
Improving the Forward Chaining Algorithm for Conceptual Gr aphs Rules

Jean-François Baget
INRIA Rhône-Alpes

655, avenue de l’Europe
38334 Saint Isnmier, France

jean-francois.baget@inrialpes.fr

Abstract

Simple Conceptual Graphs (SGs) are used to repre-
sent entities and relations between these entities: they
can be translated into positive, conjunctive, existential
first-order logics, without function symbols. Sound and
complete reasonings w.r.t. associated logic formulas are
obtained through a kind of graph homomorphism called
projection.
Conceptual Graphs Rules (or CG rules) are a standard
extension to SGs, keeping sound and complete reason-
ings w.r.t. associated logic formulas (they have the same
form as tuple generating dependencies in database):
these graphs represent knowledge of the form “IF ...
THEN”.
We present here an optimization of the natural forward
chaining algorithm for CG rules. Generating a graph of
rules dependencies makes the following sequences of
rule applications far more efficient, and the structure of
this graph can be used to obtain new decidability results.

Introduction
Simple Conceptual Graphs (or SGs) have evolved since
Sowa’s reference book (Sowa 1984) as the cornerstone of
a family of knowledge representation languages known as
“Conceptual Graphs”. SGs are used to represent entities as
well as the relations between them. They can be translated
into positive, conjunctive, existential first-order logics for-
mulas, without function symbols. Sowa’s graph-based in-
ference operator has since been reformulated as a labeled
graphs homomorphism called projection (Chein & Mugnier
1992). A projection of a SGH into a SGG means that all
information encoded inH is already present inG; projec-
tion is sound (Sowa 1984) and complete (Mugnier & Chein
1996) w.r.t. the associated logical semantics.

A standard extension, proposed in (Sowa 1984), is ob-
tained by using Conceptual Graphs Rules (or CG rules).
These rules are also represented by graphs (one subgraph
is identified as the hypothesis part, the remaining part being
the conclusion). They represent knowledge of the form “IF
. . . THEN”. Extending the logical semantics to translate CG
rules (the obtained formulas are the same as the tuple gen-
erating dependencies studied in databases), the projection-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

based deduction mechanism of the CG rules model has been
proven sound and complete w.r.t. deduction of the associ-
ated logic formulas (Salvat & Mugnier 1996).

An efficient backward chaining has been presented by
(Salvat 1998), and its comparison with Prolog proved its
efficiency (Coulondre & Salvat 1998). However, this algo-
rithm does not cope well with some extensions built upon
CG rules, and particularly the more expressive languages
from theSG family (Baget & Mugnier 2002). In these mod-
els, algorithms used for deduction rely on forward chaining
of rule applications.

In this paper, we present an optimization of the natural
forward chaining algorithm that is highly adaptable to these
extensions of CG rules. An initial treatment of a library of
CG rules is used to generate thegraph of rules dependencies.
Using this graph makes the subsequent rule applications far
more efficient, and its structure can be used to obtain new
decidability results, extending those presented in (Baget&
Mugnier 2002).

This paper is organized as follows: we first briefly recall
basic definitions on SGs, and we present CG rules. To help
readers unfamiliar with the CG formalisms, we recall their
translation into first-order logics. After detailed motivations,
we introduce the graph of rule dependencies, and discuss its
efficiency (for optimization purpose as well as for extending
existing decidable cases).

Simple Conceptual Graphs
The vocabulary available is encoded in a structure called the
support.

Definition 1 (Support) We call support a tuple S =
(M, TC , T1, . . . , Tk) of pairwise disjoint partially ordered
sets:M is the set ofmarkers, TC is the set ofconcept types,
andTi, 1 ≤ i ≤ k is the set ofrelation typesof arity i.

The set of markerM contains a distinct element: the
generic marker∗, used to represent unnamed entities. The
other markers (calledindividual) represent named entities.
Individual markers are pairwise non comparable, and are
more specific than the generic one. No assumption is needed
on the partial orders encoding the types hierarchies. These
partial orders will be denoted by≤. These sets do not need
to be finite, but we assume that the comparison of two ele-
ments can be computed in constant time.

KR 2004 407

To simplify definitions, we present here SGs as multiple
directed hypergraphs1 whose nodes (representing entities)
are labeled by a concept type and a marker ofM and hy-
perarcs (non empty tuples of nodes representing relations
between entities) are labeled by a type of corresponding ar-
ity.

Definition 2 (SGs) Let S be a support. Asimple concep-
tual graph(or SG), defined overS, is a tupleG = (V, U, λ)
whereV is the set ofnodes, U ⊆ V + is a multiset2 of hy-
perarcs (we call themrelations), and λ is a mapping that
labels each node by a pair formed by a concept type ofTC

and a marker ofM (a node is saidgenericif labeled by∗,
individualotherwise), and labels each relation of sizei by a
relation type inTi.

We adopt for SGs the following graphical representation:
each node is represented by a rectangle, and each relation
(x1, . . . , xi) by an oval in which the relation type is writ-
ten. For each of its argumentsxp, we draw a line between
the rectangle representingxp and the oval representing the
relation, and write the numberp next to this line. Finally,
we write T : M inside the rectangle representing a node
whose type and individual marker are respectivelyT and
M , and onlyT if the node is generic. The graphH in
Fig. 1 is the drawing of the SGH = (V, U, λ) defined
as follows: V = {X, Y, Z}; U = {(Z, Y), (X, Y, Z)};
and λ(X) = (t1, ∗), λ(Y) = (t2, ∗), λ(Z) = (t3, ∗),
λ((Z, Y)) = r2, λ((X, Y, Z)) = r3 (all nodes are generic).

H

G

t1 t2

t3 r2

r2r2

r3

r3

r3

r3

t1 : a

t1 : b
t1 : c

t2 : d

t2 : e

t3 : f t3 : g

1

1

1

1

1

1
1

2

2

2

2

2

2

2

3

3

3 3

Figure 1: The drawing of two SGsG andH .

The basic inference operator for SGs is a labeled (hy-
per)graphs homomorphism called projection. Existence of
a projection from a SGH into a SGG means that all infor-
mation encoded inH is already present inG.

Definition 3 (Projection) LetH andG be two SGs defined
over the same supportS. A projection fromH into G is
a mappingπ : V (H) → V (G) such that: for each node
x of H , λ(π(x)) ≤ λ(x) (we also denote by≤ the prod-
uct order on the orders onTC andM), and for each re-
lation r = (x1, . . . , xi) in H , there must exist a relation
r′ = (π(x1), . . . , π(xi)) such thatλ(r′) ≤ λ(r).

As an exercise, the reader can check that, assuming all
types are pairwise non comparable in the support, there is

1The usual definition of SGs as bipartite graphs is simply ob-
tained by considering the bipartite of incidence of our hypergraphs.

2There can be many occurrences of the same hyperarc, that can
be labeled differently.

exactly 2 projections from the graphH into the graphG,
both represented in Fig. 1. One of them associates the nodes
respectively labeledt1 : c, t2 : d andt3 : g to the nodes re-
spectively labeledt1, t2 andt3. Note however that, contrary
to what this example suggests, projection does not need to
be an injective mapping.

Before defining our basic deduction problem (called, as
in (Baget & Mugnier 2002)SG-DEDUCTION), we must in-
troduce the notion ofnormal form. A SG is said in normal
form if all individual nodes have different markers (the same
entity is represented by an unique node). A SGG is put into
its normal formnf(G) by fusioning all nodes sharing the
same individual marker3.

SG-DEDUCTION
Data: A supportS and two SGsG andH , defined overS.
Question: Can H be deduced from the knowledge base
(S, G), i.e. does there exist a projection fromH into the
normal form ofG ?

Conceptual Graphs Rules
Conceptual graph rules (in short CG rules) express knowl-
edge of the form “IF...THEN”. It is convenient to represent
them as colored SGs.

Definition 4 (CG Rules) A CG rule, defined over a support
S, is a pair R = (G, H) whereG is a SG defined overS,
andH is a partial subgraph ofG4. The SGH is called the
hypothesisof the rule (Hyp(R)), and the other nodes and
relations form itsconclusionCcl(R) (it is not necessarily a
graph, since hyperarcs can lack their elements: we call it a
proto-graph).

CG rules are represented in the same way as SGs, ex-
cepted that we color rectangles and ovals to clearly see the
nodes and relations that belong to the hypothesis or the con-
clusion. Here, elements of the hypothesis will remain in
white, while elements of the conclusion will be shaded in
gray (see Fig. 2).

We must now present the inference mechanism used in
this KR model.

Definition 5 (Rule Application) LetG be a SG andR be a
CG rule, both defined over a supportS. ThenR is saidap-
plicableto G if there exists a projection, sayπ, from Hyp(R)
into nf(G). In that case, we noteα(G, R, π) the graph ob-
tained by applying the ruleR on the graphnf(G) following
the projectionπ. This is done in the following way: con-
sider the proto-graph obtained by making the disjoint union
of a copy ofnf(G) and a copy of Ccl(R). Then for each
(proto)relationr in Ccl(R), for each nodex of the hypoth-
esis ofR that is aith argument ofr, make the copy ofπ(x)
theith argument of the copy ofr.

3We assume that all nodes sharing the same marker also share
the same type, which is the type of the obtained node. Usually,
a conformity relationdefined in the support determines the type
given to an individual node, according to its marker.

4Obtained fromG by eventually removing some of its nodes
and the relations for which one argument has been removed, then
eventually removing some of the remaining relations.

408 KR 2004

The mechanism of rule application is illustrated in Fig. 2,
where the SGG is already in normal form.

G

a

a

b

b
c c

c

d dd

e ee
G′ = α(G, R, π)

π

R

T T

T

T ′

T ′

T ′

T ′

T ′

T ′

T ′

1

1

1

1

1

1

1

1

1

1

2 2

2

2

2

2

2

2

2

2

3

3

3

Figure 2: Applying a CG ruleR to a SGG.

The deduction problem requires the notion of derivation
of a graph.

Definition 6 (Derivation) LetS be a support,R be a set of
CG rules, andG andG′ be two SGs, all defined overS. We
say thatG′ is R-derivedfrom G if there exists a sequence
(possibly reduced toG) of SGsG = G0, . . . , Gk = G′ such
that, for1 ≤ p ≤ k, there is a ruleR ∈ R and a projection
π of Hyp(R) into Gp−1 with Gp = α(Gp−1, R, π).

We define now the deduction problem in this model using
CG rules (calledSR, as in (Baget & Mugnier 2002)):
SR-DEDUCTION
Data: A supportS, two SGsG andH , and a set of CG rules
R, all defined overS.
Question: Can H be deduced from the knowledge base
(S, G,R), i.e. does there exist anR-derivation fromG into
a SGG′ such thatH projects into the normal form ofG′ ?

Relationships with FOL
Since (Sowa 1984),semanticsof SGs are usually expressed
through a translation to the positive, conjunctive, existential
fragment of first-order logics (without function symbols);
that fragment will be denoted by FOL(∧, ∃). CG rules are
translated to formulas corresponding totuple generating de-
pendenciesin databases, as pointed out in (Coulondre & Sal-
vat 1998). Knowledge expressed in a supportS, in a SGG
or in a set of CG rulesR can be translated to the formulas
Φ(S), Φ(G) andΦ(R), as shown below. Though logical se-
mantics are not in the scope of this paper, we think that these
translations can help a reader unfamiliar with CGs.

Translating the support To each pair of types(t, t′) of
arity i in the supportS (concept types are considered as rela-
tion types of arity 1), such thatt < t′, we associate a formula
φ(t, t′) = ∀x1 . . . ∀xi(t(x1, . . . , xi) → t′(x1, . . . , xi)).
The interpretationΦ(S) of the support is the conjunction
of these formulasφ(t, t′), for all pairs(t, t′) of comparable
types in the support.

Translating SGs A SG G will be translated as follows:
to each nodex we associate the termσ(x): a distinct vari-
able if x is generic, and the constantM to each individual

node having markerM . A nodex typed byt will be in-
terpreted by the formulaφ(x) = t(σ(x)). A relationr =
(x1, . . . , xi) labeled byt will be interpreted by the formula
φ(r) = t1(σ(x1), . . . , σ(xi)) ∧ . . . ∧ tp(σ(x1), . . . , σ(xi)).
The interpretation of the graphG is then the formulaΦ(G)
obtained by making the existential closure of the conjunc-
tion of the formulasφ(r) andφ(x), for all relationsr and all
nodesx in G. By example, the interpretation of the graphH
in Fig. 1 is the formula∃X∃Y ∃Z(t1(X)∧ t2(Y)∧ t3(Z)∧
r2(Z, Y) ∧ r3(X, Y, Z)).

Translating CG rules Let R = (G, H) be a CG rules. As
if translating the SGG, we build the formulasφ(r) inter-
preting each of its nodes and relations. We defineΦH(R)
as the conjunction of allφ(r), for nodes and relationsr ap-
pearing in the hypothesis of the rule, andΦC(R) as the con-
junction of all φ(r), for those appearing in the conclusion
of the rule. The interpretation of a ruleR is the formula
Φ(R) = ∀x1 . . .∀xp(ΦH(R) → (∃y1 . . . ∃yqΦC(R))),
where thexi are the variables associated to nodes of the
hypothesis, and theyj are those associated to nodes of the
conclusion. A set of rules is interpreted as the conjunc-
tion of the interpretations of its elements. By example, the
interpretation of the CG ruleR in Fig. 2 is the formula:
Φ(R) = ∀X∀Y (T ′(X, Y) → (∃ZT (X, Z, Y))).

We have now all the tools to express the “soundness and
completeness” results that logically found deduction in the
SG andSR models:

Theorem 1 ((Sowa 1984; Mugnier & Chein 1996))Let
H and G be two SGs defined overS. ThenH can be
deduced from(S, G) if and only if Φ(H) is a logical
consequence ofΦ(S) andΦ(G).

Theorem 2 ((Salvat & Mugnier 1996)) Let R be a set of
CG rules, andH andG be two SGs, all defined over a sup-
port S. ThenH can be deduced from(S, G,R) if and only
if Φ(H) is a logical consequence ofΦ(S), Φ(R) andΦ(G).

Complexity and decidability
Let us now recall complexity and decidability results about
these two deduction problems:

Theorem 3 (Complexity) SG-DEDUCTION is an NP-
complete problem.

This theorem has been initially proven in (Chein & Mug-
nier 1992), with a CLIQUE reduction. It can be more conve-
nient to point out thatSG-DEDUCTION is a trivial general-
ization of GRAPH HOMOMORPHISM, itself a well known
generalization of GRAPH K -COLORING: both are well
known NP-complete problems.

Theorem 4 ((Un)Decidability) SR-DEDUCTION is a
semi-decidable (but not decidable) problem.

This was proven by (Coulondre & Salvat 1998), reduc-
ing the problem to IMPLICATION OF TUPLE GENERATING
DEPENDENCIES. (Baget 2001) shows that it is the payback
for expressivity: indeed,SR-DEDUCTION is a computation
model (Turing Machines can be encoded with these rules).

KR 2004 409

Decidability results exploit the notion of completeness
(no rule application can add new information to the graph)
(Baget & Mugnier 2002), allowing to define a generic crite-
rion (finite expansion sets) for decidability.

Definition 7 (Complete Graph) An SGG is saidcomplete
with respect to a set of rulesR if for every ruleR ∈ R, for
every projectionπ of R into nf(G), the SGα(G, R, π) can
be projected intonf(G).

If we can derive a complete graph, then it is equivalent to
all other complete graphs that can be derived. The irredun-
dant graph (see (Baget & Mugnier 2002)) notedGR is the
smallest representant of this equivalence class.

Definition 8 (Finite Expansion Sets)A set of CG rulesR
is called afinite expansion setif for every SGG, a complete
SG can beR-derived fromG.

If we restrict our knowledge base to some range-restricted
set of rules, thenSR-DEDUCTION becomes a decidable
problem. Two example of finite expansion sets have been
studied in (Baget & Mugnier 2002).Range restricted rules
are rules such that no generic node belong to their con-
clusion (they are named by analogy with Datalog rules in
which all variables of the head must appear in the queue
(Abiteboul, Hull, & Vianu 1995)).Disconnected rulesare
such that no path exists between nodes of the conclusion
and those of the hypothesis. Using any of these restric-
tions makesSR-DEDUCTION an NP-complete problem.
However, considering a set of rules that is the union of
range-restricted rules and disconnected rules leads to a semi-
decidableSR-DEDUCTION.

Motivations
Extensions of theSG endSR composing theSG family
(Baget & Mugnier 2002) have been initially proposed in
(Baget, Genest, & Mugnier 1999) as a convenient way to
model and solve the SISYPHUS I problem proposed by the
Knowledge Acquisition community. But though the lan-
guage proposed enabled an elegant modelization of the prob-
lem, algorithmic efficiency was lacking. Moreover, our first
experiments, using both the naive forward chaining algo-
rithm (FC) and the efficient backward chaining one (BC)
(Salvat 1998) available on the platform CoGITaNT (Gen-
est & Salvat 1998) to solveSR-DEDUCTION, showed that
FC was much quicker.

Let us explain this result. In theSEC model (an exten-
sion of SR), rules applications can be seen as elementary
evolutions of a world. Also present in the knowledge base
are constraints, that are used to check the integrity of the
world at each step of its evolution. In this model, the deduc-
tion problem asks whether there exists a sequence of rules
applications that generates only graphs satisfying the con-
straints, and where the last one answers to the query. Using
FC, it is possible to cancel a rule application and backtrack
as soon as a constraint violation is observed. No efficient
pruning could be developed for BC: most of the time, a gen-
erated sequence of rules applications leading to the answer
was found violating a constraint only when applying it to
the initial graph. Such a problem should be encountered as

soon as an external mechanism is used to forbid some rules
applications sequences.

However, FC, though better than BC, was still an ineffi-
cient algorithm: though SISYPHUS I can be considered as a
“toy example”, the program based upon this algorithm ran
6 long days to enumerate all solutions. We considered three
different ways to optimize this algorithm:

1. Optimize projection itself. Thanks to the close re-
lationship exposed in (Mugnier 2000) betweenSG-
DEDUCTION and CSP (Constraint Satisfaction Network),
it is possible to adapt backtrack enhancements developed
in the CSP community toSG-DEDUCTION (Baget 2003).

2. Reduce the number of projections computed at each step
of FC.

3. Reduce the size of these projections.

The algorithm presented here relies on an initial treatment
of the set of rules to answer these two last points. Moreover,
the structure of the graph of rules dependencies initially gen-
erated can be used to extend the decidable cases when mix-
ing finite expansion sets.

Rules Dependencies
Let us first briefly present a version of the naive FC. At each
step of its execution, we compute all projections of all rules
hypothesis in the current graphG, and store these couples
(Ri, πi). Then we compute the derivationG = G0, . . . , Gk

such that for1 ≤ i ≤ k, Gi = λ(Gi−1, Ri, π
′

i), whereπ′

i

is a projection determined byπi in the subgraph ofGi−1

obtained fromG. Note that the order of applications is not
important, since different orderings lead to equivalent (and
even isomorphic) graphs. The obtained SGGk is the new
current graph, and this step is repeated until the query can
be projected into the current graph.

Neutrality Since applying the same rule twice following
the same projection creates only redundant, useless infor-
mation, it is immediate to point out that, at stepi, a rule
application ofR following some projection must use a node
that was added at stepi − 1 to be of any use. It means that
some node in the hypothesis ofR must be projected into a
node added at stepi−1, i.e. a node belonging to the conclu-
sion of a rule inR. Simply put, letR1 andR2 be two rules:
if no nodex2 in the hypothesis ofR2 can be projected into a
nodex1 of the conclusion ofR1, then no application of the
ruleR1 into a graph can create a new application ofR2 into
this graph. Let us formalize and generalize this basic idea.

Definition 9 (Neutral) Let R andR′ be two CG rules de-
fined over a supportS. We say thatR is neutralfor R′ if, for
every graphG that can be defined overS, for every graph
G′ = α(G, R, π), the set of all projections fromR′ into G′

is still the same as the set of all its projections intoG.

Graphs of rules dependencies Let us now build a com-
plete5 directed graphG(R) whose nodes are the rules ofR.

5There is an arc between each pair of nodes, loops included.

410 KR 2004

Now let us removesomeof the arcs(R, R′) such thatR
is neutral toR′. We obtain agraph of rules dependencies.
We modify then the algorithm FC in the following way, ob-
taining the algorithm FCD (Forward Chaining with Depen-
dencies). At the first step of the algorithm, all rules ofR
are checked for applicability. At subsequent steps, the only
rules that are checked for applicability are the rulesR such
that there exists a ruleR′ applied during the previous step
with (R′, R) being an arc ofG(R). The following prop-
erty, whose proof is immediate, points out the equivalence
between the two algorithms FC and FCD. Note also that if
no arc is removed fromG(R), FCD behaves exactly as FC.

Property 1 For any positive integeri, the SG obtained at
stepi of the algorithm FC is equivalent to the SG obtained
at stepi of the algorithm FCD.

As FC, FCD is thus sound and complete w.r.t.SR-
DEDUCTION. Note that FCD does not require to remove all
arcs corresponding to neutral rules couples, but only those
arcs can be removed or completeness would be lost. The
task is thus to remove only those arcs, but the greater num-
ber possible (eventually all) to achieve a better efficiency.

From a weak to an optimal neutrality condition Let us
formalize the neutrality condition presented as an example
before Def. 9. It is immediate to check that if no label in the
conclusion ofR1 is lesser than a label in the hypothesis of
R2, thenR1 is neutral toR2. However, this characterization
of neutrality does not detect enough neutrals (the criterion is
sufficient but not necessary):

R1 IF [A : ∗] THEN [B : ∗]

R2 IF [B : ∗] → (r) → [C : ∗] THEN . . .

The above criterion does not considerR1 as a neutral to
R2 (the node typedB in Hyp(R2) can be projected into the
node of Ccl(R2) with the same label), even if the hypoth-
esis ofR2 cannot be projected into the SG restricted to the
node typedB. This is the basic idea behind the main the-
orem: it is not sufficient to project a node into an other, its
neighbors must also be projected. However, the following
characterization of neutrals does not take normal form into
account. Indeed, it would detect too much neutrals if SGs
are put into their normal form, as it should be, between rule
applications. Then too much arcs would be removed in the
rules dependencies graph, and the FCD algorithm would be
incomplete. Solutions to restore completeness are proposed
in the next section.

Theorem 5 LetR andT be two CG rules, such that apply-
ing R on any SG produces a SG in normal form. ThenR is a
trigger for T (i.e. R is not neutral forT) if and only if there
exists:

• a projectionπ from a non empty subgraphH of Hyp(T)
into Ccl(R) (we note thenN(H) the nodes of Hyp(T)
that are not inH but are in its neighborhood),

• a partition⊕N = {N1, . . . , Nk} of nodes ofN(H),

• a partition ⊕F = {F1, . . . , Fk+1} of nodes of thefron-
tier6 F of R,

answering the following conditions:

1. for each relationn incident to a node ofH but that is not
in H , there exists a relationf of same arity inR (we say
thatf is thetriggering support ofn) such that:
• λ(f) ≤ λ(n);
• for 1 ≤ i ≤ arity(n):
– if the ith argument ofn is a nodeh ∈ H , then theith

argument off is π(h);
– if the ith argument ofn is a node ofNj, then theith

argument off is a node inFj ;
2. for 1 ≤ j ≤ k, there exists a node whose label is more

specific than the labels of all nodes inNj andFj .

Proof: Intuitively, the projectionπ expresses that a part of
Hyp(T) must be projected in a part of the SG that has been
added when applyingR, while the partitions show that nodes
in Nj and those inFj should be able to project into the same
node ofG.

We prove first that, given suchπ, ⊕N and⊕F between
two rulesR andT , thenR is a trigger ofT (meaningR is
not neutral forT). Proof of the (⇒) part of the equivalence
rely on the construction of a SGG such that one application
of R creates a new application ofT .

For the second part of the equivalence (⇐), we suppose a
graphG such that applyingR creates a new application of
T . Then we build projectionπ, the partitions⊕N and⊕F ,
and finally check that conditions 1. et 2. are satisfied.

(⇒) Suppose there exists such a projectionπ and such
partitions⊕N and⊕F betweenR andT . Let us build the
initial graphG and the graphG′ obtained by applyingR on
G:

1. the graphG is initially defined as the hypothesis ofR;

2. for eachNj ∈ ⊕N , nodes ofFj in the frontier ofR are
fusionned, and the labelsj of the resulting node is more
specific than the labels of nodes inFj andNj . Condition
2 asserts the existence of such a label, but its not unique:
however, we can chose any potential candidate.

3. let us add to this graph (it is a disjoint union) the subgraph
H ′ of the hypothesis ofT containing all nodes that are
neither inH , nor inN(H).

4. for each relationr = (x1, . . . , xq) incident to a node in
H ′ or a node inN(H), we add a relationr′ of same type
and same arity inG such that, for every1 ≤ i ≤ q:

• if xi is a node ofH ′, then theith argument ofr′ is the
node corresponding toxi in G.

• otherwise,xi is a node ofN(H) (we suppose it belongs
to theNj partition), then the theith argument ofr′ is
the nodesj .

Let us now consider the projectionπ1 from the hypothesis
of R into this SGG defined as follows (there may be more
projections, pointless for this proof). The subgraph ofG

6The frontier is composed of nodes of the hypothesis that are
incident to a relation in the conclusion.

KR 2004 411

obtained after phase 2. of its construction is a specialization
of the hypothesis ofR, andπ1 is a projection of Hyp(R) into
this subgraph.

• if x ∈ Fj (for 1 ≤ j ≤ k), thenπ1(x) = sj;

• otherwise,π1(x) = Id(x).

This projectionπ1 allows us to build the graphG′, ob-
tained by applying the ruleR to G following π1. We finish
this part of the proof by constructing a projectionπ2 of the
hypothesis ofT into G′ that is not a projection intoG. Note
thatwe do not putG′ into its normal form.

Let π2 be the mapping associating a node ofG′ to each
node of Hyp(T) defined by:

• if x ∈ H , thenπ2(x) = π(x) (more precisely, it is the
node ofG′ that was added when applyingR and that cor-
responds toπ(x));

• if x ∈ N(H), then it belongs to a partitionNj, and
π2(x) = sj ;

• if x ∈ H ′, thenπ2(x) = Id(x) (it is the node correspond-
ing tox that was added during phase 3. of the construction
of G).

If this mapping is a projection, then it is a projection that is
not entirely inG (sinceH is non empty, there is at least one
node whose image has been added by the application ofR).
It remains now to prove thatπ2 is a projection.

Firstly, we point out that the restriction ofπ2 to the sub-
graph generated by nodes ofH andH ′ is a projection. In-
deed,π is a projection the subgraph generated byH into
the part ofG′ that was added when applyingR; andId is a
projection fromH ′ into the part ofG′ obtained from itself.
Since there is no relation that is incident to both a node ofH
and a node ofH ′, these two projections define a projection
from the subgraph generated by nodes ofH andH ′ into G′.

It remains now to extend this projection to the nodes from
N(H). First, π2 maps each nodex of N(H) into a node
whose label is more specific than the label ofx (see defi-
nition of sj at phase 2.). The last step is to prove that, for
every relationr = (x1, . . . , xp) incident to a node inN(H),
there is a relationr′ = (π2(x1), . . . , π2(xp)) in G′, whose
label is more specific than the label ofr. We obtain the three
following cases:

1. Arguments ofr belong toN(H), H andH ′. This is im-
possible, otherwise the argument inH ′ would have been
put inN(H).

2. Arguments ofr belong toN(H) andH . The existence of
r′ is ensured by the second condition of the theorem.

3. Arguments ofr belong toN(H) or N(H) andH ′. The
existence ofr′ is ensured by the construction of the graph
G′ (phase 4.).

In conclusion,π2 is a projection fromT into G′ that is not
a projection inG. The existence of such a graphG proves
thatR is not neutral forT .

(⇐) We suppose now thatR is a trigger ofT . Then there
exists a graphG, such that, for any SGG′ obtained by apply-
ing R to G following a projectionπ1, there exists a projec-
tion π2 from the hypothesis ofT into G′ that is not entirely

into G. We will build a projectionπ and two partitions⊕N

and⊕F that satisfy the two conditions of the theorem.
We noteH the subgraph of the hypothesis ofT whose

node images followingπ2 are the nodes ofG that where
added when applyingR to G following π1. We point out
thatH is non empty, otherwise the projectionπ2 would have
images only inG. We also remark that the restriction ofπ2

to H defines a projection from this non empty subgraph of
the hypothesis ofT into the conclusion ofR. Let us callπ
this projection.

We consider now the subgraphGf of G that is generated
by the images followingπ1 of the frontier ofR. We con-
sider the partition⊕F of Gf induced byπ1 (two nodes be-
long to the same partition if they are mapped byπ1 into the
same node), and the partition⊕N of the nodes ofN(H) (the
neighborhood ofH) induced byπ2. We reorder these par-
titions and writeFi, Ni if these partitions have been created
by the same node.

It is now easy to check thatπ, ⊕F and⊕N satisfy the two
conditions of the theorem. 2

An important consequence of this theorem is that it allows
us to give the complexity of this problem.

SR-NEUTRALITY
Data: Two CG rulesR andR′.
Question: Is R neutral forR′ ?

Theorem 6 (Complexity) SR-NEUTRALITY is a co-NP-
complete problem.

The proof is direct. The projectionπ as well as the two
partitions is a polynomial certificate thatR is not neutral for
T . When the CG rules are disconnected,R is not neutral
for T if and only if there is a projection from Hyp(T) into
Ccl(R), hence the completeness.SR-NON-NEUTRALITY
being NP-complete,SR-NEUTRALITY is co-NP-complete.

Using the graph of rules dependencies
Strengths We have presented an algorithm, FCD, that im-
proves the standard Forward Checking as long as enough
neutrals are found. Not only does it reduce the number of
projection checks at each step of the algorithm, but it is also
possible to store in the arcs of the graph of rules dependen-
cies the partial projections from the hypothesis of the desti-
nation to the conclusion of the origin. This reduces the size
of computed projections.

The initial cost of FCD can be high: there is|R|2 NP-
hard problems to compute. First, the huge overhead cost
induced by building the rules dependencies graph is quickly
compensated: if Forward Chaining execution is longer than
two steps, the overhead cost is compensated. Using our al-
gorithm to solve the SISYPHUS I problem, we managed to
generate all solutions in less than 2 hours. Then, if we con-
sider a set of rules as a library, the rules dependencies graph
should only been built once. Its cost is thus divided between
all “users” of that library.

Second, structural arguments on the rules dependencies
graph can be used to obtain new decidability results, or to
extend existing ones, as shown by the two following theo-
rems.

412 KR 2004

Theorem 7 If the rules dependencies graph has no circuits
(note that a loop is considered as a circuit), thenSR-
DEDUCTION is decidable.

Proof: See that no ruleR can be applied at two different
steps of the FCD algorithm. Otherwise, it would mean that
the first application ofR triggered a rule that triggered a rule
... that triggeredR. There would then be a circuit in the rules
dependences graph. The number of steps required by FCD
is thus bounded by the number of rules. 2

Theorem 8 If each strongly connected component is formed
of a finite expansion set, thenSR-DEDUCTION is decidable.

Proof: The graph of strongly connected components, here-
after called the components graph, (each component is a
node, there is an arc between two different components if
there is an arc between rules belonging to these components)
is a graph without circuits. The rules that must be checked
for applicability at the second step of FCD belong to the
strongly connected componentsC1, . . . , Cp. Tag Let us try
to apply the rules of aCi such thatCi has no predecessor
in C1, . . . , Cp in the components graph.Ci exists, since the
components graph has no circuits. If no rule ofCi is appli-
cable, removeCi from the set of components and repeatTag
until we find a componentC containing an applicable rule
(if none is found, the algorithm ends). Though we keep in
memory all rules triggered by all applications, we apply first
the rules belonging toC (the order does not matter). Since
C is a finite expansion set of rules, we obtain a closed graph.
This ends the second step of the algorithm. Following steps
are identical, using memorized triggered rules. See (as in
the previous proof), that no rule ofC will ever be triggered
again.

Note that, though our proof rely on a particular ordering of
rules applications, any ordering (and in particular the stan-
dard FCD algorithm) will lead to the same closed graph.2

Finally, the questionH can be seen as a CG rule with an
empty conclusion, and the SGG as a CG rule with an empty
hypothesis. They can thus be integrated in the rules depen-
dencies graph. See that rules that are not on a path fromG
to H will be of no use to solve the deduction problem. Re-
moving these rules from the graph may modify its structure,
and can lead to a decidable case.

Weaknesses The main problem with FCD is that using the
optimal neutrality condition leads to loose completeness as
soon as SGs are put into their normal form during the deriva-
tion. Three solutions can be adopted:

• drop this “optimal” criterion and use the weaker one, safe
w.r.t. normalization;

• restrict ourselves to rules that never require any normal-
ization after their application, they are the rules that have
only generic nodes in their conclusion;

• it is possible to keep the optimum criterion without any
restriction on rules used. Let us observe that a rule hav-
ing an individual node in its conclusion is exactly equiva-
lent (in the sense that their application generates the same
graphs), as soon as a node with the same marker is present

in the current graph, to a rule where this node belongs to
the conclusion. Then as soon as an individual marker ap-
pears in the current graphs, rules where this marker ap-
pears in conclusion must be modified, and then the arcs
for this rule must be computed again in the graph of rules
dependencies. Though this work could be prepared at
compile time, we must point out that a rule withk differ-
ent individual markers in its conclusion can be replaced
by 2k different rules.

Conclusion
In this paper, we have presented an original method that op-
timizes the naive Forward Chaining algorithm used to com-
pute deduction in a conceptual graphs enriched with rules
model. This method uses a costly initial treatment of the
rules base to reduce the number of rules applicability checks,
to reduce the cost of each of these checks, and to achieve a
goal-oriented form of forward checking, all this without ad-
ditional overhead cost at runtime. Moreover, the rules de-
pendencies graph built at compile time can be used to assert
that the deduction problem with a particular set of rules is
decidable, or that the deduction problem with a particular
set of rules and a given query is decidable.

It is difficult to theoretically evaluate the performance of
this algorithm. In the worst case, all rules trigger all rules
(the query being considered as a rule), numerous and very
small partial projections are a triggering proof for each pair
of rules. In that case, FCD behaves as FC and the compila-
tion was a waste of time. For an average case study, we need
a probabilistic model to generate the support, the SGs, and
the rules. It would be very difficult to evaluate the respective
relevance of the many variables defining this random gener-
ator. We give here some characteristics that reduce our algo-
rithm efficiency (on the other hand, opposite characteristics
improve that efficiency):

1. the concept type hierarchy is a lattice, or close to a lattice
(need to add/remove only some comparisons to create a
lattice);

2. types labeling relations and nodes in the hypothesis of
rules are very generic (much closer to the top of the hi-
erarchy than to the bottoms);

3. most of the relations in the conclusion of rules have most
of their arguments in the hypothesis.

These remarks have important consequences: 1) FCD is
quite inefficient for CG models that require a lattice of con-
cept types; 2) and 3) can be solved by “programming with
rules best practices”. Many specific rules are better than one
generic rule, and unrelated conclusions that can be drawn
from the same hypothesis must be split between different
rules. Automatic rewriting of rules could take care of this
problem.

Finally, evaluation of our algorithm should be done
through comparison with other methods or formalisms. How
do theH andN(H) used in our main theorem relate to the
pieces (Salvat 1998) used to optimize backward chaining ?
How do our algorithm relate to the magic sets approach to

KR 2004 413

optimize the chasing algorithm solving constrained tuple-
generating dependencies in databases (Maher & Srivastava
1996) ?

Acknowledgments
We would like to thank Marie-Laure Mugnier, Marie-
Christine Rousset and Pierre Marquis for their precious
comments and advices on an earlier version of this work,
as well as the anonymous referees for their helpful critics
and suggestions.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995.Foundations
of Databases. Addison-Wesley.

Baget, J.-F., and Mugnier, M.-L. 2002. Extensions of
Simple Conceptual Graphs: the Complexity of Rules and
Constraints. Journal of Artificial Intelligence Research
16:425 – 465.http://www.cs.washington.edu/
research/jair/contents/v16.html.

Baget, J.-F.; Genest, D.; and Mugnier, M.-L. 1999. Knowl-
edge Acquisition with a Pure Graph-Based Knowledge
Representation Model – Application to the SISYPHUS-I
Case Study. In Gaines, B. R.; Musen, M. A.; and Kremer,
R. C., eds.,Twelfth Workshop on Knowledge Acquisition,
Modeling and Management, Banff, Alberta, Canada, Octo-
ber 16–21, 1999. Online proceedings athttp://sern.
ucalgary.ca/KSI/KAW/KAW99/papers.html.

Baget, J.-F. 2001. Repŕesenter des connaissances et
raisonner avec des hypergraphes: de la projectionà la
dérivation sous contraintes. Ph.D. Dissertation, Université
de Montpellier II.

Baget, J.-F. 2003. Simple conceptual graphs revisited: Hy-
pergraphs and conjunctive tupes for efficient projection al-
gorithms. In de Moor, A.; Lex, W.; and Ganter, B., eds.,
Conceptual Structures for Knowledge Creation and Com-
munication, 11th International Conference on Conceptual
Structures, ICCS 2003, Dresden, Germany, July 21–25,
2003, Proceedings, volume 2746 ofLecture Notes in Ar-
tificial Intelligence, 229 – 242. Springer.

Chein, M., and Mugnier, M.-L. 1992. Conceptual
Graphs: fundamental notions.Revue d’Intelligence Arti-
ficielle6(4):365–406.

Coulondre, S., and Salvat,́Eric. 1998. Piece Resolu-
tion: Towards Larger Perspectives. In Mugnier and Chein
(1998), 179 – 193.

Genest, D., and Salvat,Éric. 1998. A Platform Allowing
Typed Nested Graphs: How CoGITo Became CoGITaNT.
In Mugnier and Chein (1998), 154 – 161.

Maher, M. J., and Srivastava, D. 1996. Chasing con-
strained tuple-generating dependencies. InProceedings of
the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 3-5, 1996, Mon-
treal, Canada, 128–138. ACM Press.

Mugnier, M.-L., and Chein, M. 1996. Représenter
des connaissances et raisonner avec des graphes.Revue

d’Intelligence Artificielle (nuḿero sṕecial ”Graphes Con-
ceptuels”)10(1).
Mugnier, M.-L., and Chein, M., eds. 1998.Concep-
tual Structures: Theory, Tools and Applications, 6th In-
ternational Conference on Conceptual Structures, ICCS
’98, Montpellier, France, August 10-12, 1998, Proceed-
ings, volume 1453 ofLecture Notes in Computer Science.
Springer.
Mugnier, M.-L. 2000. Knowledge Representation and
Reasonings Based on Graph Homomorphism. In Ganter,
B., and Mineau, G. W., eds.,Conceptual Structures: Log-
ical, Linguistic, and Computational Issues, 8th Interna-
tional Conference on Conceptual Structures, ICCS 2000,
Darmstadt, Germany, August 14–18, 2000, Proceedings,
volume 1867 ofLecture Notes in Computer Science, 172 –
192. Springer.

Salvat,Éric., and Mugnier, M.-L. 1996. Sound and Com-
plete Forward and Backward Chainings of Graphs Rules.
In Eklund, P. W.; Ellis, G.; and Mann, G., eds.,Conceptual
Structures: Knowledge Representation as Interlingua, 4th
International Conference on Conceptual Structures, ICCS
’96, Sydney, Australia, August 19-22, 1996, Proceedings,
volume 1115 ofLecture Notes in Computer Science, 248 –
262. Springer.

Salvat,Éric. 1998. Theorem Proving Using Graph Oper-
ations in the Conceptual Graph Formalism. In Prade, H.,
ed., 13th European Conference on Artificial Intelligence,
Brighton, UK, August 23-28 1998, Proceedings, 356 – 360.
John Wiley and Sons.
Sowa, J. F. 1984.Conceptual Structures: Information Pro-
cessing in Mind and Machine. Reading, MA: Addison-
Wesley.

414 KR 2004

