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This column is devoted to mathematics 

for fun. What better purpose is there 

for mathematics? To appear here, 

a theorem or problem or remark does 

not need to be profound (but it is 

allowed to be); it may not be directed 

only at specialists; it must attract 

and fascinate. 

We welcome, encourage, and 

frequently publish contributions 

from readersieither new notes, or 

replies to past columns. 

Please send all submiss ions  to  the  

Mathemat ica l  Enter ta inments  Editor, 

A l e x a n d e r  S h e n ,  Institute fo r  P rob lems  of  

Informat ion Transmiss ion,  Ermolovo i  19, 

K-51 M o s c o w  GSP-4 ,  1 0 1 4 4 7  Russia; 

e-mai l :  shen@landau.ac. ru  

Cliques, the 
Cauchy. 
Inequality, 
and 
Information 
Theory 
H ere I present two rather unex- 

pected solutions of a simple prob- 
lem: 

Let G = (V,E) be an undirected 
graph ha~ng n edges; to prove that 
the number of 3-cliques in G does 
not exceed (%/'2/3)n 3/2. 

As usual, a 3-clique is a set of three 
vertices connected by three edges. It 
would be just as good to formulate the 
problem without any graph-theoretic 
terminology at all: 

Assume given a collection of n seg- 
ments in the plane; to prove that 
there are at most (V--2/3)n 3/2 trian- 

gles whose sides belong to the col- 
lection. 

This theorem is an easy conse- 
quence of the following inequality. Let 
A be a fmite subset of the Cartesian 
product X x Y X Z. Define the sets 
Axy, Axz, and Ayz as the projections of 
A o n t o X •  X x Z ,  and YXZ,  re- 
spectively. Then 

(#A) 2 <~ #A~ �9 #Axz �9 #Ayz, (C) 

where #S stands for the cardinality of 
a fmite set S. 

How do we apply (C) to our prob- 

lem? Denoting the set of vertices by V, 
the product V x V x V is the set of or- 
dered triples of vertices. We are esti- 
mating m, the number of 3-cliques; 
each of these corresponds to 6 = 3! 
ordered triples. Let A, then, be the 
subset of V X V x V coming from 
3-cliques. It has 6m elements, and we 
want to use (C) to estimate this. For 
this, we need to know the number of 
elements in the projections of A. 
Projection Axy contains only pairs 
(x,y) that are connected by an edge, 
and each edge gives two pairs, so the 
cardinality of the projection does not 
exceed 2n, where n is the number of 
edges. Therefore (C) says that 

(6m) 2 -< (2n) �9 (2n) �9 (2n), 

in agreement with the stated conclu- 
sion. 

Now I present two proofs of in- 
equality (C). 

(First  proof)  I prefer to use the fol- 
lowing geometric version of (C): ifA is 
a (measurable) subset of R 3 having vol- 

ume V, and $1, $2, $3 are the areas of 
its two-dimensional projections (onto 
the three coordinate planes), then 

Y 2 ~- S18283 . (G) 

(If A is composed of unit cubes with 
integer vertices, this is exactly the 
statement (C), for the volume is the 
number of unit cubes and the area is 
the number of unit squares in the pro- 
jection.) 

To prove (G), first generalize it to say 

( f  f f f(x,y)g(x,z)h(y,z) dx dy d z )  2 <-- 

<-- f f f2(x,y) dx dy " f f g2(x,z) dx dz " 
f f h2(y,z) dy dz (I) 

for any non-negative f, g, and h. If f, g, 
and h are equal to 1 inside the corre- 
sponding projections of A and to 0 out- 
side, thenf(x,y)g(x,z)h(y,z) = 1 for all 
(x,y,z) E A (and maybe for some other 
points), so that (I) gives (G). 

Now inequality (I) is a variation of 
the Cauchy inequality and may be re- 
duced to it: 
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( f  f f f(x,y)g(x,z)h(y,z) dx dy dz) 2 <- 
<- f f f2(x,y) dx dy �9 f f ( f  g(x,z)h(y,z) dz) 2 dx dy <- 
<- f f f2(x,y) dx dy . f f ( f  g2(x,z)dz f h2(y,z)dz) dx dy = 
= f f f 2 ( x , y )  dx d y .  f f  g2(x,z) dx dz �9 f f  h2(y,z) dy dz. 

(Second proof )  This proof  of (C) is completely differ- 
ent (and rather strange). It uses the notion of Shannon en- 
tropy of a random variable with finite range. If a random 
variable ~ takes n values with probabilities Pl, �9 �9 �9 Pn, then 
the Shannon entropy of ~ is defined as 

H(~  = - Z  Pi log2 Pi 
i 

It does not exceed log2 n and is equal to log2 n when all 
values are equiprobable. 

If ~ and ~? are both random variables with finite range, 
then so is the pair (~,r/), and its Shannon entropy H((~,T/)) 
is given by the general definition. 

The conditional entropy H(~[ ~?) of ~ when ~? is known 
can be defmed as 

U(~] 7) = H((~, ~)) - HO?). 

You can easily check that this agrees with the natural de- 
finition of conditional entropy of ~ given ~?: namely, fkX any 
value of ~ and compute H(~) using the conditional proba- 
bilities of the ~ values in place of the Pi; and then take the 
weighted average of the results, weighted by the probabil- 
ities of the various values of ~?. 

It is a standard fact that 

H(<~,~7>) -< H ( ~  + HOT). 

Tl%e reader not acquainted with these matters will proba- 
bly enjoy tackling this by straightforward analysis. So now 
we know that 

0 --< H(~] 7) -< H(~) (L) 

for any ~ and 7. 
Now it is easy to prove that 

2H((~:,~/,r}) -< H((~:,r/)) + H((~,z)) + H((V,z)). (E) 

Indeed, (E) can be rewritten as 

H(r ]  (~:,V)) + H07 [ (~:,r)) -< H(0?,T)) 

where the right-hand side equals H(r)  + H07 ] r). It remains 
to note that H(z I . . .  ) <- H('r), and HO? I (~,'r)) <- HO? [ 7"). 
(The first of these is fact (L), the second is the "condi- 
tionalized" version of it. The intuitive content of these is 
that any conditional entropy is smaller the more we know.) 

Now to prove (C) using (E). Consider the random vari- 
able that is uniformly distributed in the set A C X • Y • 
Z. It can be considered as a triple of (dependent) variables 
(~,V,r), where ~ E X, ~/E Y, and z ~ Z. The entropy of the 
triple (~:,~?,T} equals log2 #A. Using (E), we get that 

2 log2 #A -< H((~,V)) + H((~,r)) + H(07,r)). 

The pair (~:, ~?) takes values in Axy, therefore its entropy does 
not exceed log2 #Axy. For the same reasons H((~,'r))<- 
log2 #Axz and H((~?,'r)) <- log2 #Ayz. Therefore 

2 log2 #A -< log2 #Axy + log2 #Axz + log2 #Ayz, 

and we get (C) by exponentiation. 

I have received the following letter, completing the pic- 
ture sketched in  an earlier column. 

Your column in The Mathematical InteUigencer for 
Spring, 2000, never mentions the name of the problem 
discussed. It is called the "majority problem" in the the- 
oretical computer science literature, and the two most in- 
teresting papers on the subject (he says with a blush) are 

L. Alonso, E. M. Reingold, and R. Schott, "Determining 
the Majority," Info. Proc. Let. 47 (1993), 253-255. 

L. Alonso, E. M. Reingold, and R. Schott, "The Average- 
Case Complexity of Determining the Majority," SIAM 
J. Computing 26 (1997), 1-14. 

Both papers deal with (exact, achievable) lower bounds. 
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