Bi-Intervals for Backtracking on Temporal Constraint Netw orks

Sébastien Laborie
INRIA Rhone-Alpes and LIG
Montbonnot, France
sebastien.laborie@inrialpes.fr

Jean-Francois Baget
INRIA Rhone-Alpes and LIG
Montbonnot, France
jean-francois.baget@inrialpes.fr

Abstract 2. Allen Temporal Constraint Networks

Checking satisfiability of temporal constraint networks In this section, we define temporal constraint networks:
involves infinite variables domains. We explore a solution constraints are disjunctions of Allen’s relations [1] aradiiv
based upon finite partitions of infinite domains. Though a able values can be any interval of real numbers. We for-
straightforward partition results in a sound and complete mally define these objects and discuss existing algorithms
backtrack, its extension to forward checking is not congplet that check their satisfiability.
Using bi-intervals, we obtain sound and complete backtrack
and forward checking algorithms. Moreover, we show that 2.1. Allen’s relation
bi-intervals used in a hybrid algorithm which also instanti
ates constraints improve backtrack efficiency. The Allen interval algebra [1] is based on the notion of
time intervals and binary relations on them. A time inter-
val I is an ordered paifl,, I.) of real numbers such that
I, < I.. Allen defined a seR of basic relations between
intervals such that any pair of time intervals satisfies one
and only one of these relations:

1. Introduction

To check satisfiability of a temporal constraint network

(TCN) [5] (variables domains are the sets of intervals of rea ajation O xry xTy inverse: yr 1 x
numbers and constraints are disjunctions of Allen’s refati before (b)] — —— (bi) after
[1]), most algorithms instantiate constraints and use path meets (m)] —— (mi) met-by
consistency based techniques to evaluate solutions [10]. during (d) _ (di) contains
Some authors suggested (e.g., [13]) to use generic cont overlaps (0) - (oi) overlapped-by
straint optimization techniques (e.g., forward checki8f [starts (s) - (si) started-by
backjumping [6, 4, 11]). However, these optimizations in- finishes (f) e (fi) finished-by
stantiate variables which have an infinite domain in TCNSs. equals (e) _ ©)

Backtracking on the dual graph [12] is a solution but it does
not handle mixed qualitative/quantitative TCNs [13]. For
mixed TCNSs, one can rely upon finite domains of equiva-
lence classes of intervals (that we name abstract intgrvals
a natural encoding similar to the interval end-point ondigri

of [15]. We provide in Section 3 a sound and complete TCN
satisfiability algorithm using abstract intervals. Though

we show that its extension to a simple look-ahead techniqueis <ot ofvariables U C V x V is a set ofconstraints

such as forward checking is not complete.
To obtain a sound and complete forward checking, we

propose in Section 4, a different equivalence class called

bi-intervals (intervals of intervals). Using them, bottcka

with those based upon path-consistency [10].

2.2. Temporal Constraint Networks

Definition 1 (Temporal constraint network (TCN)) Let
D be a domain containing all time intervals, afid a set

. . _) of Allen relations overD. A temporal constraint network
remains sound and complete using backjumping schemes(TCN) over (D,R) is a tupleN = (V,U, 4, p) whereV/

d : V. — P(D) maps each variable to a set ehluesand
p: U — P(R) maps each constraint to a set of relations.

Definition 2 (Solution of a TCN) LetN = (V,U, 4, p) be
track and forward checking are sound and complete. Fi-a TCN over(D, R). Asolutionof A/ is a mappingy : V —
nally, Section 5 compares the efficiency of our algorithms D such thatvv € V, a(v) € §(v) andV{v1,v2) € U,
3R € p((v1,v2)) With {(a(v1), a(v2)) € R.

A TCN is saidsatisfiabldf it admits asolution 3.1. Abstract Intervals

Example 1 The TCN of Fig. 1 is satisfiable: it admits the

solution] — [x/2, 3], J = [3,v/29] and K — [1, 4]. Definition 3 (Abstract interval) LetL be atotally ordered

list. An abstract intervabver L is a pair noted[a, b] of
{bi,m} elements of. s.t.a < b.

I \ J
{d,s} K {oi,f}

Figure 1. An example of TCN.

By instantiating variables with abstract intervals, we
compute equivalence classes of solutions (in the sense of
Def. 2): two solutionsn, o’ are in the same equivalence
class iff for every pair of variable&, v2), the Allen rela-
tion that holds between(v;) anda(v;) is the same relation

2.3. Algorithms for TCNs Satisfiability
that holds betweea’ (v,) anda’ (vz).

A TCN is basicif each of its constraints contains only
one Allen relation. To a TC\W we can associate an expo-
nential setB(N) of H‘igll|p(ui)| of basic TCNs such that
N is satisfiable if and only if one of the networks B(\/)

Definition 4 (Abstract solution) Let N' = (V,U, 4, p) be
a TCN. Anabstract solutiomf A is a pair (L, «) whereL
is an ordered set of elements (a list), ands a surjective

. 5 o
is path-consistent [1]. This algorithm generates all insta mapping fromi” to L such that the mapping’ defined by

1 /!
ations of constraints and tests the_m using path—cons';sster.]civs"pct,fS mf;\ Oé(t/a\c} (wht; eeiézéx(;) re[cLar?]I;Lt(rfz; ;?)Zli(ﬁ(()i)]of
(sound, but complete only for basic networks). As an opti- . .

o - : . an element p in the list).

mization heuristic, [10] proposed path-consistency as a fil
tering technique during backtrack, pruning significartlg t proposition 1 Abstract solutions of a TCN are equivalence
search tr_ee. Addltlpnal optimizations |.ncllud_e constint 3sses for its solutions.
and relations orderings as well as optimizations of path-
consistency (e.g., [10, 16, 13]).

However, these algorithms do not instantiate vari-
ables but constraints. To adapt them to a variable-
instantiating framework [13] and to process mixed quali-
tative/quantitative temporal networks, [9] representdNEC
as constraint networks whose variables are either time-inte
vals or points representing the end points of these interval
He then uses specific path-consistency algorithms on these
networks. Though many authors (e.g., [13]) point out that
it is interesting to optimize the backtracking part of these
algorithms with generic backtrack optimizations (such as
look-ahead or backjumping schemes [6, 4, 11]), we are not
aware of any implementation of such an hybrid algorithm.

3.2. Backtracking with abstract intervals

Backtrack [7] can be used to check the satisfiability of a
TCN. As in [11], the iterative version proposed in Alg. 1,
denotedBT, allows a better control of the execution stack.

Algorithm 1: Backtrack

Data: A constraint network\" = (V, U, ¢, p) over (D, R) (D finite
andr € R decidable).

Result veEsiff AV is satisfiable.

if V' = 0 then return SolutionFound{/);

N « InitializeNetwork(ReorderVariables());

backtrack— false; level— 1;

while level # 0 do

Though we are mainly interested here in sound and com-
plete algorithms, we must include in this quick overview of
algorithms the efficient, but not complete, local searcl-alg
rithm of [15] that also instantiates variables of the nekwor

3. I-BT: Refining Intervals during Backtrack

We want to use a backtracking algorithm to check the
satisfiability of a TCN. However, domains of variables
(pairs of real numbers) are infinite leading to an infinite
backtrack. We first define abstract intervals that will beduse
to finitely partition the solutions of the network. They are
a natural encoding of interval end-points also used in [15].
Then, we present a backtrack algoritts® and show how

if level =|V| 4+ 1 then
SolutionFound{);
backtrack— true;
| level — PreviousLevel(levelN);
IsecurrentVariable— Vlevel];
f backtrackthen

if NextCandidate(currentVariabl&]) then
backtrack— false;

level — NextLevel(level \);
else level «— PreviousLevel(level\);

= o

else
if FirstCandidate(currentVariable)') then
| level — NextLevel(level N);
else
backtrack« true;
level — PreviousLevel(levelV);

to adapt it to run on these abstract intervals. Finally, we
show that an extension &T to forward checking [8] fails
on abstract intervals.

BT accepts any variable ordering BfeorderVariables
though some are more efficient (e.g., graph traversal).

InitializeNetwork stores data for quicker later accesses

Algorithm 2 ; FirstCandidate (I-BT version)

(e.g., pre and post lists). The integerlevel is the cur-
rent depth in the search tree and the boolbaoktrackis

FALSE when going down the search tree arRlUE other-

wise. Here,NextLeveland PreviousLeveleturn respec-
tively level + 1 and level — 11. SolutionFounds called

when all variables are instantiated. For satisfiabilityeit
turns YES, and stopsBT. The heart ofBT is encoded in
FirstCandidatand NextCandidate

Candidates Consider the variables, . .., v, instantiated
with a(v1), ..., a(vg). Candidatesof v, are all values
a € §(vk+1) such that for every constraint= (v;, vi4+1) In
Nwith1 <i < k(resp.c = (vkt1,vi)), (a(v;), a) € p(c)
(resp.,{a,a(v;)) € p(c)): we say that: is compatiblewith
v;. FOrBT to be sound and completgirstCandidatenust
compute the first candidate of the current variable, stare it
currentCandidateeturnTRUE if found or FALSE otherwise.
Successive calls tovextCandidataterate through candi-
dates, updatingurrentCandidateaeturnTRUE if found or
FALSE otherwise.

Pre and post variablesWe call prg, (v) the list of neigh-
bors of the variable that are smaller than according to
the order ofReorderVariablesOnly constraints incident to
v and a variable oprg, (v) are needed to compute candi-
dates forv. The listpost, (v) is defined using neighbors
greater than.

Refinement listsEach variable contains a sequence i&f-
finement lists If prg,(v) = 0, this sequence consists of a
single listA(v) = 6(v). Otherwise, it containgpre, (v)]
lists A(v,v1),..., A(v,v,) Whereprg, (v) = (v1,...,vp).
BT computes these lists for the current variabkach time
FirstCandidatés called. The list\(v, v;) contains all val-
ues ofd(v) compatible withv;. For2 < i < p, the list
A(v,v;) contains all values oh(v,v;_1) compatible with
v;. Then the list\(v, v,) contains all candidates of

DuringBT, we maintain a lispointsListthat respects the
following property: ‘pointsListcontains only the start and
end points of instantiated variables”. We caBT (Inter-
val BackTrack) the specialization &T (Alg. 1) that calls
Alg. 2 to check satisfiability. It only generates the abdtrac
intervals that are required duringBT . While building re-
finement lists, we use an encoding of abstract intervals (re-
finement intervals) that implicitly represents them withou
updatingpointsList

Refinement intervalsA refinement interval ovepointsList
is a pair(S, E) whereS = 4+aorS = aandE = —b
or E = b, with [a,b] an abstract interval ovepointsList
Refinement intervals are used to build the refinement lists.

1Forward jumping [2] or backjumping [6, 4, 11] allow greatectie-
ments or decrements tdvel

Data: ATCNN = (V, U, 6, p) over (D, R), where the variables
v1, ..., v, have been instantiated with pairs of points of
pointsList and the variabley, ;.

Result Computes the candidates@f_ 1, returnsrALSE f this list
is empty, otherwise returmreRUE and currentCandidate
points on the first element of this list.

if pre, (vi41) = 0 then

A(vg41) < GenerateAllintervals(pointsList);

currentCandidate— FirstElementd(vg41));

Instantiate(currentCandidate);

return TRUE;

Ise

(v1,---,vp) « prey (vg41);

forie {1,...,p}do

| Avgq1,v]) < EmptyList();
A(vg41, v]) < GenerateAllintervals(pointsListy});
forie {2,...,p}do
for a € AM(vg41,v;_;) do
if IsCompatible?¢, v}) then
| A(wkt1,v]) < AddToList\(vgy1,v]), a);
A(Vk+1,vp) = 0 then

| return FALSE;
Ise

currentCandidate— FirstElement (vi 11, vp));
Instantiate(currentCandidate);
| return TRUE;

When choosing a refinement interval E) as candidate
in the last refinement listnstantiategenerates the equiva-
lent abstract intervdh, b], wherea = z if S is an element
x of pointsListor a is a new element immediately following
x in pointsListif S = 4z, andb = y if E is an elemeny
of pointsListor b is a new element immediately preceding
y in pointsListif S = —y. Note thatinstantiateadds 0, 1
or 2 elements t@ointsList(these elements will be removed
during each backtrack).

At the beginning ofl-BT, pointsListis initialized with
two elements(A4, Z) where A and Z respectively stand
for —oo and+oco. GenerateAllintervalbuilds the first re-
finement listLR(v) of each variable. If prg,(v) = 0,
LR(v) contains for each abstract intervial b] over the
currentpointsListthe refinement intervalé, b), (+a,b),

(a, —b) and(+a, —b). Otherwise,LR(v) contains the ab-
stract intervals of the previous construction that are com-
patible with the current candidate of the first variable in
pre,(v). Note that, to avoid the unconstrained generation
of refinement intervals i R(v) (a quadratic number in the
size ofpointsLis}, we implemented 13 different specialized
functions, one for each Allen relation, that directly geater
the required refinement intervals InR(v). It is immediate

to check that-BT enumerates exactly the same candidates
as the naiv®8T with quadratic domain.

Proposition 2 I-BT is sound and complete w.r.t. the set of
abstract solutions.

Fig. 2 shows the search tree ¢fBT on Ex. 1.

ReorderVariableprovides the variable ordering, J, K). 4. BI-BT: Refining Bi-Intervals
Each node represents refinement lists, that contain refine-
ment intervals. Each edge is labeled by the current state of To upgrade our algorithm to forward checking, we have

pointsListand the current candidates (the abstract intervals)to ensure that the refinement list of a variablbuilt from
of the instantiated variables are represented at the bottomhe instantiation of one of its predecessofrslepends only

of these lists. On this exampléBT returnsTRUE, i.e.,

on the elements gdointsListpresent during the exploration

the TCN is satisfiable. However, we also present in Fig. 2 of v'. This is the goal of the following version that relies on

all other solutions of the TCN for a better understanding of
refinement intervals (only a slight adjustment of Alg. 1 is
required to enumerate or count all solutions of a TCN).

Az
|

A a b %
1
A a I{bi,m}J | <+A,-a> <b,-Z>| A

J | 1

I{d,s)K ‘<+A‘»z> <¢,~Z> <t¢,~Z> <d,-Z> <+d,-Z> <a,—#> ‘ <tA-e> <tAe> <+A -7><a-e> <a,e> <a‘-*z>
Joi,fiK ‘

<+A-e> <+Ae> <a-e> <a‘e>‘

SEE:

K

e ez
£ #J

ot

SolutionFound SolutionFound SolutionFound SolutionF

Figure 2. Backtrack tree of I-BT.

3.3. Problems with forward checking

Forward Checking (FC) [8] is an enhancement easily im-
plemented with refinement lists. IRBT, refinement lists
of v are computed whenis explored. However, the refine-
mentlistA(v, v;) can be computed as soorgss explored.
In that case, refinement lists ofare already built when ex-
ploring v: we only have to iterate through the candidates
and propagate their choice to the variablepasi, (v). If a
refinement list in some; € post, (v) is emptied by prop-

bi-intervals (intervals of intervals) in the refinementdis
Bi-intervals have the same function as refinement intervals
in I-BT . However, they encode sets of abstract intervals (a
bi-interval can be instantiated by many abstract intejvals

4.1. Bi-intervals

A bi-interval over a listL is a pair(f,a, bfy, {5¢, df4)
where the symbols; stand for the usual interval delimiters
[or], a,b,c andd are elements of, and the maximal el-
ement oft,c, df, is greater than the minimal element of
14, bT,. Bi-intervals encode sets of abstract intervals.

Definition 5 (Interpretation of a bi-interval) Let B
(t1a,bts, T3¢, dt,) be a bi-interval overL. Theinterpre-
tation of B in L is the set of all abstract intervalg:, y|
such thatr € 1,a, bt, andy € ¢, df, and either:

e bothx andy are elements of;

e z Oryisanelementof and the otheris a new element
between two contiguous elementd.of

e 1 andy are two new elements placed between two con-
tiguous elements df;

e z andy are two new elements placed between two dis-
tinct pairs of contiguous elements bf

The next definition, along with Prop. 3, states that it

agation, then we choose another candidate. This methodS Possible to build successive refinement lists using bi-

avoids backtracks across all variables betweanduv;.
Thoughl-BT is more efficient than the nai&T with
guadratic domains, the data structure we use does not allo

and complete. The reason is thdT computes candidates
according to a list of instantiatiogintsList Hence, an ex-

tension to FC should compute candidates according to this

list. However, let us explore a variablehaving two prede-
cessors irpre, (v), v1 andvs. The two refinement lists af

are function of the current state pbintsList itself depen-
dent upon the instantiations of bath andv,. Suppose we
backtrack and change the instantiatiorvef FC relies on

the fact that the refinement intervals in the first refinement

list (built from v,) are still valid; but this is false in this case,
since this list depends upon the instantiatiorvef This
problem is easy to identify on Fig. 2. The first refinement
lists of the third level corresponding tB{d, s} K contain
different references to points pointsListdepending on the
instantiation of the refinement interval corresponding to

intervals: the union of the interpretations of bi-intes/al
the last refinement lists corresponds to candidateégin.

extension to FC, although this extension is in general souné.beflnltlon 6 (Refining a bi-interval) LetI'be an abstract

interval, B a bi-interval overL and r an Allen relation.
Therefinement ofB following I andr is the subset of the
interpretation of B in L composed of all abstract intervals
J such that(l, J) € r.

Proposition 3 LetI be an abstract intervalB a bi-interval
over L andr an Allen relation. The refinement &ffollow-
ing I andr is either the empty set or the interpretation of a
bi-interval B’ over L.

Our implementation is a proof of that proposition. We
implemented 13 different refining functions (one for each
Allen relation) and enumerated in these functions all pos-
sible interactions between an abstract interval and a bi-
interval. Prop. 3 is always verified. Alg. 3 is an example
of these 13 functions for thinished-byelation.

Algorithm 3 : Refining a bi-interval constrained by the
finished-byrelation

A a b ;
Data: A bi-interval I = (t;a, bts, T3¢, dt,4), and an abstract .
interval J = [z, y]. A a pplm pah et

Result Let R be the refinement of following J and thefinished-by 2 . —

relation. We returFALSEIf R is empty or a bi-interval oK \ <Rzl <fpalbzi> \

whose interpretation ipointsListis R otherwise. o0 [palloel dpallech pallbeb dadlled
@fngTgc,dhthenretumFALSE; Afapoez Ahaber/nabied Appe?
if b < x then return FALSE; o ?Ii) 2 — 3 =
I]t EL Z<y therc]j Ir)et>urn) ;fLSE;t (} [[D SolutionFound SolutionFound SolutionFound ~ SolutionFoun
if (@ <z andb > y) thenretun (Jz, y, [y, y]);
if (¢ < zandb < y) then return (Jz, bto, [y, y]);)
if (@ > x andb > y) then return (t,a, y[, [y, y]); Figure 3. Backtrack tree of BI-BT.
if (a > z andb < y) thenreturn (t,a, btsy, [y, y]);

4.3. Extension to forward checking

4.2. Backtracking with bi-intervals .
BI-BT can be enhanced with FBBT+FC):

In BT, enumeration of candidates starts with a given Proposition 5 Supposepre,(v) = (vi,...,v;) and
finite domain. Each successive refinement list contains aa(v1), ..., a(v;) are identical in two distinct branches of
smaller subset of this domain and finally the last refinementthe search tree. Thek(v,v1), ..., A(v, v;) are also identi-
list contains the candidates. BT, the procedure is sim- cal.
ilar but begins with a generation of the abstract intervals
required in the first refinement lisGenerateAllintervals
The size of the first refinement list can be quadratic in the
size ofpointsList

Our version oBT that relies on bi-intervals is calle®i-

BT. This time, the domain of a variable is represented _
by a single bi-interval]A, Z[,]A, Z|) (as inl-BT, A and We compare the three algorithmsHT, BI-BT, BI-

7 are initial elements opointsListthat stand for-oo and ~ BT+FC) presented in this paper with trz‘e basic path-
+o0). If pre, (v) = 0, the refinement lisk(v) contains this ~ consistency-based one in [10] denot&d-BT*. Moreover,
single bi-interval (instead of the quadratic numbelrBiT). we also implement other optimizations schemes such as
Though inBT andI-BT each refinement list contained a BackMark [6] BI-BT+BM) that also relies on Prop. 5 and
subset of the previous one, refinement ligsw in BI-BT . BackJump [6, 4, 11]RI-BT+BJ)°.

Proposition 6 BI-BT+FC is sound and complete w.r.t the
set of abstract solutions.

5. Experiments

For each bi-intervaB € \(v,vy) and for each Allen re- Our benchmark was composed of 2600 complete and
lation € p({v, vpr1)) OF p({vps1,0)))s A(v, vps1) CON- haIf-compIete TCNSs with 10 variables eaph. By varying the
tains the bi-interval representing the refinementofol- constraint hardness, we observe the efficiency of our algo-

lowing the current candidate of.,; andr (see Def. 6 and rithms in the transition region [14]. We ran the 6 above-
Prop. 3), if this set is not empty. A refinement list of size mentioned algorithms on the instances of the benchmark
can thus be followed by a refinement listv, ') of size at using an Intel 2GHz machine with 2Gb of RAM. Note that

mostk x |p((v,v'))|. Finally, the last refinement list con- the desigr_\ of thi§ benchmark (random instances coyering
tains bi-intervals but the candidates we look for are abstra the transition region) is meant to evaluate these algosthm

intervals: the set of candidates we must iterate through isOn hard instances.

then the union of the interpretations of these bi-interirals We have represented in Fig. 4(a) and 4(b) the average
pointsList run time of each of the algorithms to check the satisfiability

of the networks. Moreover, we apply on the same kind of
TCNSs with 15 variables eadBl-BT+FC with a pre-step of
path-consistency [1] (the cost of this elementary pre;step
that does not solve the problem by itself, is visualized by
1PC). Results are reported in Fig. 4(c) and 4(d). Our inter-
pretation of the results follows:

Prop. 3 ensures that the candidates chos&i-BT are
exactly the same as the ones choseirBY . The following
proposition immediately follows:

Proposition 4 BI-BT is sound and complete w.r.t the set of
abstract solutions.

2We do not use the C-program of [10] to keep the same instaomtiat

; : - order as inBI-BT. Moreover, we do not want results to be twisted by
Fig. 3 shows the bathraCkmg tree BF-BT on Ex. 1. additional optimizations: we only compare two look-aheachhiques.

Refin.em(_ant lists now contain bi_—intervals a_nd are _smaIIer 3The Java-program that was used for the evaluation is alaifatm
than in Fig. 2. The property required for FC is satisfied. http://temporalsolver.gforge.inria.fr

bg n e
2 4 13 8 0 2 4 6 8
Number of Alen relations on each edge: Number o Aln reatons on each edge

) 2

(a) 10 variables, 100% degree siz€b) 10 variables, 50% degree size.

00— T T T
88T —— BATHHC ——
BHSTHRC+1PC - e

1

o PCBT —2

8000

H
40

20

Namber o Alen reations on eachede Noumoerof Al eaions o each edge

(c) 15 variables, 100% degree siz€d) 15 variables, 50% degree size.

Figure 4. Experimental results.

e BI-BT is equivalent or better thahBT due to the

complex bi-interval refinements involved and to its

larger partition;

e however,BI-BT can be improved: its extensioBs-
BT+BM andBI-BT+BJ are better thah-BT, and its
extension tBI-BT+FC is clearly more efficient;

e PC-BT filters more tharBI-BT+FC (the search tree
is on average 10 times smaller). Howe\BrBT+FC
can be improved in a hybrid algorithm that uges-

bi-intervals allows backtracking optimizations. Moregve
these algorithms can be used in a hybrid algorithm that uses
generic CSPs optimization techniques as well as specific
TCNs path-consistency optimizations thus improving the
backtracking part of path-consistency-based algorithms.

Before implementing this hybrid algorithm, we intend to
explore other generic techniques such as variables and con-
straints orderings [10], structure-based optimizatia®s [
and use more efficient look-ahead filtering techniques such
as MAC [3].

References

[1] J.F. Allen. Maintaining knowledge about temporal imvizs.
Com. of the ACM26(11):832-843, 1983.

[2] J.-F. Baget and Y. S. Tognetti. Backtracking through bicon-
nected components of a constraint graph. Phoc. of 13-
CAI'01, pages 291-296, 2001.

[3] C.Bessiere and J.-C. Régin. MAC and combined heusstic
two reasons to forsake FC (and CBJ?) on hard problems. In
Proc. of CP’96 pages 6175, 1996.

[4] R. Dechter. Enhancement schemes for constraint process
ing: Backjumping, learning, and cutset decompositiéin-
tificial Intelligence 41(3):273-312, 1990.

[5] R. Dechter, I. Meiri, and J. Pearl. Temporal constraiet-n
works. Artificial Intelligence 49:61-95, 1991.

[6] J. Gaschnig. Performance measurement and analysis-of ce
tain search algorithms. Technical Report CMU-CS-79-124,
Carnegie Mellon University, 1979.

[7] S. W. Golomb and L. D. Baumert. Backtrack programming.
Journal of the ACM12(5):516-524, 1965.

[8] R. M. Haralick and G. L. Elliott. Increasing tree seardfi-e
ciency for constraint satisfaction problemartificial Intel-
ligence 14:263-314, 1980.

[9] I. Meiri. Combining qualitative and quantitative coraints
in temporal reasoningdArtificial Intelligence 87:343—-385,
1996.

BT because applying one step of path-consistency [10] B. Nebel. Solving hard qualitative temporal reasoringb-

(1PC) beforeBI-BT+FC improvesBI-BT+FC.

lems: Evaluating the efficiency of using the ORD-horn class.
In Proc. of ECAI'96 pages 38-42, 1996.

We wanted to compare our results with the efficient but [11] P. Prosser. Hybrid algorithms for the constraint $atison

incomplete local search-based algoritAi8AT [15]. We

ranBI-BT+FC on random instances with 80 variables with

problem.Computational Intelligenced(3):268-299, 1993.
[12] F. Rossi, C. Petrie, and V. Dhar. On the equivalence aof co

the same hardness parameters as in [15]. On highly con- straint satisfaction problems. [Rroc. of ECAI'9Q pages

strained problemsBI-BT+FC rapidly cuts all branches
of the search tree, whil8SAT has its worse results and

is slower tharBI-BT+FC (or PC-BT). While BI-BT+FC
fails in the transition region,TSAT remains quick but
misses most solutions.

6. Conclusion

We have presented sound and complete algorithms for[16]
satisfiability of TCNs. They do not rely on usual path-

550-556, 1990.

[13] E. Schwalb and R. Dechter. Processing temporal cdnstra
networks.A. I., 93:29-61, 1997.

[14] B. M. Smith and S. A. Grant. Sparse constraint graphs and
exceptionally hard problems. IRroc. of IJCAI'95 pages
646—654, 1995.

[15] J. Thornton, M. Beaumont, A. Sattar, and M. Maher. A lo-

cal search approach to modelling and solving interval alge-

bra problems.J. of Logic and Computatiori4(1):93-112,

2004.

P.van Beek and D. W. Manchak. The design and experimen-

tal analysis of algorithms for temporal reasonidgurnal of

consistency techniques but use the weaker forward check- Artificial Intelligence Research#:1-18, 1996.

ing. We have shown that a partition of infinite domains in

