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an local rules impose a global order? If yes, when and how? This is a philo-

sophical question that could be asked in many cases. How does local interaction

of atoms create crystals (or quasicrystals)? How does one living cell manage to

develop into a pine cone whose seeds form spirals (and the number of spirals

usually is a Fibonacci number)? Is it possible to program
locally connected computers in such a way that the net-
work is still functional if a small fraction of the nodes is
corrupted? Is it possible for a big team of people (or ants),
each trying to reach private goals, to behave reasonably?

These questions range from theology to “political sci-
ence” and are rather difficult. In mathematics the most
prominent example of this kind is the so-called Berger the-
orem on aperiodic tilings (exact statement below). It was
proved by Berger in 1966 [1].! In 1971 the proof was sim-
plified by Robinson [7], who invented the well-known
“Robinson tiles” that can tile the entire plane but only in an
aperiodic way (Fig. 1).

Since then many similar constructions have been in-
vented (see, e.g., [3, 6]); some other proofs were based on
different ideas (e.g., [4]). However, we did not manage to
find a publication which provides a short but complete proof
of the theorem: Robinson tiles look simple, but when you

Fig. 1. The Robinson tiles [reflections and rotations are allowed].
start to analyze them you have to deal with many technical
details. (“This argument is a bit long and is not used in the
remainder of the text, so it could be skipped on first read-
ing,” says C. Radin in [6] about the proof.)

It's a pity, however, to skip the proof of a nice theorem
whose statement can be understood by a high school stu-

dent (unlike the Fermat Theorem, you don’t even need to
know anything about exponentiation). We try to fill this gap

"In fact, the motivation at that time was related to the undecidability of a specific class of first-order formulas, see [2].
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and provide a simple construction of an aperiodic tiling
with a complete proof, making the argument as simple as
possible (at the cost of increasing the number of tiles).

Of course, simplicity is a matter of taste, so we can only
hope you will find this argument simple and nice. If not,
you can look at an alternative approach in [5].

Definitions

Let A be a finite (nonempty) alphabet. A configuration is
an infinite cell paper where each cell is occupied by a let-
ter from A; formally, the configuration is a mapping of type
7% — A. A local rule is an arbitrary subset L C A* whose
elements are considered as 2 X 2 squares: (ay, az, a3, a4) €
L is a square

ar | a2

as | g

We say that these squares are allowed by rule L. A config-
uration T satisfies local rule L if all 2 X 2 squares in it are
allowed by L. Formally this means that

(T, 7@+ L) 7@+ D, 7@+ 1L, j+ 1) €L

for any i, j € Z. A non-zero integer vector ¢t = ({1,l5) is a pe-
riod of tif the t-shift preserves 7, i.e.,

(21 + by, X2 + &) = 7(xy, 22)

for any x1,20 € 7.

The Aperiodic Tilings theorem

Theorem (Berger): There exist an alphabet A and a local
rule L such that

(1) there are tilings that satisfy L;
(2) any tiling satisfying L has no period.

To prove the theorem we need some auxiliary defini-
tions.

Substitution Mappings
A substitution is a mapping s of type A — A? whose val-
ues are considered as 2 X 2 squares:

s1(a)

s3(a)

sa(a)

s4()

We say that a substitution s matches local rule L if two con-
ditions are satisfied:

(a) all values of s belong to L;

(b) taking any square from L and replacing each of the
four cells by its s-image, we get a 4 X 4 square that satis-
fies L (this means that all nine 2 X 2 squares inside it be-
long to L).

Remark. Consider a square X of any size N X N (filled
with letters from A) satisfying L. Apply substitution s to
each letter in X and obtain a square Y of size 2N X 2N. If
the substitution s matches L, then Y satisfies L. Indeed, any

2 X 2 square in Y is covered by an image of some 2 X 2
square in X.

This is true also for (infinite) configurations: applying a
substitution to each cell of a configuration that satisfies L,
we get a new configuration that satisfies L (assuming that
the substitution matches L).

Proposition 1. If a substitution s matches a local rule
L, there exists a configuration 7 that satisfies L.

Proof. Take any letter ¢ € A and apply s to it. We get a
2 X 2 square s(a) that belongs to L. Then apply s to all let-
ters in s(a) and get a 4 X 4 square s(s(a)) that satisfies L.
Next is an 8 X 8 square s(s(s(a))) that satisfies L, etc. Us-
ing a compactness argument, we conclude that there ex-
ists an infinite configuration that satisfies L.

Here is a direct proof not referring to compactness. As-
sume that substitution s is fixed. A letter a’ is a descendant
of aletter a, if a’ appears in the interior part of some square
s(s(...s(a)...)) obtained from a. Each letter has at least
one descendant, and the descendent relation is transitive
(if o’ is a descendant of @ and a” is a descendant of a’, then
a” is a descendant of a). Therefore, some letter is a de-
scendant of itself (start from any letter and consider de-
scendants until you get a loop). If ¢ appears in the interior
part of s(9(a), then s®)(q) appears in the interior part of
s@)(a), which appears (in its turn) in the interior part of
sGm(qg), and so on. Now we get a increasing sequence of
squares that extend each other and together form a con-
figuration. (Here we use that a appears in the interior part
of the square obtained from a.)

Proposition 1 is proved.

Now we formulate requirements for substitution s and
local rule L which guarantee that any configuration satis-
fying L is aperiodic. They can be called “self-similarity” re-
quirements, and guarantee that any configuration satisfy-
ing L can be uniquely divided (by vertical and horizontal
lines) into 2 X 2 squares that are images of some letters un-
der s, and that these pre-image letters form a configuration
that satisfies L. Here is the exact formulation of the re-
quirements:

(a) s is injective (different letters are mapped into dif-
ferent squares);

(b) the ranges of mappings s1,59,53,54 : A — A (that cor-
respond to the positions in a 2 X 2 square, see above) are
disjoint;

(¢) any configuration satisfying L can be split by hori-
zontal and vertical lines into 2 X 2 squares that belong to
the range of s, and pre-images of these squares form a con-
figuration that satisfies L.

The requirement (b) guarantees that there is only one
way to divide the configuration into 2 X 2 squares; the re-
quirement (a) then guarantees that each square has a
unique preimage.

Proposition 2. Assume that substitution s and local rule
L satisfy requirements (a), (b) and (c). Then any configu-
ration satisfying L is aperiodic.

Proof. Let T be a configuration satisfying L and let ¢ =
(t1,t2) be its period. Both ; and t» are even numbers. In-
deed, (c) guarantees that 7 can be split into 2 X 2 squares,
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and then (b) guarantees that the ¢-shift preserves these
squares (since, say, an upper left corner of a square must
go to another upper left corner).

Then (a) guarantees that pre-images of these 2 X 2
squares form a configuration that satisfies L and has pe-
riod #/2. Therefore, for each periodic L-configuration with
period ¢ we have found another periodic L-configuration
with period #2. An induction argument shows that there
are no periodic L-configurations.

Proposition 2 is proved.

Using Propositions 1 and 2 we conclude that to prove
the Aperiodic Tilings theorem it is enough to construct a
local rule L and substitution s matching L that satisfy (a),
(b) and (c). This we now do.

Construction: An Alphabet

Letters of A are considered as square tiles with some draw-
ings on them. We describe a local rule and substitution in
terms of these drawings.

Each of the four sides of a tile

(1) is dark or light (has one of two possible colors);

(2) has one of two possible directions, indicated by
arrows;

(3) has one of two possible orientations; this means that
one of two possible orthogonal vectors is fixed; we say that
this orthogonal vector goes “from inside to outside”. (Our
drawings show the orientation by a gray shading inside.)

In this way we get three bits per side, i.e., 12 bits for
each tile. In addition to these 12 bits, a tile carries two more
bits, so the size of our alphabet is 2'4 = 8192. These two
additional bits are graphically represented as follows: we
draw a cross (Fig. 2) in one of four versions (which differ
by a rotation).

Fig. 2. One version of cross.

It is convenient to assign color, direction, and orienta-
tion to the segments that forming a cross. Namely, two
neighboring sides of a cross are dark, the other two are
light. The direction arrows go from the center outward, and
the orientation is shown by a gray stripe that shows the “in-
side” part as indicated in the picture (gray stripes are in-
side the dark angle).

This will be important when we define the substitution.

Substitution

To perform the substitutions, we cut a tile into four tiles. The
middle lines of the tile become sides of the new (smaller)
tiles, with the same color, direction and orientation. Before
cutting we draw crosses on the small tiles in such a way that
the dark angles form a square as shown (Fig. 3).
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It is immediately clear that conditions (a) and (b) of
Proposition 2 are satisfied. Indeed, to reconstruct tile x
from its four parts, it is enough to erase some lines, and
the position of a tile in s(x) is uniquely determined by the
orientation of its central cross. The condition (¢) will be
checked later after the local rule is defined.

Local Rule

The local rule (L) is formulated in terms of lines and their
crossings. There are two types of crossings that appear
when tiles meet each other. First, a crossing appears at the
point where corners of four tiles meet; crossing lines are
formed by the tile sides. Second, a crossing appears at the
middle of tile sides, where middle lines of tiles meet the
tile side. First of all, the following requirement is put:

if two tiles have a common side, this shared side has the
same color, direction, and orientation in both tiles.

Therefore, we can speak about the color, direction and
orientation of a boundary line between two tiles without
specifying which of the two tiles is considered.

We also require that

all crossings (of both types) are either crosses or meeting
points. A cross is formed by four outgoing arrows that have
colors and orientation as shown in Fig. 4 (up to a rotation,
so there are four types of crosses). In a meeting point, two
arrows of the same color, the same orientation, but oppo-
site directions, meet “face to face,” and the orthogonal line
goes through this meeting point without change in color,
direction, or orientation. One more restriction is put: if two
dark arrows meet, then the orthogonal line goes “outward”
(its direction agrees with the orientation of the arrows).

Our local rule is formulated in terms of restrictions say-
ing which crossings are allowed when lines meet. Formally
speaking, the local rule is a set of all quadruples of tiles
where these restrictions are not violated. Fig. 4 shows the
first type of allowed crossing, a cross, in one of four pos-
sible versions (which differ by a rotation). The second type

Fig. 4. A cross formed by outgoing arrows.
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Fig. 5. Arrows meet.

of allowed crossings (symbolically shown in Fig. 5) has
more variations: (a) the meeting arrows can be horizontal
or vertical; (b) the vertical line can have two orientations;
(¢) the horizontal line can have two orientations; (d) the
vertical line can have one of two colors; (e) the horizontal
line can have one of two colors; and finally (f) if two light
arrows meet, the perpendicular line can go in either of two
directions. So we get 2 -2 -2 -2 - 3 = 48 variations in this
way.

Remark. The Local rule ensures that the orientation of
any horizontal or vertical line remains unchanged along the
whole line. (Indeed, the orientation does not change at
crosses or meeting points.)

Substitution and Local Rule

We have to check that the substitution matches the local
rule. Indeed, when tiles are split into groups of four, the
old lines still form the same crossings as before, but new
crossings appear. These new crossings appear (a) in the
centers of new tiles (where new lines cross new ones) and
(b) at the midpoints of sides of new tiles (where new lines
cross old ones). In case (a) we have legal crosses by defi-
nition. In case (b) it is easy to see that two arrows meet
creating a legal meeting point. See Fig. 6, which shows a
tile split into four tiles, with all possible meeting places of
new and old lines circled. The orientation matches because
the orientation of the new crosses is fixed by s; all other
requirements are fulfilled, too.

Fig. 6. New lines meet old lines.

Self-similarity Condition
It remains to check condition (¢) of Proposition 2. Assume
that we have a configuration that satisfies the local rule.

Step 1. Tiles are grouped by fours.

Consider an arbitrary tile in this configuration and a dark
arrow that goes outward. If meets another arrow from a
neighboring tile, and this arrow must be dark by the local
rule. These two arrows must have the same orientation,
therefore we get half of a dark square (Fig. 7), not a Z-
shape. Repeating this argument, we conclude that tiles form

Fig. 7. Two neighbor tiles.

groups of four tiles whose central lines form a dark square
(Fig. 8).

Fig. 8. Four adjacent tiles.

Step 2. These 2 X 2 squares are aligned.

If two groups (each forming a 2 X 2 square) were wrongly
aligned, as shown in Fig. 9, then the orientation of one of
the lines (in our example, the horizontal line) would change
along the line (recall that all crosses have fixed orientation
of lines). Therefore, 2 X 2 squares are aligned.

Step 3. Each group has a cross in the middle.

What can be in the group center? The middle points of the
sides of the dark square are meeting points for dark arrows.
Therefore, according to the local rule, an outgoing arrow
should be between them. So a meeting point cannot appear
in the center of a 2 X 2 group, and the only possibility is a
Cross.

Step 4. Uniform colors on sides.

To finish the proof that each group belongs to the range of
the substitution, it remains to show that the color, direc-
tion, and orientation do not change at the midpoint of a
side of a 2 X 2 group. This is because this midpoint is a
meeting point for arrows perpendicular to the side.

Step 5. Pre-image tiles satisfy the local rule.
This is evident: the substitution adds new lines. So taking
the pre-image just means that some lines are deleted, and
no violation of the local rule can happen.

The Aperiodic Tilings theorem is proved.
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