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This column is devoted to mathematics
Jor fun. What better purpose is there
Jor mathematics? To appear here,

a theorem or problem or remark does
not need to be profound (but it is
allowed to be); it may not be directed

only at specialists; it must attract
and fascinale.

We welcome, encourage, and
Jfrequently publish contributions
from readers—either new notes, or
replies to past columns.

Please send all submissions to the
Mathematical Entertainments Editor,
Alexander Shen, Institute for Problems of
Information Transmission, Ermolovoi 19,
K-51 Moscow GSP-4, 101447 Russia;
e-mail: shen@landau.ac.ru

Cliques, the
Cauchy
Inequality,
and
Information
Theory

Here I present two rather unex-
pected solutions of a simple prob-
lem:

Let G =(V,E) be an undirected
graph having n edges; to prove that
the number of 3-cliques in G does
not exceed (V2/3)n32,

As usual, a 3-clique is a set of three
vertices connected by three edges. It
would be just as good to formulate the
problem without any graph-theoretic
terminology at all:

Assume given a collection of n seg-
ments in the plane; to prove that
there are at most (V2/3n%2 trian-
gles whose sides belong to the col-
lection.

This theorem is an easy conse-
quence of the following inequality. Let
A be a finite subset of the Cartesian
product X X Y X Z. Define the sets
Agyy Ayz, and Ay, as the projections of
Aonto XXY, XXZ and Y X Z, re-
spectively. Then

(HA)2 < #Ay, - #Ays - #4,2, (C)

where #S stands for the cardinality of
a finite set S.
How do we apply (C) to our prob-
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lem? Denoting the set of vertices by V,
the product V X V X V is the set of or-
dered triples of vertices. We are esti-
mating m, the number of 3-cliques;
each of these corresponds to 6 = 3!
ordered ftriples. Let A, then, be the
subset of VX VXYV coming from
3-cliques. It has 6m elements, and we
want to use (C) to estimate this. For
this, we need to know the number of
elements in the projections of A.
Projection A,, contains only pairs
(x,y) that are connected by an edge,
and each edge gives two pairs, so the
cardinality of the projection does not
exceed 2n, where n is the number of
edges. Therefore (C) says that

(6m)2 = (2n) - 2n) - (Cn),

in agreement with the stated conclu-
sion.

Now I present two proofs of in-
equality (C).

(First proof) I prefer to use the fol-
lowing geometric version of (C): if A is
a (measurable) subset of R having vol-
ume V, and S, Sq, S5 are the areas of
its two-dimensional projections (onto
the three coordinate planes), then

(If A is composed of unit cubes with
integer vertices, this is exactly the
statement (C), for the volume is the
number of unit cubes and the area is
the number of unit squares in the pro-
jection.)

To prove (G), first generalize it to say

SS foyg@,)h(y,2) dx dy dz)* <
= [J fqxy) dx dy - [f ¢*(@,2) dx dz -
JIRy2) dydz (D

for any non-negative f, g, and k. If f g,
and h are equal to 1 inside the corre-
sponding projections of A and to 0 out-
side, then f(x,y)g(x,2)h(y,2) = 1 for all
(x,y,2) € A (and maybe for some other
points), so that (I) gives (G).

Now inequality (I) is a variation of
the Cauchy inequality and may be re-
duced to it:



U Fxyg(x,)h(y,2) dx dy dz)? <
= [f fAxy) dx dy - [[ (] 9(x,2D(y,2) d2)? dx dy =
= [ fAxy) dx dy - [f (J g3 (x,2)dz [ W¥(y,2)d2) dx dy =
= [ f3xy) dx dy - [ 9% (x,2) dx dz - [ h3(y,2) dy dz.

(Second proof) This proof of (C) is completely differ-
ent (and rather strange). It uses the notion of Shannon en-
tropy of a random variable with finite range. If a random
variable ¢takes 7 values with probabilities py, . . . , P, then
the Shannon entropy of ¢ is defined as

H() = —Z p; loge ;

It does not exceed logz n and is equal to logs » when all
values are equiprobable.

If £ and 7 are both random variables with finite range,
then so is the pair (§7), and its Shannon entropy H({£7))
is given by the general definition.

The conditional entropy H(&| 1) of £ when 7 is known
can be defined as

H(¢| m) = H(E ) — H(n).

You can easily check that this agrees with the natural de-
finition of conditional entropy of £ given 7: namely, fix any
value of 1 and compute H({) using the conditional proba-
bilities of the £ values in place of the p;; and then take the
weighted average of the results, weighted by the probabil-
ities of the various values of 7.

It is a standard fact that

H((&m) = H(® + H(n).

The reader not acquainted with these matters will proba-
bly enjoy tackling this by straightforward analysis. So now
we know that

0=<H(|m)=H® L

for any ¢ and 7.
Now it is easy to prove that

2H((&m,m) = H((Em) + H(E) + H({(nym).  (B)

Indeed, (E) can be rewritten as

H(r|[(¢m) + H(n | () = H(n,7)

where the right-hand side equals H(1) + H(n [ 7). It remains
to note that H(r|...) < H(7), and H(n | {£7) = H(qn | 7).
(The first of these is fact (L), the second is the “condi-
tionalized” version of it. The intuitive content of these is
that any conditional entropy is smaller the more we know.)

Now to prove (C) using (E). Consider the random vari-
able that is uniformly distributed in the set A CX X Y X
Z. It can be considered as a triple of (dependent) variables
({m,7), where £ € X, n €Y, and 7 € Z. The entropy of the
triple (£ m,7) equals logg #A. Using (E), we get that

2 loge #A = H((§m)) + H((§™) + H((n,7)).

The pair () takes values in A,,, therefore its entropy does
not exceed logy #A,,. For the same reasons H({({1) <
logp #A,. and H((n,7)) < logs #4,,. Therefore

2 logs #A = logy #A,y + logs #A,, + logs #4,,,
and we get (C) by exponentiation.

ksl

I have received the following letter, completing the pic-
ture sketched in an earlier column.

Your column in The Mathematical Intelligencer for
Spring, 2000, never mentions the name of the problem
discussed. It is called the “majority problem” in the the-
oretical computer science literature, and the two most in-
teresting papers on the subject (he says with a blush) are

L. Alonso, E. M. Reingold, and R. Schott, “Determining
the Majority,” Info. Proc. Let. 47 (1993), 253-255.

L. Alonso, E. M. Reingold, and R. Schott, “The Average-
Case Complexity of Determining the Majority,” SIAM
J. Computing 26 (1997), 1-14.

Both papers deal with (exact, achievable) lower bounds.
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