example, Pr[{J] = Pr[S] = 1; for
any s € S, the probability Pr[{s}] is equal
to 1/200 (all elements of S can be cho-
sen and added to J with equal proba-
bilities). Moreover, any subset A C S of
a given cardinality a has the same
chance to appear during this process,
and only one subset of cardinality a may
appear, so Pr{A] = 1/(2%0).

Consider k& random variables
oy, . .., oy the value of o; is equal to 1
if the given set S; appears during the
process; otherwise, o; is equal to 0. The
expected value of o; is 1/(30), where
s; is the number of elements in S;, so
this expected value is at least 1/(33)
(each row in the Pascal triangle has a
maximum in the center).

Now, consider the random variable
o = ¢ + - + 0. This sum cannot ex-
ceed 1, as two different sets S; and S;
may not appear in the process (if S;
precedes S; in the process, then S; ¢
S;). So, the expected value of o does
not exceed 1, and each term has ex-
pected value at least 1/(39). Therefore,
the number of terms k does not exceed

(#0).
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Figure 1. Robot in the labyrinth

2. Arobot R placed in the labyrinth
(as in Fig. 1) is equipped with a pro-
gram. The labyrinth is a square n X n
where some walls are placed between
cells (in addition to the external walls
around the square). The program is a se-
quence of commands 1eft. rights
up 1 and down (no loops or branches).
Executing each command, the robot
moves in the prescribed direction if
possible (and does nothing when there
is a wall in this direction). Prove that
for any n, there exists a program that
works correctly for all labyrinths of
size n X n (independently of the posi-
tions of walls inside the square and the
robot’s initial position). Here, “works
correctly” means that the robot visits
all reachable cells.

To solve this problem, we prove
that a sufficiently long random pro-
gram will work with positive proba-
bility. For each n X n labyrinth, there
is a program of size 4n® that works
for it, as each cell is reachable in at
most 4n steps (round-trip) and there
are at most m? admissible cells.
Therefore, a random program of size
N = 4n3 will work with probability at
least & = (1/4)*® and fail with proba-
bility at most 1 — & . A random pro-



gram of size 2N will fail with proba-
bility at most (1 — £)% a random pro-
gram of size kN will fail with proba-
bility at most (1 ~ £)*. This probability
is computed for a fixed labyrinth; if &
is large enough, (1 — & )* is smaller
than 1 divided by the number of dif-
ferent labyrinths of size n X n, and a
random program of size kN works for
all of them with positive probability.
Q.E.D.

Poncelet Theorem Revisited
Consider two circles C; and Cs (Fig. 2).
The well-known Poncelet theorem
guarantees that if there exists a trian-
gle inscribed in C; and circumscribed
around C,, then there are infinitely
many triangles with this property.

Poncelet's theorem can be refor-
mulated as follows. Consider the map-
ping f: C; — C; defined as shown in
Figure 3.

If f{f{fTA))) = A for some point A

on C;, then f{f{fIX))) = X for any
point X on Ci.

There is a nice proof of this state-
ment (it is explained, for example, in
Prasolov and Tikhomirov’s textbook
on geometry): one can define a mea-
sure on C] in such a way that the mea-
sure of the arc X — f(X) is a constant
that does not depend on the choice of
X. Then, f(f(f(A))) = A means that this
constant equals one-third of the mea-
sure of C;.

The same argument allows us to
prove the Poncelet theorem not only
for triangles but for arbitrary n-gons [if
S@™(A) = 4, then this constant equals
(1/n)th fraction of the measure of C;
and f(X) = X for any X].

OK, but why should such a measure
exist? After we decide to look for it,
finding such a measure is rather easy.
Assume that the measure is p(X)ds,
where p(X) is some (yet unknown)
density function and s is the natural pa-
rameter. To find conditions on p that
guarantee the desired property, con-
sider two infinitesimally close tangents
to Cs. The measures of infintesimal
arcs A; and 4 cut by these lines are to
be made equal (Fig. 4).

The lengths of arcs A; and Ay are
proportional to the segments /; and ;.

Therefore, if we define p(X) for X € C;
as the reciprocal of the length of the
tangent from X to the circle Cy, arcs A;
and A, will have equal measures, and
we are done.

What properties of curves C; and Cs
were used in this proof? For C,, we
need to know that two tangents to Cy
going from the same point X are equal
(Fig. 5).

If the tangents were of different
lengths, the density p(X) wouldn’t be
well defined.

A

Figure 2. Two circles and triangles.

)
Figure 3. Poncelet mapping.

Figure 5. Two equal tangents to Ca: /1 = ».

For C1, we need another property of
a circle: any line intersecting a circle
at two points, forms equal angles with
the circle in both intersection points
(Fig. 6).

This property guarantees that the
arcs A; and A, (Fig. 4) are proportional
to I; and Iy (infinitesimal triangles are
similar).

The Poncelet theorem is valid not
only for circles but for any conic sec-
tions. However, this proof seems to be
not applicable in the general case.
Prasolov and Tikhomirov say (after ex-
plaining the proof for the case of two
circles), “We won’t prove this theorem
in the general case since all known
proofs are complicated.”

However, the Moscow mathemati-
cian A.A. Panov found that this proof
can be generalized. His argument is ex-
plained below. The inspiration comes
from classical mechanics, so let us re-
call some facts.

It is well known that there is no
gravity inside the sphere. A similar
two-dimensional statement is also true
if the gravitational force is propor-

, A——

Figure 4. Two infinitesimal arcs should be
equal.

&

Figure 6. Two equal intersection angles.

VOLUME 20, NUMBER 4, 1998 31



G

Az
A /e

Figure 7. Two elliptic arcs have the same
measure.

tional to the inverse distance (not the
squared inverse distance, as in the
three-dimensional case). To see why,
look again at Figure 4: forces coming
from arcs A; and A; compensate each
other, because distances are propor-
tional to masses.

Now, what can be said about the
gravity inside an ellipsoid? Or inside an
ellipse in the two-dimensional case? Of
course, the answer depends on the
mass distribution. T will show that
there exists a distribution that guaran-

In a triangle called ABC,

Pick a point on AB, call it P.
Pick a Q on BC,
Where BQ is BP.

Ah the joys of pure geo-me-tree!

On CA pick an R, oh please do,
Where CR is exactly CQ,
And now pick an S

tees the absence of gravity inside the
ellipse. Indeed, imagine that a cir-
cle is drawn on a weightless
elastic film using heavy ink, and
then this film is stretched to-
gether with the circle (so the cir-
cle becomes an ellipse). Then, the
gravity is still absent inside the ellipse.
Here is why. Although the lengths [;
and I in Figure 4 do change when we
stretch the film, their ratio remains the
same, as do the masses on arcs A; and
As, so the gravitational forces from A;
and A, still compensate each other.
Thus, we have constructed a distribu-
tion of masses along the ellipse (we de-
note this distribution by d¢ in the se-
quel) that generates no gravity inside
the ellipse.

Returning to Poncelet’s theorem, let
us prove it for the case when Cj is an
ellipse and Cs is a circle. Consider a
distribution d¢/l(x) on C;, where I(x)
is the length of the tangent from x €
C, to the cirlce C; (Fig. 7).

Euclid’s Last {or Lost) Theorem
by David Gale

On AB, more or less,
So that “AS is AR” is true.

On BC the next letter is T,
Where BT is BS, don’t you see.
On CA picka U,
And you’ll know what to do,
Next what’s this? we've arrived
back at P!

The same argument as before
shows that the measures of arcs A; and
Ay are equal. Therefore, all tangents to
the circle Cs cut the same fraction of
ellipse C; (when measured according
to the distribution d¢/l(x)), and the
Poncelet theorem is proved.

What if both C; and C; are ellipses?
Then, we stretch the picture to convert
Cs into a circle. The statement of the
Poncelet theorem is invariant under
affine transformations, so we are done.
It is also invariant under projective
transformations, so the statement is
true for any conic sections.

Remark: As A.A. Panov points out,
in fact any two conic sections could be
transformed to circles by one projec-
tive transformation; this observation
gives us another way to prove
Poncelet’s theorem for any two conic
sections after we have proved it for cir-
cles.

I close with an “archaeological dis-
covery” from David Gale of Berkeley.

Now some proofs were soon found
close at hand,

But it didn’t turn out quite as planned,
For though not very large
(They would fit in the marg-

in) regrettably, none of them
scanned.
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