
Rules Dependencies in Backward Chaining
of Conceptual Graphs Rules

Jean-François Baget1 and Éric Salvat2

1 INRIA Rhône-Alpes/LIRMM
jean-francois.baget@inrialpes.fr

2 IMERIR
salvat@imerir.com

Abstract. Conceptual Graphs Rules were proposed as an extension of
Simple Conceptual Graphs (CGs) to represent knowledge of form “if A
then B”, where A and B are simple CGs. Optimizations of the deduction
calculus in this KR formalism include a Backward Chaining that unifies
at the same time whole subgraphs of a rule, and a Forward Chaining
that relies on compiling dependencies between rules.
In this paper, we show that the unification used in the first algorithm
is exactly the operation required to compute dependencies in the second
one. We also combine the benefits of the two approaches, by using the
graph of rules dependencies in a Backward Chaining framework.

1 Introduction

Conceptual graphs (CG) rules [13] were proposed as an extension of simple CGs
[12] to represent knowledge of form ”if A then B”, where A and B are simple
CGs. This graph-based knowledge representation (KR) formalism (named SR
in [3]) was further formalized in [11]. Notwithstanding the interest of graphical
representation of knowledge for an human interaction purpose, we are mainly
motivated in using the graph structure of CGs to improve sound and complete
deduction algorithms. Using graph-theoretical operations, instead of translat-
ing CGs into their equivalent formulae and use a FOL solver, the algorithms
presented in this paper explore a different optimization paradigm in KR.

Simple CGs [12] form the basic KR formalism (named SG in [3]) on which
CG rules are built. The semantics Φ identifies them with formulae in positive,
conjunctive, existential FOL (without function symbols) [13]. Sound and com-
plete reasonings in SG (a NP-hard problem) can be computed with a kind of
graph homomorphism named projection [5].

Projection is also the elementary operation in Forward Chaining (FC) of
CG rules [11], a graph-based algorithm computing deduction in SR. Since CG
Rules can be translated into FOL formulae having the form of Tuple Generating
Dependencies (TGDs) [7], SR-deduction is semi-decidable.

A Backward Chaining (BC) framework is often used to avoid a major pitfall in
FC: applying rules that are unrelated to the query. Though CG Rules deduction
can be computed using a PROLOG-like BC algorithm, successively unifying

H. Schärfe, P. Hitzler, and P. Øhrstrøm (Eds.): ICCS 2006, LNAI 4068, pp. 102–116, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 103

predicate after predicate in the equivalent FOL formulae, [10] proposed to rely
upon the structure of the graph and unify at the same time whole subgraphs of
the rule (called pieces), effectively reducing the number of backtracks [7].

To optimize FC, [4] defines neutrality: a CG Rule R1 is neutral w.r.t. a rule
R2 if no application of R1 on a CG can create a new application of R2. The
resulting graph of rules dependencies (GRD) allows to reduce the number of
checks for rule applicability as well as the cost of these checks in FC.

In this paper, we show that the criterium used to compute dependencies in
[4] and the piece unification of [10] are similar operations. In particular, piece
unification generalizes computation of dependencies to rules having individual
markers in their conclusion (excluded in [4]). On the other hand, we generalize
piece unification to any type hierarchy (and not only lattices, as in [10]). We
propose solutions to use the GRD in a BC framework.

Organization of the paper. Sect. 2 and 3 are respectively devoted to simple
CGs (the SG language) and CG rules (SR). We present the syntax, the semantics
(via the translation Φ to FOL), and a sound and complete calculus (projection in
the first case, basic FC in the latter) of both languages. The first enhancement
of SR-deduction, the BC based upon piece unification [11,10], is presented
in Sect. 4. The graph of rules dependencies (GRD) [4], its use in FC, and its
relationships with piece unification, are presented in Sect. 5. Finally, in Sect. 6,
we show how to efficiently use the GRD in a BC framework.

2 Simple Conceptual Graphs

We recall fundamental results on simple CGs (without coreference links) [12,13].
Sect. 2.1 presents their syntax, and Sect. 2.2, their semantics [13]. We use these
formulas to define simple CGs deduction (SG-deduction in [3]). In Sect. 2.3,
we use projection [5] as a calculus for SG-deduction.

2.1 Syntax

Definition 1 (Vocabulary). A vocabulary is a tuple (TC , (T 1
R, . . . , T N

R), I, κ)
where TC , T 1

R, . . . , T N
R are pairwise disjoint partially ordered sets (partial orders

are denoted by ≤), I is a set, and κ : I → TC is a mapping. Elements of TC

are called concept types, elements of T i
R relation types of arity i, elements of

I individual markers, and κ is the conformity relation.

Definition 2 (Simple CGs). A simple CG over a vocabulary V is a tuple
G = (E, R, ε, γ) where E and R are two disjoint sets, respectively of entities
and relations. The mapping ε labels each entity of E by a pair of TC × (I ∪ {∗})
(its type and marker). An entity whose marker is ∗ is called generic, other-
wise it is an individual. For each individual x ∈ E, type(x) = κ(marker(x)).
The mapping ε also labels each relation of R by a relation type (its type). We call

104 J.-F. Baget and É. Salvat

degree of a relation the arity of its type. The mapping γ maps each relation of
degree k to a k-tuple of Ek. If γ(r) = (x1, . . . , xk) we denote by γi(r) = xi the
ith argument of r. If x and y are two arguments of r, x and y are neighbours.

Simple CGs can be seen both as bipartite multigraphs, as in [5] (γi(r) = e means
that there is an edge labelled i between the concept node e and the relation node
r); or as directed multiple hypergraphs, as in [2] (γ(r) = (x1, . . . , xk) is a directed
hyperarc whose ends are the concept nodes x1, . . . , xk).

Whatever the structure used to encode them, they share the same drawing. An
entity e with ε(e) = (t, m) is represented by a rectangle enclosing the string “t: m”.
A relation r typed t is represented by an oval enclosing the string “t”. If γ(r) =
(x1, . . . , xk), then for 1 ≤ i ≤ k, we draw a line between the oval representing r and
the rectangle representing xi, and write the number i next to it.

2.2 Semantics

Simple CGs semantics are often expressed via a translation Φ to first-order logics
[13], and deduction is defined by the logical consequence of associated formulas.
This translation Φ is explicited in [13,8].

– The interpretation Φ(V) of a vocabulary V is a FOL formula translating
the order on concept and relation types; i.e. a conjunction of formulae
∀x1 . . .∀xk(t(x1, . . . , xk) → t′(x1, . . . , xk)) where t is a type (concept or re-
lation) more specific than t′.

– The interpretation Φ(G) of a simple CG G is the existential closure of a
conjunction of atoms interpreting concepts and relations between them.

Definition 3 (SG-Deduction). Let G and H be two simple CGs over a vocab-
ulary V. We say that G entails H in V (and note G |=V H) iff Φ(H) is a logical
consequence of Φ(G) and Φ(V).

2.3 Calculus

Definition 4 (Projection). Let G and H be two simple CGs over a vocabulary
V, with G = (EG, RG, εG, κG) and H = (EH , RH , εH , κH). A projection from H
into G (according to V) is a mapping π : EH → EG such that:

– For each entity e ∈ EH , type(π(e)) ≤ type(e). If, moreover, e is an individ-
ual, then marker(π(e)) = marker(e).

– For each relation r ∈ RH , with γH(r) = (x1, . . . , xp), there exists a relation
r′ ∈ RG such that type(r′) ≤ type(r) and γG(r′) = (π(x1), . . . , π(xk)).

As a generalization of graph homomorphism, projection is NP-complete.

Normal form of a simple CG. A simple CG G over V is said normal if all its
individuals have distinct markers. A simple CG G is put into its normal form

Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 105

nf(G) by successively joining all pairs of individuals having the same marker.
We note join(e1, e2) the individual resulting from a join: it has same marker and
same type (thanks to the conformity relation) as e1 and e2. Putting a simple
CG into its normal form is linear in the size of the graph.

Theorem 1 (Soundness and completeness [9]). Let G and H be two simple
CGs over a vocabulary V. Then G |=V H if and only if there is a projection from
H into nf(G), the normal form of G, according to V.

3 Conceptual Graphs Rules

CG rules have been introduced in [13] as an extension of simple CGs allowing to
represent knowledge of form “if H then C”, where H and C are simple CGs.
As for simple CGs, we first present their syntax (Sect. 3.1) and semantics. As a
sound and complete calculus for SR-deduction, we present Forward Chaining
(FC) [11], based upon projection of simple CGs.

3.1 Syntax

Definition 5 (CG rules). A conceptual graph rule (or CG rule) over a vo-
cabulary V is a triple R = (λ, H, C) where H = (EH , RH , εH , γH) and C =
(EC , RC , εC , γC) are two simple CGs over V, and λ is a bijection between a
distinguished subset of generic entities of EH (called connecting entities of H)
and a subset of generic entities of EC (called connecting entities of C), s.t.
λ(e) = e′ ⇒ type(e) = type(e′). The simple CG H is called the hypothesis of R,
and C its conclusion. They are respectively denoted by Hyp(R) and Conc(R).

This definition of CG rules clearly relates to a pair of λ-abstractions [11].
The usual way to represent such a rule is by drawing two boxes next to each other.

The box to the left is the hypothesis box, and the box to the right the conclusion box.
Draw between these boxes an implication symbol ⇒. Draw the simple CG H (as done
in Sect. 2.1) in the hypothesis box and the simple CG G in the conclusion box. Finally,
for each pair (e, λ(e)) of connecting entities, draw a dashed line (a coreference link)
between the rectangle representing e and the rectangle representing λ(e).

3.2 Semantics

Interpretation of a CG Ruleset. Let R be a CG ruleset (a set of CG rules)
over V . Its interpretation Φ(R) is the conjunction of the FOL formulas Φ(R) of
form ∀x1 . . .∀xp(Φ(R) → (∃y1 . . . ∃yqΦ(R))) interpreting its CG rules [11].

Definition 6 (SR-Deduction). Let G and H be two simple CGs over V, and
R be a CG ruleset. We say that G, R entails H in V (and note G, R |=V H) iff
Φ(H) is a logical consequence of Φ(G), Φ(R) and Φ(V).

106 J.-F. Baget and É. Salvat

3.3 Calculus

Application of a CG rule. Let R = (λ, H, C) be a CG rule and G =
(E, R, ε, γ) be a simple CG over V . The CG rule R is said applicable to G iff
there is a projection π from Hyp(R) into nf(G). In that case, the application of
R on G following π produces a simple CG G′ = α(G, R, π) built as follows. We
define the disjoint union of two graphs G1, G2 as the graph whose drawing is
the juxtaposition of those of G1 and G2. We build the disjoint union of a copy
of nf(G) and of a copy of Conc(R). Then, for each pair (e, λ(e)) of connecting
entities in R, we join the entity x in the copy of nf(G) obtained from π(e) and
the entity y in the copy of Conc(R) obtained from λ(e). Since ε(e) = ε(λ(e)), the
label of x (i.e. the label of π(e)) is a specialization of the label of y, and ε(x) is
used as the label of join(x, y).

Deriving a simple CG with CG rules. Let R be a CG ruleset and G, G′

be two simple CGs over a vocabulary V . We say that G′ is immediately derived
from G in R (and note G

R	→ G′) iff there is a rule R ∈ R and a projection π
from Hyp(R) into G such that G′ = α(G, R, π). We say that G′ is derived from
G in R (and note G

R
� G′) iff there is a sequence G = G0, G1, . . . , Gn = G′ of

simple CGs over V such that, for 1 ≤ i ≤ n, Gi−1
R	→ Gi.

Theorem 2 (Soundness and completeness [11]). Let R be a CG ruleset,
and G and H be two simple CGs over a vocabulary V. Then G, R |=V H if and
only if there is a simple CG G′ such that G

R
� G′ and H projects into nf(G′).

Forward Chaining of CG rules. The Forward Chaining (FC) algorithm [11]
immediately follows from theorem 2 and the property of confluence (Prop. 1).

Property 1 (Confluence). Let R be a CG ruleset, and G and H be two simple
CGs over a vocabulary V . Let us suppose that G, R |=V H . Then for every
simple CG G′ such that G

R
� G′, the entailment G′, R |=V H holds.

Any algorithm exploring all rule applications (Th. 2), e.g. using a breadth-first
method, in any order (Prop. 1), will lead to a simple CG entailing the query H ,
if it exists. Such an algorithm, named FC, is proposed here (Alg. 1).

Algorithm 1. Forward Chaining
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: yes iff G, R |=V H (infinite calculus otherwise).
ProjList ← ∅ ;
while true do

for R ∈ R do
for π ∈ Projections(Hyp(R), G) do

ProjList ← ProjList ∪{(R, π)} ;

for (R, π) ∈ ProjList do
G ← α(G, R, π) ;
if Projects?(H, G) then return yes ;

Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 107

Decidability. Since FOL formulae associated with CG rules have the same form
as TGDs [7], SR-deduction is semi-decidable (a sound and complete algorithm
can compute in finite time whenever the answer is yes, but cannot always halt
otherwise). Some decidable subclasses of the problem are proposed in [3]: let us
suppose that, after the nth execution of the while loop in Alg. 1, the simple CG
G obtained is equivalent to G as it was at the beginning of this loop. In that
case, the algorithm could safely stop and answer no. A CG ruleset ensured to
have this behavior is called a finite expansion set. Examples of finite expansion
sets are disconnected CG rules (having no connecting entities) or range restricted
CG rules (having no generic entity in the conclusion). Note that the union of
two finite expansion rulesets is not necessarily a finite expansion ruleset.

4 Piece Unification and Backward Chaining

FC generates explicitly knowledge implicitly encoded in CG rules. By opposition,
a Backward Chaining (BC) algorithm starts with the query H and rewrites it
using unification. The interest of piece unification [11,10] w.r.t. a PROLOG-like
unification, is that it unifies at the same time a whole subgraph, instead of a
simple predicate. Sect. 4.1 present preliminary definitions and Sect. 4.2 piece
unification. A BC algorithm using piece unification is presented in Sect. 4.3.

4.1 Preliminary Definitions

Definition 7 (Cut points, pieces). Let R = (λ, H, C) be a CG rule over V.
A cut point of C is either a connecting entity (Def. 5) or an individual of C. A
cut point of H is either a connecting entity of H or an individual of H whose
marker also appears in C. A piece P of C is a subgraph of C whose entities are
a maximal subset of those of C s.t. two entities e1 and e2 of C belong to P if
there is a path e1, x1, . . . , xk, e2 where the xi are not cut points of C.

Conjunctive CGs. When a CG rule R is applied to a simple CG G, the entities
of α(G, R, π) obtained from a join between a connecting entity of Conc(R) and
an entity of G may have a more specific label than the former entities (Sect. 3.3).
So to compute unification, we have to find which cut points of Conc(R) have
a common specialization with entities of the query. In [11,10], such common
specialization of two entities e1 and e2 was typed by the greatest lower-bound
(glb) of type(e1) and type(e2). The existence of the glb was ensured by using a
lattice as partial order on concept types. We generalize the previous approach
by considering, as in [2,6], conjunctive types.

A conjunctive CG is defined as a simple CG, but the type of an entity can
be the conjunction of types of TC . The interpretation of an entity e with ε(e) =
(t1
 . . .
tp, m) is the conjunction φ(e) = t1(f(e))∧ . . .∧tp(f(e)). The partial or-
der on TC is extended to the partial order ≤� on conjunctive types: t1
. . .
tp ≤�
t′1
 . . .
 t′q iff ∀t′i, ∃tj with tj ≤ t′i. We define the join operation between two

108 J.-F. Baget and É. Salvat

entities e1 and e2 having different (conjunctive) types: the type of e = join(e1, e2)
is the conjunction of the types of e1 and e2. If both e1 and e2 are individuals
with same marker m, or generic entities with m = ∗, the marker of e is also m.
If e1 has individual marker m and e2 is generic, the marker of e is m. The label
ε(e) defined here is the common specialization of ε(e1) and ε(e2). The projection
algorithm is the same as in Sect. 2.3, but relies on ≤� to compare conjunc-
tive types. Normalization relies on the above-mentioned join operation. Up to
these two differences, the soundness and completeness result (Th. 1) remains the
same.

Compatible partitions. A set of entities E is join compatible iff there is a
concept type of TC more specific than all types in E and there is at most one
individual marker in E. Let G be a simple or conjunctive CG and E be a join
compatible subset {e1, . . . , ep} of entities of G. The join of G according to E
is the conjunctive CG obtained by joining e1 and e2 into e, then by joining G
according to {e, e3, . . . , ep}, until this subset contains a single entity e: we note
e = join(E). Let S and S′ be two disjoint sets of entities. Let P = (P1, . . . , Pn)
and P ′ = (P ′

1, . . . , P
′
n) be two ordered partitions, resp. of S and S′ (a parti-

tion of X is a set of pairwise disjoint sets whose union equals X). P and P ′

are compatible partitions of S and S′ iff Pi ∪ P ′
i is a join compatible set, for

1 ≤ i ≤ n.

Definition 8 (Specialization according to a compatible partition). Let
G and G′ be two simple or conjunctive CGs over V. Let E and E′ be respective
subsets of entities of G and G′. Let P = (P1, . . . , Pn) and P ′ = (P ′

1, . . . , P
′
n)

be two compatible partitions of E and E′. The specialization of G according to
(P, P ′) is the conjunctive CG sp(G, (P, P ′)) built from G by building the join of
G according to Pi, for 1 ≤ i ≤ n, then by replacing the label of each join(Pi)
with its common specialization join(P ′

i).

The join of G and G′ according to compatible partitions P and P ′ is the con-
junctive CG obtained by making the disjoint union of sp(G, (P, P ′)) and of
sp(G′, (P, P ′)), then by joining each join(Pi) with join(P ′

i).

4.2 Piece Unification

Definition 9 (Piece unification). Let Q be a simple (or conjunctive) CG (the
query) and R = (λ, H, C) be a CG rule over V. Q and R are said unifiable iff
there is a piece unification between Q and R, i.e. a triple µ = (PC , PQ, Π)
where:

– PC and PQ are two compatible partitions, resp. of a subset of cut points of
C and a of subset of entities of Q that will be considered as cut points of
Q;

Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 109

– Π is a projection from a non-empty set of pieces of µ(Q) = sp(Q, (PC , PQ))
(cut points of µ(Q) are entities resulting from the join of cut points of Q)
into µ(R) = sp(C, (PC , PQ)) such that Π(join(PQ

i)) = join(PC
i).

Rewriting of a query. An unification µ between a query Q and a CG rule R

determines a rewriting of Q (that can become a conjunctive CG). Simply put,
we remove from the new query the conclusion of R and add its hypothesis.

More precisely, let Q be a simple (or conjunctive) CG, R = (λ, H, C) be a
CG rule, and µ = (PC , PQ, Π) be a piece unification between Q and R. We call
unification result of µ on Q and note β(Q, R, µ) the conjunctive CG built as
follows:

1. Let SC and SQ be the sub-partitions of PC and PQ formed respectively
from the codomain and the domain of Π ;

2. Let SH be a partition of the subset of cut points of H that correspond to
the partition SC of cut points of C (if e is an entity of a partition SC

i of
SC , the entities g1, . . . , gq of H that correspond to e, i.e. either q = 1 and
λ(g1) = e or g1, . . . , gq and e have the same individual marker, belong to the
partition SH

i);
3. Build the conjunctive CGs Q′ = sp(Q, (SH , SQ)) and H ′ = sp(H, (SH , SQ));
4. Let P be a piece of Q whose entities are in the domain of Π . We remove

from Q′ all relations of P and all entities of P that are not cut points of
Q′;

5. We finally join Q′ and H ′ according to (SH , SQ).

Definition 10 (Resolution). Let H be a simple CGs, and R be a CG ruleset
(that includes the facts CG G as a rule with an empty hypothesis) over V. We
call resolution of H in R a sequence H = H1, H2, . . . , Hp+1 of conjunctive CGs
such that, for 1 ≤ i ≤ p, there is a piece unification µ between Hi and a rule
R ∈ R, Hi+1 = β(Hi, R, µ) and Hp+1 is the empty CG.

Theorem 3 (Soundness and completeness [11]). Let G and H be two sim-
ple CGs, and R be a CG ruleset over V. Then G, R |=V H if and only if there
is a resolution of H in R ∪ {G} (G = (λ, ∅, G) is a CG rule equivalent to G).

Proof. [11,10] proves that if H = H1, H2, . . . , Hp+1 = ∅ is a resolution of H in
R using successively the rules Ri1 , . . .Rip = G, then there is a FC derivation
sequence G = G1, . . . , Gp that successively applies the rules Ri1 , . . . Rip−1 in re-
verse order, and such that H projects into Gp. Conversely, from a FC derivation,
we can extract a subsequence that corresponds to a resolution using the same
rules in reverse order. The theorem is a consequence of this correspondences
between FC and BC.

110 J.-F. Baget and É. Salvat

4.3 Backward Chaining

Algorithm 2. Backward Chaining
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: If yes, then G, R |=V H , if no, then G, R �|=V H (no halting ensured).
UnifList ← NewFilo() ;
for R ∈ R ∪ {G} do

for µ ∈ Unifications(R, H) do
UnifList ← AddFilo(UnifList, (µ, R, H)) ;

while UnifList �= ∅ do
(µ, R, H) ← FiloRemove(UnifList) ;
H ′ ← Rewrite(µ, R, H) ;
if H ′ = ∅ then return yes ;
for R

′ ∈ R do
for µ′ ∈ Unifications(R′, H ′) do

UnifList ← AddFilo(UnifList, (µ′, R
′, H ′)) ;

return no ;

Comparing FC and BC. It is well known (e.g. [1]) in Logic Programing that,
from BC or FC, no algorithm is always better. The main differences are that
1) FC enriches the facts until they contain an answer to the query while BC
rewrites the query until all its components have been proven; 2) FC deriva-
tion is a confluent mechanism, while BC rewritings depends upon the order of
these rewritings, and thus requires a backtrack; and 3) FC enumerates all so-
lutions to the query by applying rules breadth-first, while BC usually (as in
Alg. 2) tries to find them quicker by rewriting the query depth-first (eventu-
ally missing solutions). A breadth-first version of BC, that misses no solution,
can be implemented by replacing the Filo structure of UnifList in Alg. 2 by a
Fifo. Completeness is then achieved at the expense of efficiency. [7] compares
piece unification with the standard PROLOG that unifies one predicate at a
time. Though piece unification leads to fewer backtracks in query rewriting, it
does not always translate to the overall efficiency of the algorithm, since these
backtracks are hidden in unifications. Optimization and compilation of unifi-
cations in the graph of rules dependencies (Sect. 6) can be solutions to this
problem.

5 Rules Dependencies in Forward Chaining

The notions of neutrality/dependency between CG rules were introduced in [4]
to enhance the basic FC (Alg. 1). The basic idea is expressed as follows: suppose
that the conclusion of R1 contains no entity or relation that is a specialization
of an entity or a relation in the hypothesis of R2. Then an application of R1 on
a given simple CG does not create any new application of R2. This is a simple
case of neutrality between rules. A general definition is provided in Sect. 5.1.We

Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 111

present in Sect. 5.2 a characterization of dependency (the inverse notion of neu-
trality), based upon piece unification, that generalizes the characterization of
[4]. Finally, in Sect. 5.3, we enhance FC by encoding all dependencies of a CG
ruleset (in the graph of rules dependencies [4]).

5.1 Neutrality and Dependency

Though the definition of neutrality and dependency expressed below seems
strictly identical to [4], it is indeed more general. A component of this def-
inition is rule application (Sect. 3.3). In this paper, the graph on which the
rule is applied is put into normal form, and not in [4]. As a consequence, the
algorithm was not complete for CG rulesets containing rules having individ-
uals in the conclusion. Since our definition of derivation takes into account
the need to put a simple CG into its normal form after each application of
a rule, the following definition of neutrality/dependency is more adapted to
SR-deduction.

Definition 11 (Neutrality, Dependency). Let R1 and R2 be two CG rules
over a vocabulary V. We say that R1 is neutral w.r.t. R2 iff, for every simple
CG G over V, for every projection π of Hyp(R1) into G, the set of all pro-
jections of Hyp(R2) into α(G, R1, π) and the set of all projections of Hyp(R2)
into G are equal. If R1 is not neutral w.r.t. R2, we say that R2 depends
upon R1.

5.2 Piece Unification and Dependency

Since we have changed the definition of derivation used in [4] the characterization
of dependency must take that change into account. We prove here that this
updated characterization corresponds to the piece unification of [11,10], for CG
rules that are not trivially useless. A CG rule R is said trivially useless if, for
every simple CG G, for every projection π of Hyp(R) on G, G = α(G, R, π). We
can remove in linear time all trivially useless rules from a CG ruleset.

Theorem 4. Let R1 and R2 be two CG rules over a vocabulary V, where R1 is
not trivially useless. Then R2 depends upon R1 if and only if Hyp(R2) and R1
are unifiable (see Def. 9).

Composition of unification and projection (noted). Let G and H be a simple
CG, and R be a CG rule over V . Let µ = (PC , PQ, Π) be a unification between
H and R. Let π be a projection from Hyp(R) into G. We say that µ and π
are composable iff for each compatible partition PH

i whose join belongs to the
domain of Π , the entities of Hyp(R) associated (by λ−1 or by sharing the same
individual marker) with the compatible partition PC

i of Conc(R) are all mapped
by π into the same entity noted f(PH

i). If µ and π are composable, then we note
µπ : H → α(G, R, π) the partial mapping defined as follows: if e is a cut point
of PH

i in the domain of Π , then µ π(e) = f(PH
i), otherwise, if e is an entity

112 J.-F. Baget and É. Salvat

in the domain of Π that is not a cut point, µ π(e) is the entity of α(G, R, π)
that corresponds to Π(e) in Conc(R). It is immediate to check that µ π is a
partial projection from H into α(G, R, π).

Proof. Let us successively prove both directions of the equivalence:

(⇐) Suppose that Hyp(R2) and R1 are unifiable, and note µ such an uni-
fication. Let us consider the conjunctive CG G = β(Hyp(R2), R1, µ). We
transform it into a simple CG by replacing all its conjunctive types by one
of their specializations in TC (it exists, by definition of compatible partitions,
Sect. 4.1). There exists a projection π from Hyp(R1) into G: if e has been
joined in G, π(e) is this join, and π(e) = e otherwise. This mapping π is a
projection. It is immediate to check that µ and π are composable (see above).
Then µ π is a partial projection from Hyp(R2) into G′ = α(G, R1, π) that
uses an entity or relation of G′ that is not in G (or R1 would have been
trivially useless). Since BC is sound and complete, µπ can be extended to
a projection π′ of Hyp(R2) into G′, and π′ is not a projection from Hyp(R2)
into G. Then R2 depends upon R1.

(⇒) Suppose that H = Hyp(R2) and R1 are not unifiable. Let us consider
a simple CG G, and a projection π from H = Hyp(R1) into G. If there is a
projection from H) into α(G, R1, π) that is not a projection of H into G, it
means that there is a solution to the query H that requires the application
of R1. Since H and R1 are not unifiable, such a solution could not be found
by BC, which is absurd.
�

5.3 Graph of Rules Dependencies in Forward Chaining

In this section, we present an enhancement of FC (Alg. 1) that relies upon the
graph of rules dependencies (GRD) [4].

Building the Graph of Rules Dependencies. Let R be a CG ruleset over
V . We call graph of rules dependencies (GRD) of R, and note GRDV(R) the
(binary) directed graph whose nodes are the rules of R, and where two nodes R1
and R2 are linked by an arc (R1, R2) iff R2 depends upon R1. In that case, the arc
(R1, R2) is labelled by the set of all unifications between Hyp(R2) and R1. By con-
sidering the simple CG G encoding the facts as a CG rule with empty hypothesis
and the simple CG H encoding the query as a CG rule with empty conclusion, we
can integrate them in the GRD, obtaining the graph GRDV(R, G, H). Finally,
we point out that if a rule R is not on a path from G to H , then no application of
R is required when solving SR-deduction [4]. The graph SGRDV(R) obtained
by removing all nodes that are not on a path from G to H , called the simplified
GRD, is used to restrain the number of unnecessary rules applications.

The problem SR-dependency (deciding if a CG rule R2 depends upon a CG
rule R1) is NP-complete (since a unification is a polynomial certificate, and when

Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 113

R1 is disconnected, a unification is exactly a projection). Building the GRD is
thus a costly operation, that requires |R|2 calls to a NP-hard operation.

Using the Graph of Rules Dependencies in Forward Chaining. The
GRD (or its simplified version) can be used to enhance FC (Alg. 1) as fol-
lows. Let us consider a step of FC (an execution of the main while loop). The
PartialProjList contains all partial projections from the hypothesis of the CG
rules in R into G. If one of these partial projections can be extended to a full pro-
jection π of the hypothesis of a rule R, then R is applicable and the only rules that
will be applicable on α(G, R, π) (apart from those already in PartialProjList) are
the successors of R in the GRD. Moreover, the operator is used to efficiently
generate partial projections of the hypothesis of these rules.

Algorithm 3. Forward Chaining using Rules Dependencies
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: yes iff G, R |=V H (infinite calculus otherwise).
D ← SimplifiedRulesDependenciesGraph(R, G, H) ;
PartialProjList ← NewFifo() ;
for R �= H ∈ Successors(D, G) do

for µ ∈ Unifications(D, G, R) do
PartialProjList ← AddFifo(PartialProjList, (R, µ)) ;

while true do
(R, π) ← FifoRemove(PartialProjList) ;
for π′ ∈ ExtendPartialtoFullProjections(Hyp(R), G, π) do

G ← α(G, R, π′) ;
if Projects?(H, G) then return yes ;
for R

′ �= H ∈ Successors(D, R) do
for µ ∈ Unifications(D, R, R′) do

if Composable(µ, π′) then
PartialProjList ← AddFifo(PartialProjList, R

′, µ � π′) ;

Evaluating the algorithm. With respect to the standard FC, FC with rules
dependencies (FCRD, Alg. 3) relies on three different optimizations:

1. using the simplified GRD allow to ignore some CG rules during derivation;
2. though FC, at each step, checks applicability of all rules in R, FCRD only

checks the successors of the rules applied at the previous step;
3. the operator , by combining projections and unifications into a partial

projection, reduces the search space when checking applicability of a rule.

Though generating the GRD is a lengthy operation, it can be done once and
for all for a knowledge base (G, R), leaving only to compute the |R| unifications
of the query Q at run time. Moreover, even if the KB is used only once, the cost of

114 J.-F. Baget and É. Salvat

the operations required to compute the GRD is included in the two first steps
(the main while loop) of the basic FC algorithm.

Finally, the GRD has been used in [4] to obtain new decidability result. If the
GRD (or the simplified GRD) has no circuit, then SR-deduction is decidable.
Moreover, if all strongly connected components of the GRD (or simplified GRD)
are finite expansion sets (see Sect. 3.3), then SR-deduction is decidable.

6 Rules Dependencies in Backward Chaining

The identification of dependencies and unifications (Th. 4) naturally leads to
the following question: how to efficiently use the GRD in a Backward Chain-
ing framework ? We consider the three interests of the simplified GRD in a FC
framework, at the end of Sect. 5.3, and show how they translate to a BC frame-
work (Sect. 6.1). In Sect. 6.2,we provide an update of BC (Alg. 2) that relies on
the simplified GRD. Further works on that algorithm are discussed in Sect. 6.3.

6.1 Reducing the Number of Searches for Unification

The simplified GRD can be used as in Forward Chaining to remove rules that
are not involved in reasonings: if there is no derivation sequence from G into
a solution of H that involves the rule R, then the correspondence between FC
and BC proves that no rewriting of H into ∅ involves that same CG rule R. We
should note that, if there is a path from R to H , but no path from G to R in
the GRD, simplifying the GRD removes this rule though the standard Backward
Chaining may try to use it in a rewriting sequence.

The second optimization brought by the GRD to Forward Chaining consists
in reducing the number of checks for applicability of a rule. To translate that
feature to Backward Chaining, we must ask if, after unifying a query with a
rule and rewriting this query w.r.t. this unification, we need to compute the
unifications of this new query with all the rules in the CG ruleset R. By giving a
negative answer to this question, Th. 5 shows that the GRD can be used during
BC for added efficiency.

Theorem 5. Let H be a simple CG, and R be a CG ruleset over a vocabulary
V. Let µ be an unification between H and R ∈ R. Let H ′ = α(H, R, µ) be the
rewriting of H according to µ. The following property holds: if R

′ and H ′ are
unifiable then R

′ is a predecessor of H or R in GRD(R, G, H).

Proof. Suppose R
′ and H ′ are unifiable, by a unification µ′. We note H ′′ =

β(H ′, R′, µ′). Let us consider the simple CG G′ that specializes the conjunctive
CG H ′′, built in the same way as in the proof of Th. 4. Since G′ proves H ′′,
the correspondence between FC and BC implies that there exists a derivation
sequence G′, G′′ = α(G′, R′, π1), G′′′ = α(G′′, R, π2) such that H projects into
G′′′. Since FC with rules dependencies is complete, it means that either H de-
pends upon R

′, or that R depends upon R
′.
�

Rules Dependencies in Backward Chaining of Conceptual Graphs Rules 115

6.2 Backward Chaining with Rules Dependencies

The following algorithm uses the graph of rules dependencies in a Backward
Chaining framework to include the two optimizations discussed in Sect. 6.1.

Algorithm 4. Backward Chaining using Rules Dependencies
Data: A vocabulary V, a CG ruleset R, two simple CGs G and H over V.
Result: If Backward Chaining halts on yes, then G, R |=V H , if it halts on no,

then G, R �|=V H (but it can run infinitely).
D ← SimplifiedRulesDependenciesGraph(R, G, H) ;
UnifList ← NewFilo() ;
for R ∈ Predecessors(D, H) do

for µ ∈ Unifications(D, R, H) do
UnifList ← AddFilo(UnifList, (µ, R, H)) ;

while UnifList �= ∅ do
(µ, R, H) ← FiloRemove(UnifList) ;
H ′ ← Rewrite(µ, R, H) ;
if H ′ = ∅ then return yes ;
for R

′ ∈ Predecessors(R) do
for µ′ ∈ ComputeNewUnifications(R′, H ′) do

UnifList ← AddFilo(UnifList, (µ′, R
′, H ′)) ;

return no ;

6.3 Further Work: Combining Unifications

Finally, we point out that we have not used in this BC framework the third
optimization of FC brought by the GRD. In FC, the composition operator
between the current projection and unifications is used to reduce the size of
projections that have to be computed during the following execution of the main
while loop. A similar operator, composing unifications into a partial unification,
would be required to achieve the same optimization result in BC.

7 Conclusion

In this paper, we have unified two optimization schemes used for computing
deduction with conceptual graphs rules [13,11] (SR-deduction), namely piece
unification in Backward Chaining [11,10], and the graph of rules dependencies
in Forward Chaining [4]. Our main contributions are listed below:

1. Unification of syntax: [11,10] defines simple CGs as bipartite multigraphs
and CG rules as pairs of λ-abstractions, while [4] defines them as directed
hypergraphs and colored CGs. We have unified these different syntaxes.

2. Generalization of piece unification: the definition of piece unification in
[11,10] does no longer rely on concept types being ordered by a lattice.

3. Generalization of dependencies: the definition of dependencies in [4] is
restricted to CG rules having no individual in the conclusion. This restriction
is dropped here.

116 J.-F. Baget and É. Salvat

4. Identification of piece unification and dependencies: Up to the gener-
alizations above, we prove that piece unification and neutrality (the inverse
of dependency) are equivalent (Th. 4 in Sect. 5.2).

5. Use of the graph of rules dependencies in a Backward Chaining
framework: we show how the optimizations allowed by the GRD of [4] in a
FC framework are adapted to the BC framework of [11,10] (Th. 5 in Sect. 6).

Though the GRD already increases efficiency in both FC and BC, we are now
considering the following problems as research perspectives:

1. Traversals of the GRD: FC and BC rely respectively on a breadth and
depth-first traversal of the GRD. Different types of traversals can be tested.

2. Rewriting of a CG ruleset: Some transformations of rules preserve their
semantics (e.g. a rule with k pieces is equivalent to k rules with one piece).
What transformations can give a more efficient FC or BC?

3. Finding a composition operator for unifications: (Sect. 6.3)

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. J.-F. Baget. Simple Conceptual Graphs Revisited: Hypergraphs and Conjunctive
Types for Efficient Projection Algorithms. In Proc. of ICCS’03, volume 2746 of
LNAI. Springer, 2003.

3. J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints. JAIR,
16:425–465, 2002.

4. Jean-François Baget. Improving the forward chaining algorithm for conceptual
graphs rules. In Proc. of KR2004), pages 407–414. AAAI Press, 2004.

5. M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle, 6(4):365–406, 1992.

6. M. Chein and M.-L. Mugnier. Types and Coreference in Simple Conceptual Graphs.
In Proc. ICCS’04, volume 3127 of LNAI. Springer, 2004.

7. S. Coulondre and E. Salvat. Piece Resolution: Towards Larger Perspectives. In
Proc. of ICCS’98, volume 1453 of LNAI, pages 179–193. Springer, 1998.

8. M.-L. Mugnier. Knowledge Representation and Reasoning based on Graph Ho-
momorphism. In Proc. ICCS’00, volume 1867 of LNAI, pages 172–192. Springer,
2000.

9. M.-L. Mugnier and M. Chein. Représenter des connaissances et raisonner avec des
graphes. Revue d’Intelligence Artificielle, 10(1):7–56, 1996.

10. E. Salvat. Theorem proving using graph operations in the conceptual graphs for-
malism. In Proc. of ECAI’98, pages 356–360, 1998.

11. E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward Chain-
ings of Graph Rules. In Proc. of ICCS’96, volume 1115 of LNAI, pages 248–262.
Springer, 1996.

12. J. F. Sowa. Conceptual Graphs. IBM Journal of Research and Development, 1976.
13. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, 1984.

	Introduction
	Simple Conceptual Graphs
	Syntax
	Semantics
	Calculus

	Conceptual Graphs Rules
	Syntax
	Semantics
	Calculus

	Piece Unification and Backward Chaining
	Preliminary Definitions
	Piece Unification
	Backward Chaining

	Rules Dependencies in Forward Chaining
	Neutrality and Dependency
	Piece Unification and Dependency
	Graph of Rules Dependencies in Forward Chaining

	Rules Dependencies in Backward Chaining
	Reducing the Number of Searches for Unification
	Backward Chaining with Rules Dependencies
	Further Work: Combining Unifications

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

