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Local Rulos and 
Gobal Order Or I 

Aperiodic Tilings 

an local rules impose a global order? I f  yes, when and how? This is a philo- 

sophical question that could be asked in many  cases. How does local interaction 

of atoms create crystals (or quasicrystals) ? How does one living cell manage to 

develop into a pine cone whose seeds form spirals (and the number of spirals 

usually is a Fibonacci number)? Is it possible to program 
locally connected computers in such a way that the net- 
work is still functional if a small fraction of the nodes is 
corrupted? Is it possible for a big team of people (or ants), 
each trying to reach private goals, to behave reasonably? 

These questions range from theology to "political sci- 
ence" and are rather difficult. In mathematics the most 
prominent example of this kind is the so-called Berger the- 
orem on aperiodic tilings (exact statement below). It was 
proved by Berger in 1966 [1]. 1 In 1971 the proof was sim- 
plified by Robinson [7], who invented the well-known 
"Robinson tiles" that can tile the entire plane but only in an 
aperiodic way (Fig. 1). 

Since then many similar constructions have been in- 
vented (see, e.g., [3, 6]); some other proofs were based on 
different ideas (e.g., [4]). However, we did not manage to 
fmd a publication which provides a short but complete proof 
of the theorem: Robinson tiles look simple, but when you 

Fig. 1. The Robinson tiles [reflections and rotations are allowed]. 

start to analyze them you have to deal with many technical 
details. ("This argument is a bit long and is not used in the 
remainder of the text, so it could be skipped on first read- 
ing," says C. Radin in [6] about the proof.) 

It's a pity, however, to skip the proof of a nice theorem 
whose statement can be understood by a high school stu- 
dent (unlike the Fermat Theorem, you don't even need to 
know anything about exponentiation). We try to fill this gap 

1In fact, the motivation at that time was related to the undecidability of a specific class of first-order formulas, see [2], 
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and provide  a s imple const ruct ion  of  an aper iodic  filing 

with  a comple te  proof,  making the a rgument  as s imple as 

poss ib le  (at  the  cos t  of increasing the number  of  tiles). 

Of course,  s implici ty is a mat te r  of  taste,  so we can only 

hope  you will find this a rgument  s imple  and nice. If not, 

you can  look  at  an al ternat ive approach  in [5]. 

Definitions 
Let A be  a finite (nonempty)  alphabet .  A conf igurat ion is 
an infinite cell  pape r  where  each cell is occup ied  by a let- 
te r  f rom A; formally,  the configurat ion is a mapping of  type 
77~ --e A, A local rule is an arbi t rary  subse t  L C A 4 whose  

e lements  are cons idered  as 2 x 2 squares:  <a~, a2, a3, a4) 
L is a square 

a l  a2 

a3 a4 

We say tha t  these  squares  are allowed by rule L. A config- 
ura t ion  ~ sat is f ies  local  n i le  L if all 2 x 2 squares  in it are  
a l lowed by  L. Formal ly  this  means  that  

( 'r(i , j) ,  y( i  + 1, j ) ,  "r(i,j + 1), r ( i  + 1, j + 1)) E L 

for any i, j ~ 2[, A non-zero integer  vec to r  t = (tl,t2) is a pe- 
riod of  ~- if the t-shift p reserves  ~-, i.e., 

r ( x l  + tl, x2 + t,~) = r(Xl, x2) 

for  any Xl,X2 E/7. 

The Aperiodic Tilings theorem 

T h e o r e m  (Berger):  There exis t  an alphabet A and a local 
rule L such that 

(1) there are t i l ings that sa t i s fy  L; 
(2) any  t i l ing sa t i s f y ing  L has no period. 

To prove  the theorem we need some auxi l iary defini- 
tions. 

Substitution Mappings 
A subs t i tu t ion  is a mapping s of  type A ~ A 4 whose  val- 
ues  are  cons ide red  as 2 x 2 squares:  

S l ( a )  s 2 ( a )  
S: a ~-> 

s3(a) s4(a) 

We say that  a subst i tu t ion s matches  local  rule L if two con- 
di t ions are  satisfied: 

(a) all va lues  of  s belong to L; 

(b) taking any square from L and replac ing each of  the 

four cel ls  by  its s-image, we get a 4 • 4 square that  satis-  

fies L (this means  that  all nine 2 x 2 squares  inside it be- 
long to L). 

R e m a r k .  Cons ider  a square X of  any size N x N (filled 
with le t ters  f rom A) satisfying L. Apply  subst i tu t ion s to 
each  le t te r  in X and obta in  a square Y of size 2N • 2N. If 
the subs t i tu t ion  s matches  L, then Y sat isf ies L. Indeed,  any 

2 • 2 square in Y is covered  by  an image of  some 2 x 2 

square in X. 

This is t rue also for  (infinite) configurat ions:  applying a 

subst i tu t ion to each  cell  of  a configurat ion that  sat isf ies L, 

we get a new configurat ion that  sat isf ies L (assuming that  

the subst i tu t ion matches  L). 
P r o p o s i t i o n  1. If a subst i tu t ion s matches  a local  rule 

L, there  exists  a conf igurat ion r that  sat isf ies L. 
Proof. Take any le t ter  a ~ A and apply  s to it. We get a 

2 x 2 square s(a) that  belongs  to L. Then apply  s to all let- 
ters  in s(a) and get  a 4 x 4 square s(s(a))  that  sat isfies L. 
Next  is an 8 • 8 square s(s(s(a)))  that  sat isf ies L, etc. Us- 
ing a compac tnes s  argument,  we conc lude  that  there  ex- 
ists an infinite configurat ion that  sat isf ies L. 

Here is a d i rec t  p roof  not  referr ing to compactness .  As- 

sume that  subst i tu t ion s is fixed. A le t ter  a '  is a descendant  
of a le t ter  a, if a '  appears  in the in ter ior  par t  of  some square 

s ( s ( . . ,  s ( a ) . . .  )) obta ined  from a. Each le t ter  has  at  leas t  
one descendant ,  and  the descenden t  re la t ion is t ransi t ive 

(if a '  is a descendan t  of a and a" is a descendan t  of a ' ,  then 
a" is a descendan t  of a). Therefore,  some le t ter  is a de- 
scendant  of i tself  (s tar t  f rom any le t ter  and cons ider  de- 
scendants  until  you get a loop). If a appea r s  in the  in ter ior  
par t  of  s(rO(a), then s(*O(a) appears  in the in ter ior  par t  of  
s(2*O(a), which appears  (in its turn)  in the  in ter ior  par t  of  

s(aO(a), and so on. Now we get a increas ing sequence of  
squares that  ex tend  each  o ther  and toge ther  form a con- 

figuration. (Here we use that  a appea r s  in the  in ter ior  par t  
of  the square ob ta ined  from a.) 

Propos i t ion  1 is proved.  

Now we formulate  requirements  for subst i tu t ion s and 
local  rule L which guarantee  that  any configurat ion satis-  
fying L is aperiodic.  They can be cal led "self-similarity" re- 
quirements ,  and guarantee  that  any configurat ion satisfy- 
ing L can be uniquely divided (by vert ical  and hor izonta l  
l ines) into 2 X 2 squares that  are  images  of  some le t ters  un- 
der  s, and that  these  pre- image le t ters  form a conf igurat ion 
that  sat isf ies L. Here is the exac t  formulat ion of  the re- 
quirements:  

(a) s is injective (different  le t ters  are m a p p e d  into dif- 
ferent  squares);  

(b) the ranges  of  mappings  Sl,S2,S3,S4 : A ~ A ( that  cor- 
r e spond  to the  pos i t ions  in a 2 x 2 square,  see above)  are 
disjoint; 

(c) any configurat ion satisfying L can be  spli t  by hori- 
zontal  and ver t ical  l ines into 2 x 2 squares  that  belong to 
the range of  s, and pre- images  of  these  squares  form a con- 
f iguration that  sat isf ies L. 

The requi rement  (b) guarantees  that  there  is only one 

way  to divide the configurat ion into 2 • 2 squares; the re- 

qui rement  (a) then guarantees  that  each square has  a 
unique preimage.  

P r o p o s i t i o n  2. Assume that  subst i tu t ion s and local  rule 
L sat isfy requi rements  (a), (b) and (c). Then any configu- 

ra t ion sat isfying L is aperiodic.  
Proof. Let T be a configurat ion satisfying L and let  t = 

(tl,t2) be its period.  Both tl and t2 are even numbers .  In- 
deed, (e) guarantees  that  r can be  spli t  into 2 x 2 squares,  
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and then Co) guarantees that the t-shift preserves these 
squares (since, say, an upper  left corner  of  a square must  
go to another upper  left corner). 

Then (a) guarantees that pre-images of  these 2 • 2 
squares form a configuration that satisfies L and has pe- 
riod t/2. Therefore, for each periodic L-configuration with 
period t we have found another  periodic L-configuration 
with period t/2. An induction argument  shows that there 
are no periodic L-configurations. 

Proposit ion 2 is proved. 
Using Proposit ions 1 and 2 we conclude that to prove 

the Aperiodic Tilings theorem it is enough to construct  a 
local rule L and substitution s matching L that satisfy (a), 
Co) and (c). This we now do. 

C o n s t r u c t i o n :  A n  A l p h a b e t  

Letters of  A are considered as square tiles with some draw- 
ings on them. We describe a local rule and substitution in 
terms of  these drawings. 

Each of  the four sides of  a tile 
(1) is dark or  light (has one of  two possible colors); 
(2) has one of  two possible directions, indicated by 

arrows; 
(3) has one of  two possible orientations; this means that 

one of  two possible orthogonal  vectors  is fixed; we say that 
this orthogonal vector  goes "from inside to outside". (Our 
drawings show the orientation by a gray shading inside.) 

In this way we get three bits per  side, i.e., 12 bits for 
each tile. In addition to these 12 bits, a tile carries two more 
bits, so the size of  our alphabet is 214 = 8192. These two 
additional bits are graphically represented as follows: we 
draw a cross (Fig. 2) in one of  four versions (which differ 
by a rotation). 

: i : 

Fig. 2. One version of cross. 

It is convenient  to assign color, direction, and orienta- 
tion to the segments  that forming a cross. Namely, two 
neighboring sides of  a cross are dark, the other  two are 
light. The direction arrows go from the center  outward, and 
the orientation is shown by a gray stripe that shows the "in- 
side" part  as indicated in the picture (gray stripes are in- 
side the dark angle). 

This will be important  when we define the substitution. 

S u b s t i t u t i o n  
To perform the substitutions, we cut a tile into four tiles. The 
middle lines of  the tile become sides of the new (smaller) 
tiles, with the same color, direction and orientation. Before 
cutting we draw crosses on the small tiles in such a way that 
the dark angles form a square as shown (Fig. 3). 

Fig. 3. A tile split in four parts. 

It is immediately clear that  conditions (a) and (b) of  
Proposit ion 2 are satisfied. Indeed, to reconstruct  tile x 
f rom its four parts, it is enough to erase some lines, and 
the position of  a tile in s(x) is uniquely deternlined by the 
orientation of  its central cross. The condition (c) will be 
checked later after the local rule is defined. 

L o c a l  R u l e  

The local rule (L) is formulated in terms of  lines and their 
crossings. There are two types of  crossings that appear  
when tiles meet  each other. First, a crossing appears at the 
point where corners of  four tiles meet; crossing lines are 
formed by the tile sides. Second, a crossing appears at the 
middle of  tile sides, where middle lines of  tiles meet  the 
tile side. First of  all, the following requirement is put: 

if two tiles have a common  side, this shared side has the 
same color, direction, and orientation in both tiles. 

Therefore, we can speak about  the color, direction and 
orientation of  a boundary  line between two tiles without 
specifying which of  the two tiles is considered. 

We also require that 

all crossings (of both types) are either crosses or meeting 
points. A cross is formed by four outgoing arrows that have 
colors and orientation as shown in Fig. 4 (up to a rotation, 
so there are four types of  crosses). In a meeting point, two 
arrows of  the same color, the same orientation, but oppo- 
site directions, meet  "face to face," and the orthogonal line 
goes through this meeting point without  change in color, 
direction, or orientation. One more  restriction is put: if two 
dark arrows meet, then the orthogonal  line goes "outward" 
(its direction agrees with the orientation of  the arrows). 

Our local rule is formulated in terms of  restrictions say- 
ing which crossings are allowed when lines meet. Formally 
speaking, the local rule is a set of  all quadruples of  tiles 
where these restrictions are not  violated. Fig. 4 shows the 
first type of  allowed crossing, a cross, in one of  four pos- 
sible versions (which differ by a rotation). The second type 

+ 
Fig. 4. A cross formed by outgoing arrows. 
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Fig. 5. Arrows meet. 

.v 

! .......... I ........ ( l  ......... 
Fig. 7. Two neighbor tiles. 

of a l lowed cross ings  (symbolical ly  shown in Fig. 5) has  
more  variat ions:  (a) the meet ing a r rows  can be horizontal  
or  vertical;  (b) the ver t ical  line can have two orientat ions;  
(c) the  hor izonta l  line can have two orientat ions;  (d) the 
ver t ical  line can have one of  two colors; (e) the horizontal  
l ine can have one of  two colors; and finally ( f )  if two light 

a r rows  meet ,  the perpendicu la r  line can go in e i ther  of  two 
direct ions.  So we get 2 �9 2 �9 2 �9 2 �9 3 = 48 var ia t ions  in this 

way. 
R e m a r k .  The Local rule ensures  that  the or ienta t ion of  

any hor izonta l  or  ver t ical  line remains  unchanged  along the 

whole  line. (Indeed,  the or ienta t ion does  not  change at  

c rosses  or  meet ing points .)  

S u b s t i t u t i o n  a n d  L o c a l  R u l e  

We have to check  that  the subst i tut ion ma tches  the local  
rule. Indeed,  when ti les are  spli t  into groups  of  four, the 
old l ines still form the same cross ings  as  before,  but  new 
cross ings  appear .  These new cross ings  appea r  (a) in the 
cen te rs  of  new ti les (where  new lines c ross  new ones)  and 

(b) at  the midpoin ts  of  s ides  of  new t i les  (where  new lines 
c ross  old ones).  In case  (a) we have legal c rosses  by defi- 

nition. In case  (b) it is easy to see that  two ar rows meet  
creat ing a legal meet ing point.  See Fig. 6, which shows  a 

tile spli t  into four  tiles, with all poss ib le  meet ing p laces  of 
new and old lines circled. The or ienta t ion matches  because  
the or ienta t ion  of  the new crosses  is f ixed by s; all o ther  

requi rements  are  fulfilled, too. 

i 1:: $ ..... i 
Fig. 6. New lines meet old lines. 

S e l f - s i m i l a r i t y  C o n d i t i o n  

It r emains  to check  condi t ion (c) of  Propos i t ion  2. Assume 

that  we  have a configurat ion that  sat isf ies the local rule. 

Step 1. Tiles are grouped by fours. 

Consider an arb i t rary t i le in this conf igurat ion and a dark 

a r row that  goes  outward.  It meets  ano ther  a r row from a 

neighbor ing tile, and this a r row mus t  be dark  by the local  
rule. These  two ar rows  must  have the same orientat ion,  
therefore  we get  half  of  a dark  square (Fig. 7), not  a Z- 
shape.  Repeat ing  this argument,  we conc lude  that  t i les form 

groups of  four  t i les  whose  centra l  l ines form a dark  square 
(Fig. 8). 

Fig. 8. Four adjacent tiles. 

Step 2. These 2 X 2 squares are aligned. 

If two groups  (each forming a 2 x 2 square)  were  wrongly 
aligned, as shown in Fig. 9, then the or ienta t ion of  one of  
the lines (in our  example ,  the hor izonta l  line) would  change 
along the line (recall  that  all c rosses  have f ixed or ienta t ion 
of  lines). Therefore,  2 • 2 squares  are  aligned. 

/ - - I  : 

Fig. 9. Bad placement. 

Step 3.  Each group has a cross in the middle.  

What can be  in the group center?  The middle  poin ts  of  the 
sides of  the dark  square are meet ing points  for dark  arrows.  
Therefore,  according  to the local  rule, an outgoing a r row 
should be be tween  them. So a meet ing poin t  cannot  appea r  
in the cen te r  of  a 2 • 2 group, and the only poss ibi l i ty  is a 
c r o s s .  

Step 4. Uniform colors on sides. 

To finish the p roof  that  each group belongs  to the range of  

the subst i tut ion,  it  remains  to show that  the color, direc-  
tion, and or ienta t ion do not  change at  the midpoin t  of  a 

side of  a 2 • 2 group. This is because  this midpoin t  is a 
meet ing point  for a r rows  perpendicu la r  to the side. 

Step 5.  Pre- image tiles satisfy the local rule. 

This is evident:  the subst i tut ion adds  new lines. So taking 

the pre- image jus t  means  that  some lines are  deleted,  and 
no violat ion of  the local  rule can happen.  

The Aper iodic  Tilings theorem is proved.  
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