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Abstract. Equality of markers ajid co-reference links have always been 
a convenient way to denote that two concept nodes represent the same 
entity in conceptual graphs. This is the underlying cause of counterex­
amples to projection completeness with respect to these graphs FOL se­
mantics. Several algorithms and semantics have been proposed to achieve 
completeness, but they do not always suit &a application specific needs. 
In this paper, I propose to represent identity by relation nodes, which 
are first-class objects of the model, and I show that conceptual graphs 
rules can be used to represent and simulate reasonings defined by various 
semantics assigned to identity, be it in the case of simple or nested graphs. 
The interest of this method is that we can refine these rules to manage 
the identity needed by the application. 

Introduction 

Identity of concept nodes in conceptual graphs [10] has always been a crucial 
problem for completeness of projection with respect to these graphs logical se­
mantics. According to the widely accepted FOL semantics <f, two concept nodes 
sharing the same individual marker represent the sajne entity. Moreover, the 
necessity to express that some generic concept nodes represent the same en­
tity has early led to the adoption of co-reference links which, however useful in 
simple graphs (SGs), proved to be of uttermost importance for positive nested 
graphs (NGs). These two representations of identity can be seen as an equivalence 
relation on concept nodes, which has been called co-identity [8]. 

But Chein and Mugnier [4], as well as Ghosh and Wuvongse [3] gave coun­
terexamples to projection completeness with respect to ^ in the case of SGs, and 
proposed a normalization procedure to achieve completeness. In the case of NGs, 
Simonet has extended the normality condition into a fc-normality condition [8], 
which achieves completeness with respect to a natural extension of the semantics 
#. Instead of forcing projection to conform to the semantics $, Simonet has pro­
posed the semantics ^ [7], defined as well for SGs as for NGs, which describes more 
precisely the graph as well as the projection mechanism. Projection is sound and 
complete with respect to !?, without any condition. 

The problem is that the adoption of one semantics or another is a definitive 
and exclusive choice with respect to the reasonings allowed in the model. In the 
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semantics !?, co-identical concept nodes are considered as different points of view 
on the same entity, and information on one of these nodes is considered to be 
meaningful only for the particular point of view represented by this node. On 
the other hand, the semantics # considers co-identical concept nodes as partial 
and complementary representations of an entity: information linked to one of the 
co-identical nodes is shared by all others. Now suppose we want to represent the 
sentence: "A dark-haired man is looking at a photograph representing himself". 
We can represent it in a graph where two co-referent concept nodes represent 
the man, the man x looking at the photograph, and the man y represented by 
the photograph. We could want to deduce from this knowledge that y is dark-
haired, but we do not want to deduce that he is looking at the photograph. With 
the semantics #, the two deductions are possible, and none of them are using 
!p. Since co-reference links are not first-class objects of the CG model, we cannot 
implement the desired behavior without rewriting the projection algorithm, with 
ad hoc procedures regarding to sharable or non-sharable relation types. 

Instead, I propose in this paper to represent identity by relation nodes, which 
are first-class objects of the CG model. The semantics that can be assigned to 
identity will be simulated with conceptual graph rules [6]. I present the specific 
sets of rules which describe co-identity in SGs as defined by the semantics # and 
'P. In order to extend this work to NGs, I use a generalization of the NGs, that 
I call boxed graphs, where concept nodes in different contexts can be linked by 
relation nodes. These rules could easily be refined, using types restrictions, to 
conform to a specific semantics. 

1 Co-Identity in Simple Graphs 

The formal model for SGs used in this paper is similar to the one presented in 
[1], Completeness can be achieved by normalization to conform to the semantics 
^ [4], or without restriction with respect to !? [7], [9]. 

1.1 The Model 

We consider a knowledge base where the basic ontologicaJ knowledge is coded 
in a support and the asserted facts are coded in a simple graph (SG). The basic 
operation for reasonings is the graph morphism classically called projection. 

A support S = {TC,TII,V,I,T) is defined by two partially ordered sets, the 
concept types Tc, the relation types TR, a set of individual markers I , and 
two mappings, the valence^ v and the conformity relation r . Tc has a greatest 
element, T^. TR is partitioned into partially ordered subsets T^,« e { l , . . . , m } 
of relation types of valence i, whose greatest element is TJj. l U {*} is partially 
ordered, has a greatest element, the generic marker *, all others being pairwise 
incomparable, r assigns a concept type to each individual marker. 

A SG G, on a support S, is a bipartite labelled multigraph {Vc,Vii,E,l), 
where the nodes in Vc are the concept nodes, those in VR are the relation nodes. 

' It is a simplified version of signature, which does not assign a mcuximum type to the 
arguments of a relation 
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Fig. 1. Very simple graphs ... 

/ labels each concept node by a concept type and an individual or generic marker, 
called its referent. It is required that the type of an individual node c is exactly 
r(ref(c)). I labels each relation node r of degree i by a relation type of valence 
i. Edges of E incident on such a node axe numbered from 1 to i. 

SGs can be extended to simple conceptual graphs with co-reference links. A 
SG'"̂ ''̂  is defined as a SG which is added an equivalence relation co-rej defined on 
the set of generic concept nodes. In order to avoid fusionning problems during 
normalization, only generic concept nodes having the sajne type can be declared 
co-referent. The equivalence relation co-ident is defined on all concept nodes by: 
^c,d € Vc, co-ident(c,c') ^ co-ref(c,c*) or ref(c) = ref(c') e X The relation 
co-rej is traditionally represented in the drawing of the graph by a dotted line 
called a co-reference link^ between concept nodes (see graph G^ in fig. 1). 

Let if and G be two SGs defined on a common support S. A projection 
n from if to G is given by a mapping from the nodes of H to the nodes of 
G, preserving edges and their numbering, and respecting the order defined on 
labels. In the case of SC^'^s, two co-referent generic concept nodes can only be 
projected into the same co-identity class. In fig. 1, the graph G3 can be projected 
into the graph Gi, but G3 cannot be projected into G2. Instead of the traditional 
notation H > G, I note Jf C G if there exists a projection from H to G. This 
points out that all information in H is contained in G. 

1.2 The Semantics * and SGs Normal Form 

SGs and SG'"*̂ s are assigned FOL semantics, # being the one presented in [10]. 
The support determines the vocabulary used in formulas, and is associated a 
formula ^{S), trajislating the partial orderings on Tc ajid TR. Each co-ref class 
in a graph G is assigned a unique variable. <f (G) is the existential closure of the 
conjunction of the atoms associated with all nodes of the graph: Vc e Vc, C{t) is 
defined by the unary predicate C assigned to its type and the term t, which is the 
variable associated to its co-reference class if c is generic, the constajit assigned to 
its marker otherwise; Vr € VR such that J/(degree(r)) = i, R{ti,...,ti) is defined 
by the i-ary predicate R assigned to its type, and the terms tk associated with 
the A;*'' neighbors of r. The graph G3 in fig. 1 is interpreted by: 

^(Ga) = 3xyz (cl(a;) A cl(a;) A c2{y) A c3(z) A rl(a;, y) A r2(x, z)) 

A co-reference class of n concept nodes can be represented by n — 1 such links. 
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Projection is sound with respect to ^ [10]. Concerning completeness, Chain and 
Mugnier[4], and Ghosh and Wuvongse [3], pointed out that two co-identical 
concept nodes are assigned exactly the same atom by #, whereas projection 
treats them as two distinct nodes. By example, in fig. 1, assuming that all types 
involved are incomparable, there is no projection from d into any of the other 
graphs, though ^{d) can be deduced from #((?i) or ^(Gs). 

A SG or SG^^^ is said in normal form if the co-identity classes are restricted 
to the trivial ones: they only contain a single concept node. A graph G is put 
into its normal form J^j^{G) by fusionning aJl its co-identical nodes. In fig. 1, 
G4 = MriGs)- This normalization does not issue any problem since all concept 
nodes in the same co-identical class have the same type^ ajid the same marker. 

Theorem 1 (Soundness and Completeness [4]). LetS he a support, and H 
and G be two SGs (or SG^-'^s) defined on S. Then H C 7V>(G) iff^{S),^G) 1= 

1.3 Adapting the Semantics to Projection: the "P̂  Solution 

The semantics !? was introduced in order to translate the whole information 
encoded in a graph. In this semantics, two terms are associated to each concept 
node. As in ^ , the first term represents the co-identity class of the node. The 
second term is a variable representing the node itself. Let G be a SG or SG'"'̂ -̂  
defined on a support S. ^{S) is obtained in the same way as #(5) , excepted 
that the predicates associated with concept types become binary. !^(G) is the 
existential closure of the conjunction of atoms obtained in the following way: If <P 
associates an atom C{t) to a concept node, then ^ associates it an atom C{t,v) 
where the term w is a new variable representing the node itself. Each relation 
node of degree i is assigned an atom R{vi,...,Vi), where R is the predicate of 
arity i assigned to its type, and the Vk are the second terms associated with the 
l-th neighbors of the node. The graph G3 in fig. 1 is interpreted by: 

^(Gs) = Ixyzabcd {cl(x,a) Acl{x,b) Ac2(j/,c) A c3(z,d) A rl(a,c) A r2(6,d)) 

Theorem 2 (Soundness and Completeness [7], [9]). LetS be a support, 
and H and G he two SGs or SC^-^s defined on S. Then H QG iff^{S), ^(G) N 

The co-reference as described by the semantics ^ implements what I caJl a "weak 
co-identity". Thanks to the additional constraint defined on projection, concept 
nodes belonging to the same co-reference class axe assured to be projected into 
the same co-identity class. But the information on a concept node stays the 
property of this particular node. These nodes represent different and independent 
points of view on the same entity. On the other hand, the "normalization + 
projection" process implements a "strong co-identity". Thanks to normalization, 
the whole information on a specific concept node is shared by every other node 
of its co-identity class. 

^ An explicit constraint for co-referent generic nodes, a consequence of the conformity 
relation for individual ones. 
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2 Implementing Co-Identity with Simple Graph Rules 

As shown by the example in introduction, "strong co-identity" can be too strong, 
in the sense that too much information can be deduced from the graph. But 
"weak co-identity", though conforming exactly to the projection mechanism, is 
definitively too weak. I propose to represent co-identity by relation nodes in the 
graph, and to simulate its desired behavior by conceptual graphs rules [6], [5]. I 
first give a modified (though exactly equivalent) version of rules, then show how 
they can be used to simulate weak and strong co-identities. 

2.1 Conceptual Graphs Rules 

\ Studant; Tom 

Cflrandlather^ 

A simple graph rule: R A part of a graph G Tlie corresponding par i of tlie grapli G ' 
obtained b ; an apphcation of R ou G 

Fig. 2. A rule aad its application 

A simple graph rule (SGR) is defined as a simple graph which is associated a 
mapping color from VCUVR into {0,1}. A node v such that color(t;) = 0 is called 
an hypothesis node, otherwise it is called a conclusion node. An hypothesis node 
having a conclusion node as a neighbor is called a frontier node. The subgraph 
of a SGR generated by the set of all hypothesis nodes is called the hypothesis of 
the rule. It must be a syntactically valid SG (see fig. 2). The subgraph generated 
by frontier nodes and conclusion nodes is called the conclusion. 

Let <S be a support, G a SG defined on <S, and R a SGR defined on S. The 
rule R is applicable to G if there exists a projection from the hypothesis of R to 
G. In this case, the application of i t on G following a projection 77 is a SG G' 
constructed by making the disjoint union of G with the conclusion of 7?, then 
by fusionning^ frontier nodes of the conclusion with the corresponding nodes in 
the projection of the hypothesis. The rule 7? in fig. 2 can be read "// a person 
has a grandfather, then he has a parent whose father is this grandfather". 

Let us consider a knowledge base KB = {S,TZ}, where <S is a support, and 
TZ a set of SGRs defined on S. Let G and G' be two SGs defined on S. We note 
G h G', if G' is obtained by an application of a rule of % on G. We say that G 
derives G' and we note G Ih G', where Ih is the reflexo-transitive closure of I-. 
We say that H is deduced firom G and note G N 7f if there exists G' such that 
G Ih G' and H C G'. 

* This fusion is not exactly similar to the one used in the normalization process, since 
projection can transform the label of a frontier node into a more specific one. The 
most specific label is kept for the resulting node. 
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Rules are given FOL semantics by extending ^ in the following way: each 
node is assigned the same atom as the one in the SG interpretation. #(-R) is the 
universal closure of the formula ^H{R) -> ^c{R) where ^H{R) is the conjunc­
tion of the atoms associated to the hypothesis nodes, and $c (-R) is obtained 
by existentially quantifying the variables of the conjunction of the other atoms, 
when these variables do not appear in ^niR)- The semantics >? can be extended 
to SGRs in the same way. The rule R in fig. 2 can be interpreted by the formulas: 

^(R) = ^xyiiPeix) A Pe{y) A gr{x,y)) -)> (3z(Pe(^) A pa(z,2/) A fa(a;,^)))) 
^{R) = Vx2/a6((Pe(a;,a)APe(y,&)Agr(a,b)) -^ (3zc(Pe(z,c)Apa(c,6)Afa(o,c)))) 

Deduction is sound with respect to # [10]. To ax;hieve completeness, we define 
a normalizing derivation. We note G \-j^ G', when G' is the normal form of an 
application of a rule on G. It defines a derivation Ihjr and a deduction 1= .̂ 

Theo rem 3 (Soundness and Completeness [6]). Let KB = {5,1^} be a 
knowledge base, andG andH two SGs orSC'^^s defined onS. ThenAfjr{G) 1=̂ - H 

Theorem 4 (Soundness and Completeness) . Let KB = {S, 7?,} be a knowl­
edge base, and G and H two SGs or SC^^s defined on S. Then G i= H iff 
<?(5),!P(7^),!^^(G)t=!P(ff). 

Proof. Thanks to completeness of projection with respect to the semantics !?, 
the proof is the same as the one given in [6] for the semantics 0. O 

2.2 T h e Weak Co-Identity Rela t ion 

Let us now represent co-identity by a new relation typed co- ident and associ­
ated rules. Given a support S, S^ is obtained by adding a new binary relation 
type co- ident and a new greatest element to T^, which covers both co- ident 
and T ^ . Let 7?.>v be the set of rules defined in fig. 3. The first three rules indi­
cate that co- ident is an equivalence relation, the last one is a set of rules, one 
for each individual marker in S. These rules are obtained by replacing Marker 
and Type by m and rim), Vm € I. Note that, since markers are not first-class 
objects of the graph, we cannot express that two nodes sharing the same indi­
vidual marker represent the same entity in a single rule. The modified support 
and this set of rules define a knowledge base K,B^{S) = {S^,'R,y^}. 

I Type: Marker Type: Marker 

;; Riiltis for nQdfes kbaring the safn^ijttafka; 

Fig. 3. Rules for weaJc co-identity 
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Proposition 1 (Equivalence). LetS be a support, and G and H be two SC'^^s 
defined on S. Let G' and H' be the SGs defined on ICB^{S), obtained by replacing 
all co-reference links in G and H by relation nodes typed co- ident . Then G' 1= 
H' iff^iS),^{G)\=^{H). 

Proof. We obtain a SG G" by doing a complete irredundant expansion of G' 
using the rules in TZ^. This operation is finite, since we create at most IVCC^J)!^ 

relation nodes. Two concept nodes of G axe co-identical iff there exists a relation 
node typed co- ident between these nodes in G". D 

2.3 The Strong Co-Identity Relation 

Let >S be a support. To simulate normalization, we now consider ICB^{S) = 
{5^,11^ U 7^•^}, where Tl'^ is the set of rules defined in fig. 4. There are in 
TZ^ i rules of the form given in fig. 4 for eax;h relation type of valence i. They 
are obtained by replacing the node typed r e l a t i o n by this relation type. These 
rules express that if a concept node C is linked by a relation node i? to a concept 
node C , then every node indicated co-ident to C must be linked by i? to C. 

•• • •;:':;:•:;:;:;:;:;:;:;:::;:; ., , " / /\^M^^ 

T : * r—\co-iderit. 

^latioji^]^—-] T : * 

. ... 
i< 

J:' i: 

•: 2i RuIts-liefe-ipelatioB ^typ^ii^^^iUence 2'::; 

Fig. 4. Rules for strong co-identity 

Proposition 2 (Equivalence). LetS be a support, andG andH be two SG^^^s 
defined on S. Let G' = d{G) and H' = ^{H) be the SGs defined on K:B^{S) 
obtained by replacing all co-reference links in G and H by relation nodes typed 
co- ident . Then G' t= H' iff ${S),${G) t= #( if) . 

m^OMI}—{ss^h<i>f^m. 
The graph G :G' bbialned hy repiaclttg the co^reL JiSj|;:;|i|̂  the relatU*riiit** l̂dctit 

The graph G'V obtained by e3^hd!hg;G'iwHh Ifte ru)e£ c)ffl^:4i:i 

The acrmalfbrinof G*^btJl^Ihi^::t^:fbsIohnittgi:^^ 
. which .ure;lndlvatai:COrldeii^^:^iJ^:^ 

Fig. 5. The expansion of G' is equivalent to its normal form 

Proof. The complete irredundant expansion G" of G' is equivalent to ^{MriG')) 
(i.e. G" Q i9(7Vjr(G')) C.G"). This is proved by showing that co-identical nodes 
in G" can be projected into the node C resulting from their fusion in J\fjr[G'), 
ajid that C caji be projected into any of the co-identical nodes in G" (fig. 5). D 
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3 From Nested Graphs to Boxed Graphs 

The nested graphs (NGs) model allows to associate any concept node an internal 
description in the form of a NG. The formal model I use for NGs or NC^^s is 
the one presented in [1] or [9]. Projection in this model is sound and complete 
without any restriction with respect to a natural extension of!?, but we have to 
consider a fc-normality condition when using the semantics <f [1], [9]. In order to 
extend the previous treatment of identity to NGs, I introduce the boxed graphs 
(BGs) model. BGs axe a a generalization of NGs which allow relation nodes to 
link concept nodes in different descriptions. Moreover, I show that these boxed 
graphs are a "high-level representation" of a particular class of SGs, which are 
used to define BG rules. 

3.1 Nested Graphs, fe-Normality and the semantics ^ 

Fig. 6. A nested graph and its associated rooted tree 

A NG is defined on a support identical to the one defined for SGs. A basic NG 
is obtained from a SG by adding to the label of each concept node a third field, 
called the description of the node, which is equal to ** (the empty description). 
A NG is obtained from a basic NG by replacing some of its descriptions by a NG. 
A NG''̂ -'' is a NG which is added an equivalence relation co-ref on the set of all its 
generic concept nodes, this relation is extended to co-ident as in SGs. Any NG is 
associated a rooted tree (fig. 6) whose nodes are the SGs used in its construction 
and edges (c, G) indicate that the concept node c is described by the NG whose 
root is G. Projection in the NG model can be defined on this tree: let H and 
G be two NGs, and A{H),A{G) be their associated rooted trees. A projection 
from H to G is given by the projections (in the sense of simple graphs) of all 
nodes of A{H) into nodes of A{G) such that the root of AiH) is projected into 
the root of A{G), ajid the root of the description of a concept node can only 
be projected into the root of the description of its projection. Constraints on 
co-identical nodes must also be respected in the case of NG''̂ '''s. 

The semantics # and !? are extended to NC^'s by associating another term to 
the atoms interpreting each node of the graph: n-ary predicates become (n -I-1)-
ary. Every node of G in a node X of the rooted tree is associated the same 
additional term: the constant p if A' is the root of A{G), otherwise the term 
identifying the concept node C such that X is the root of the description of C 
(the only term for $, the unique variable associated with the node in !?). By 
example, the graph G in fig. 6 is interpreted by: 

#(G) = 3xy {Pe{x, p) A Ph(2/, p) A Pe(a;, y) A dh(x, p) A lo(a;, y, p)) 
^{G) = 3xyabc (Pe(x, a, p) A Ph(j/, 6, p) A Pe(2;, c, 6) A dh(a, p) A lo(a, 6, p)) 
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Theorem 5 (Soundness and Completeness [7], [9]). Let S be a support, 
G and H be two NGs or NG^'^s. Then H QG iff^{S),^{G) 1= ^{H) 

In order to achieve completeness with respect to the semantics #, Simonet has 
defined a normal form for NC'̂ -'̂ s, which is not always possible to compute, and 
a A;-normal form, that I briefly recall here. A NG'"*-̂  G is said in fe-normal form if 
every node of A{G) is a SC^^in normal form, and for every concept node C such 
that its depth in A{G) is less than k, if C is co-identical to a concept node C" 
whose description is not empty, then the root of the description of C" must be 
exactly equivalent^ to the root of the description of C. Putting a graph G into 
its fc-normal form TVJF* ( G ) (by normalizing every node of A{G), and copying the 
roots of the descriptions of co-identical concept node as long as required by the 
fe-normal form) does not change the semantics <f (G). 

Theorem 6 (Soundness and Completeness [8], [9]). Let S be a support, 
G and H be two NGs or HG^'^^s, and k > depth{AiH)) be a number. Then H C. 
MT\G) iff${S),$iG)\=^{H) 

3.2 Boxed Graphs 
The main difference between NGs and boxed graphs (BGs) is that there can be 
relation nodes linking concept nodes which belong to different descriptions. 

Fig. 7. A boxed graph and usual graphical representation 

Definition 1 (Boxed Graphs). LetS be a support, as defined for SGs. A boxed 
graph G is defined as a simple graph which is added a partition of Vc into boxes 
B = {-Bi,... ,-Bfc}, and a partial mapping desc from B into Vc, such that the 
oriented graph A{G) = {B,E} defined by {Bi,Bj) & E iff3x £ Bi,x = desc{Bj) 
is a collection of rooted trees. 

Boxes and desc are used to translate the nesting relation, and can be represented 
in the drawing of the graph by dotted rectangles drawn inside the concept node 
they describe (see fig. 7). Though this representation is similar to the one adopted 
for NGs, important differences must be noted. First, there can be several boxes 
describing the same concept node. Next, though there is a unique root in the 
rooted tree associated to NGs, the boxes for which desc is not defined are multiple 
root boxes. This will be of great utility for defining BG rules. Finally, there can 
be relation nodes linking concept nodes which belong to different boxes. This 
property will be used to represent the relation co-ident by relation nodes. 

^ Not only there is a projection from one to the other, and vice-versa, but these 
projections must map any generic concept node C into a generic concept node co-
referent to C 
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Projection on BGs is defined as on SGs, but two concept nodes in the same 
box must be projected into the same box ("a box is projected into a box"), and 
a box describing a concept node C must be projected into a box describing the 
image of C. Note the difference with projection as defined on NGs: a root box 
does not need to be projected into a root box. 

A BG is said nested if it has only one root box, each concept node is described 
by at most one box, and there is no relation node linking concept nodes in 
different boxes. We can associate to each "nested BG" G the NG having the same 
graphic representation as G, and conversely, to each NG we associate a boxed 
graph which has the property of being nested. A rooted projection on a boxed 
graph is a projection such that root boxes can only be projected into root boxes. 
The proof of the next proposition is immediate, and it justifies the assertion that 
BGs are a generalization of NGs. 

Proposition 3. Let G and H be two NGs defined on S, and G' and H' he their 
associated BGs. Then there is a projection from H to G iff there is a rooted 
projection from H' to G'. 

3.3 Associated Simple Graphs 

Fig. 8. The simple graph associated to the boxed graph of fig. 7 

A problem with BGs is that boxes are not first-class objects of the model, but 
an assertion on some nodes of the graph which is represented in the drawing of 
the graph: boxes cannot be manipulated by rules. I define here the associated 
SG of a BG, where boxes and desc are reified into nodes of the SG. 

Let <S be a support, and G be a BG. The graph Sg{G) associated to G is a SG 
defined on a support Sg(S): Tc is added two types of concepts, T T o , and Box, 
such that T T c covers Tc; and Box. TR is added three binary relation types, 
T T ^ , describes and contains, such that TT | j covers T^, describes and contains. 
Sg (G) is the SG obtained by adding a generic concept node typed Box for every 
box in G, linking this node by a relation node typed contains to every concept 
node belonging to this box, and if this box describes a concept node C, linking 
the node typed Box to G by a relation node typed describes. The BG in fig. 7 is 
associated the SG in fig. 8. 

Proposition 4. Let S be a support, and G and H be two boxed graphs defined 
on S. Let Sg{S) be the support obtained from S as indicated above, and Sg{G) 
and Sg{H) the SGs defined on Sg{S), associated with G and H. Then H QG iff 
Sg{H)nSg{G). 
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Again, the proof is immediate. I will now consider BGs (and NGs, thanks to prop. 
3) as a high-level representation for a particular class of SGs whose support 
includes the types Box, describes, and contains. I will use indifferently the BG 
representation or the SG representation for these graphs. In particular, I will use 
this SG representation to define boxed graphs rules. A BG rule is defined as a 
SG rule such that its hypothesis can be associated to a BG, the rule as a whole 
can be associated to a BG, and its subgraph generated by nodes typed Box, 
describes, and contains (the rooted forest representing nesting levels) is such 
that no conclusion node stands between an hypothesis node and its root. The 
consequence of this restriction is that BG rules only derive valid BGs. The result 
of the application of a BG rule i i on a BG G is the boxed representation of the 
SG G' obtained by applying R (in a SGR sense) to the SG representation of G. 

The semantics !?g associated to a BG G or a BG rule R can then be defined 
as the semantics !? associated to SQ{G), or R. Thanks to th. 6 and prop. 4, the 
proof of the following theorem is immediate. 

T h e o r e m 7 (Soundness cind Completeness) . Let KB = {S,TZ} be a knowl­
edge base, where TZ is a set of BG rules, and G and H be two BGs. Then G \= H 
iffW[S),^B{n),^B{G)^mH) 

4 Rules Simulating Co-Identity in Boxed Graphs 

I will now present the rules simulating the semantics !? and # in the particular 
class of boxed graphs (with co-ident relation nodes) corresponding to NG '̂̂ ŝ. 
Assigning a semantics to co-identity by extending # or !? to any BG is beyond 
the scope of this paper. 

Let G be a NC^- ,̂ defined on S. It is still required that only concept nodes 
sharing the same label can be declared co-identical. The BG Bg{G) associated to 
G is defined on a support S^ obtained by adding the co-ident relation type in 
S, and Bg{G) is represented by a graph obtained by replacing every co-reference 
link in G by a relation node typed co-ident. As these relation nodes can link 
concept nodes in different boxes, these nested^^^ BGs are not nested BGs. 

As I will now work only with nested nested^^^ BGs, and in order to present 
more intuitive BG rules and equivalence results, I will use a slightly modified 
version of the associated SGs (note that these modifications only concern BGs, 
and not BG rules). First, in order to simulate a rooted projection, concept nodes 
typed Box representing root boxes will be labelled with the individual marker 
p. Next, for every concept node C such that there is no box describing C, we 
add a concept node typed Box, linked to G by a relation node typed describes. 
This feature will be used when defining rules in such a way that applying a rule 
does not create more than a box describing a single concept node. 

4.1 T h e Semantics ^ 

Rules simulating co-identity in SG'''̂ ^s are updated to conform to the boxed 
graphs syntax. The set of rules 11^ is obtained from the rules presented in fig. 
9 in the same way as in sec. 2.2. Since these rules only add co-ident relation 
nodes, they generate only nested'"'̂ -̂  BGs. 
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l_ P4(id<is sharing thii^jiiiijlii^ihaiiie^ 

Fig. 9. Rules for wealc-co-identity in boxed graphs 

Proposition 5 (Equivalence). Let S be a support, and G and H two NGs 
or NC'^^s defined on S. Let G' and H' be their associated BGs, defined on the 
knowledge base KB^{S) = {S^,n^]. Then G' 1= H' iff^{S),^{G) 1= ^{H). 

Proof. We must check that the co-ident classes can be computed regardless of 
the boxes containing the nodes. This can be done since the multiple roots in the 
hypothesis of the rules can be projected into any box of a given graph. D 

4.2 The Semantics # 

To simulate the semantics ^ in NC^^s, I present a set of BG rules which mimic 
the operations used to put a graph into its /c-normal form. The set of rules TVQ 
presented in fig. 9 will be used to generate all co-ident relation nodes. 
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Fig. 10. Rules normalizing SGs in the same boxes 

The set of rules T̂ ĝ  presented in fig. 10 is a slightly updated version of 
the rules in fig. 4 used for simple graphs. Let G be a nested''''-^ BG, and G' its 
associated NC^^. The application of these rules on G mimics normalization on 
every node of A{G'). See that, as these rules only create relation nodes that link 
concept nodes in the same box, these rules only generate nested'"''-'' BGs. 

In order to simulate that two co-identical concept nodes must be described by 
the same box, the method used until now (duplicating the relation nodes) would 
create graphs which are not boxed. The set of rules Ti^ in fig. 11 simulates a 
recursive copy of the contents of this description. Assuming that there are in S ni 
concept types and ^2 individual markers, the first rule drawn in fig. 11 represents 
ni +712 rules, the first ni being obtained by replacing Marker and Type by * and 
t, Vi < Tc, the other n2 by replacing them by m and T{m),\/Tn 6 T. The second 
rule drawn also represents a set of rules, one for each relation type in S. These 
rules simulate the fact that the descriptions of co-identical concept nodes must 
be exactly equivalent. I will now consider the set of rules Kg = 7?.^U7?.f ^ U7^|^, 
necessary to simulate the semantics <f. 
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Fig. 11. Rules copying the description of co-identical nodes 

Proposition 6 (Equivalence). Let S be a support, and G and H two NGs 
or NC^^s defined on S. Let G' and H' be their associated BGs, defined on the 
knowledge base /CB|(5) = {3^,11^}. Then G' \= H' iff^{S),${G) 1= ^{H). 

Ttaii:»abri»)iiforaa of G 
A SPĴ h G''derived ifroiaiiitj 

Fig. 12. Simulating the fc-normal form with rules 

Proof. We cajinot, as for prop. 2, reason on the complete expansion of G'. Even 
with the simple example® in fig. 12, where any fc-normal form of G is identical 
to its 2-normal form, we can derive from G a graph whose size is not bounded. 
But we can prove that, for any natural integer k, there exists a BG G" such that 
G' 11- G" and the BG associated with the fc-normal form of G can be projected 
into G". Conversely, we can prove that, for any BG G" derived from G', there 
exists a natural integer k = depth(^(G")) such that G" can be projected into 
the BG (with co-ident relation nodes) associated with the fe-normal form of G. 

A problem with the rules copying concept nodes in the descriptions of co-
identical nodes (first rule of fig. 11) is that they do not generate vaUd nested''^-'' 
BGs. As shown in the graph G" of fig. 12, for any concept node C labelled ( t , m), 
these rules can create an infinity of concept nodes co-identical to C, whose label 
can be a superlabel of ( t , m). As its co-identical concept nodes have different 
types, the graph obtained in such a way cannot be associated to a NG''̂ -̂ . In 
order to solve this problem, we have to weaken the constraints on the relation 
co-ident: concept nodes sharing the same individual marker are in the same co-
identity class, and the set of labels of concept nodes in the same co-identity class 

® I adopted for these graphs a "nested graph representation", which is somewhat easier 
to read. 
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has a smallest element. Co-identical nodes are fusionned into a node having the 
most specific type and marker during normalizations. Adopting this weakened 
constraint solves this problem, without changing any of the preceding results. 

D 

Conclusion 

In this paper, I show that a model generalizing NC -̂̂ s can be exactly represented 
with SGs, in such a way that all projections are preserved when translating graphs 
from one model to the other. In order to simulate the various reasonings induced 
by co-identity, be it in SGs or NGs, interpreting identity with the semantics $ or 
!?, I show that we only need the "SG + rules" model. At least, the rules presented 
can be seen as a "graphical illutration" of the different operations required by 
the co-identity relation. At most, this model can be seen as a "low-level layer" for 
the implementation of NG '̂̂ '̂ s, boxes being only a "man-machine interface" layer. 
I prefer to see this model as a "protyping tool", a way to rapidly define and test 
various semantics of identity, using a development platform such as CoGITaNT 
[2]. But, for an efficiency purpose, several reasonings that can be represented by 
rules must still be given a "hard-coded", specific algorithmic solution. 
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