
Bi-Intervals for Backtracking on Temporal Constraint Netw orks

Jean-François Baget
INRIA Rhône-Alpes and LIG

Montbonnot, France
jean-francois.baget@inrialpes.fr

Sébastien Laborie
INRIA Rhône-Alpes and LIG

Montbonnot, France
sebastien.laborie@inrialpes.fr

Abstract

Checking satisfiability of temporal constraint networks
involves infinite variables domains. We explore a solution
based upon finite partitions of infinite domains. Though a
straightforward partition results in a sound and complete
backtrack, its extension to forward checking is not complete.
Using bi-intervals, we obtain sound and complete backtrack
and forward checking algorithms. Moreover, we show that
bi-intervals used in a hybrid algorithm which also instanti-
ates constraints improve backtrack efficiency.

1. Introduction

To check satisfiability of a temporal constraint network
(TCN) [5] (variables domains are the sets of intervals of real
numbers and constraints are disjunctions of Allen’s relation
[1]), most algorithms instantiate constraints and use path-
consistency based techniques to evaluate solutions [10].

Some authors suggested (e.g., [13]) to use generic con-
straint optimization techniques (e.g., forward checking [8],
backjumping [6, 4, 11]). However, these optimizations in-
stantiate variables which have an infinite domain in TCNs.
Backtracking on the dual graph [12] is a solution but it does
not handle mixed qualitative/quantitative TCNs [13]. For
mixed TCNs, one can rely upon finite domains of equiva-
lence classes of intervals (that we name abstract intervals),
a natural encoding similar to the interval end-point ordering
of [15]. We provide in Section 3 a sound and complete TCN
satisfiability algorithm using abstract intervals. Thoughit
remains sound and complete using backjumping schemes,
we show that its extension to a simple look-ahead technique
such as forward checking is not complete.

To obtain a sound and complete forward checking, we
propose in Section 4, a different equivalence class called
bi-intervals (intervals of intervals). Using them, both back-
track and forward checking are sound and complete. Fi-
nally, Section 5 compares the efficiency of our algorithms
with those based upon path-consistency [10].

2. Allen Temporal Constraint Networks

In this section, we define temporal constraint networks:
constraints are disjunctions of Allen’s relations [1] and vari-
able values can be any interval of real numbers. We for-
mally define these objects and discuss existing algorithms
that check their satisfiability.

2.1. Allen’s relation

The Allen interval algebra [1] is based on the notion of
time intervals and binary relations on them. A time inter-
val I is an ordered pair(Is, Ie) of real numbers such that
Is < Ie. Allen defined a setR of basic relations between
intervals such that any pair of time intervals satisfies one
and only one of these relations:

relation (r): x r y x / y inverse: yr−1 x
before (b) (bi) after
meets (m) (mi) met-by
during (d) (di) contains

overlaps (o) (oi) overlapped-by
starts (s) (si) started-by

finishes (f) (fi) finished-by
equals (e) (e)

2.2. Temporal Constraint Networks

Definition 1 (Temporal constraint network (TCN)) Let
D be a domain containing all time intervals, andR a set
of Allen relations overD. A temporal constraint network
(TCN) over (D,R) is a tupleN = (V, U, δ, ρ) whereV
is a set ofvariables, U ⊆ V × V is a set ofconstraints,
δ : V → P(D) maps each variable to a set ofvaluesand
ρ : U → P(R) maps each constraint to a set of relations.

Definition 2 (Solution of a TCN) LetN = (V, U, δ, ρ) be
a TCN over(D,R). A solutionofN is a mappingα : V →
D such that∀v ∈ V , α(v) ∈ δ(v) and ∀〈v1, v2〉 ∈ U ,
∃R ∈ ρ(〈v1, v2〉) with 〈α(v1), α(v2)〉 ∈ R.

A TCN is saidsatisfiableif it admits asolution.

Example 1 The TCN of Fig. 1 is satisfiable: it admits the
solutionI = [π/2, 3], J = [3,

√
29] andK = [1, 4].

I
{bi,m}

//

{d,s} ,,YYYYYYYYYYYYYYY J

{oi,f}rreeeeeeeeeeeeeee

K

Figure 1. An example of TCN.

2.3. Algorithms for TCNs Satisfiability

A TCN is basic if each of its constraints contains only
one Allen relation. To a TCNN we can associate an expo-
nential setB(N) of Π

|U|
i=1

|ρ(ui)| of basic TCNs such that
N is satisfiable if and only if one of the networks inB(N)
is path-consistent [1]. This algorithm generates all instanti-
ations of constraints and tests them using path-consistency
(sound, but complete only for basic networks). As an opti-
mization heuristic, [10] proposed path-consistency as a fil-
tering technique during backtrack, pruning significantly the
search tree. Additional optimizations include constraints
and relations orderings as well as optimizations of path-
consistency (e.g., [10, 16, 13]).

However, these algorithms do not instantiate vari-
ables but constraints. To adapt them to a variable-
instantiating framework [13] and to process mixed quali-
tative/quantitative temporal networks, [9] represents TCNs
as constraint networks whose variables are either time inter-
vals or points representing the end points of these intervals.
He then uses specific path-consistency algorithms on these
networks. Though many authors (e.g., [13]) point out that
it is interesting to optimize the backtracking part of these
algorithms with generic backtrack optimizations (such as
look-ahead or backjumping schemes [6, 4, 11]), we are not
aware of any implementation of such an hybrid algorithm.

Though we are mainly interested here in sound and com-
plete algorithms, we must include in this quick overview of
algorithms the efficient, but not complete, local search algo-
rithm of [15] that also instantiates variables of the network.

3. I-BT: Refining Intervals during Backtrack

We want to use a backtracking algorithm to check the
satisfiability of a TCN. However, domains of variables
(pairs of real numbers) are infinite leading to an infinite
backtrack. We first define abstract intervals that will be used
to finitely partition the solutions of the network. They are
a natural encoding of interval end-points also used in [15].
Then, we present a backtrack algorithmBT and show how
to adapt it to run on these abstract intervals. Finally, we
show that an extension ofBT to forward checking [8] fails
on abstract intervals.

3.1. Abstract Intervals

Definition 3 (Abstract interval) LetL be a totally ordered
list. An abstract intervalover L is a pair noted[a, b] of
elements ofL s.t.a < b.

By instantiating variables with abstract intervals, we
compute equivalence classes of solutions (in the sense of
Def. 2): two solutionsα, α′ are in the same equivalence
class iff for every pair of variables〈v1, v2〉, the Allen rela-
tion that holds betweenα(v1) andα(v2) is the same relation
that holds betweenα′(v1) andα′(v2).

Definition 4 (Abstract solution) Let N = (V, U, δ, ρ) be
a TCN. Anabstract solutionof N is a pair (L, α) whereL
is an ordered set of elements (a list), andα is a surjective
mapping fromV to L2 such that the mappingα′ defined by
∀x ∈ V with α(x) = 〈s, e〉, α′(x) = [rankL(s), rankL(e)]
is a solution ofN (whererankL(p) returns the position of
an element p in the listL).

Proposition 1 Abstract solutions of a TCN are equivalence
classes for its solutions.

3.2. Backtracking with abstract intervals

Backtrack [7] can be used to check the satisfiability of a
TCN. As in [11], the iterative version proposed in Alg. 1,
denotedBT, allows a better control of the execution stack.

Algorithm 1 : Backtrack
Data: A constraint networkN = (V, U, δ, ρ) over(D,R) (D finite

andr ∈ R decidable).
Result: YES iff N is satisfiable.
if V = ∅ then return SolutionFound(N);
N ← InitializeNetwork(ReorderVariables(N));
backtrack← false; level← 1;
while level 6= 0 do

if level = |V |+ 1 then
SolutionFound(N);
backtrack← true;
level← PreviousLevel(level,N);

elsecurrentVariable← V [level];
if backtrackthen

if NextCandidate(currentVariable,N) then
backtrack← false;
level← NextLevel(level,N);

else level← PreviousLevel(level,N);
else

if FirstCandidate(currentVariable,N) then
level← NextLevel(level,N);

else
backtrack← true;
level← PreviousLevel(level,N);

BT accepts any variable ordering ofReorderVariables,
though some are more efficient (e.g., graph traversal).

InitializeNetwork stores data for quicker later accesses
(e.g., pre and post lists). The integerlevel is the cur-
rent depth in the search tree and the booleanbacktrackis
FALSE when going down the search tree andTRUE other-
wise. Here,NextLevel and PreviousLevelreturn respec-
tively level + 1 and level − 11. SolutionFoundis called
when all variables are instantiated. For satisfiability, itre-
turns YES, and stopsBT. The heart ofBT is encoded in
FirstCandidateandNextCandidate:

CandidatesConsider the variablesv1, . . . , vk instantiated
with α(v1), . . . , α(vk). Candidatesof vk+1 are all values
a ∈ δ(vk+1) such that for every constraintc = 〈vi, vk+1〉 in
N with 1 ≤ i ≤ k (resp.,c = 〈vk+1, vi〉), 〈α(vi), a〉 ∈ ρ(c)
(resp.,〈a, α(vi)〉 ∈ ρ(c)): we say thata is compatiblewith
vi. ForBT to be sound and complete,FirstCandidatemust
compute the first candidate of the current variable, store itin
currentCandidate, returnTRUE if found orFALSE otherwise.
Successive calls toNextCandidateiterate through candi-
dates, updatingcurrentCandidate, returnTRUE if found or
FALSE otherwise.

Pre and post variablesWe callpreV (v) the list of neigh-
bors of the variablev that are smaller thanv according to
the order ofReorderVariables. Only constraints incident to
v and a variable ofpreV (v) are needed to compute candi-
dates forv. The list postV (v) is defined using neighbors
greater thanv.

Refinement listsEach variablev contains a sequence ofre-
finement lists. If preV (v) = ∅, this sequence consists of a
single listλ(v) = δ(v). Otherwise, it contains|preV (v)|
lists λ(v, v1), . . . , λ(v, vp) wherepreV (v) = (v1, . . . , vp).
BT computes these lists for the current variablev each time
FirstCandidateis called. The listλ(v, v1) contains all val-
ues ofδ(v) compatible withv1. For 2 ≤ i ≤ p, the list
λ(v, vi) contains all values ofλ(v, vi−1) compatible with
vi. Then the listλ(v, vp) contains all candidates ofv.

DuringBT, we maintain a listpointsListthat respects the
following property: “pointsListcontains only the start and
end points of instantiated variables”. We callI-BT (Inter-
val BackTrack) the specialization ofBT (Alg. 1) that calls
Alg. 2 to check satisfiability. It only generates the abstract
intervals that are required duringI-BT . While building re-
finement lists, we use an encoding of abstract intervals (re-
finement intervals) that implicitly represents them without
updatingpointsList.

Refinement intervalsA refinement interval overpointsList
is a pair〈S, E〉 whereS = +a or S = a andE = −b
or E = b, with [a, b] an abstract interval overpointsList.
Refinement intervals are used to build the refinement lists.

1Forward jumping [2] or backjumping [6, 4, 11] allow greater incre-
ments or decrements oflevel.

Algorithm 2 : FirstCandidate (I-BT version)
Data: A TCNN = (V, U, δ, ρ) over(D,R), where the variables

v1, . . . , vk have been instantiated with pairs of points of
pointsList; and the variablevk+1.

Result: Computes the candidates ofvk+1, returnsFALSE if this list
is empty, otherwise returnsTRUE andcurrentCandidate
points on the first element of this list.

if preV (vk+1) = ∅ then
λ(vk+1)← GenerateAllIntervals(pointsList);
currentCandidate← FirstElement(λ(vk+1));
Instantiate(currentCandidate);
return TRUE;

else
(v′

1
, . . . , v′p)← preV (vk+1);

for i ∈ {1, . . . , p} do
λ(vk+1, v′

i
)← EmptyList();

λ(vk+1, v′
1
)← GenerateAllIntervals(pointsList,v′

1
);

for i ∈ {2, . . . , p} do
for a ∈ λ(vk+1, v′

i−1
) do

if IsCompatible?(a, v′
i
) then

λ(vk+1, v′
i
)← AddToList(λ(vk+1, v′

i
), a);

if λ(vk+1, vp) = ∅ then
return FALSE;

else
currentCandidate← FirstElement(λ(vk+1 , vp));
Instantiate(currentCandidate);
return TRUE;

When choosing a refinement interval〈S, E〉 as candidate
in the last refinement list,Instantiategenerates the equiva-
lent abstract interval[a, b], wherea = x if S is an element
x of pointsListor a is a new element immediately following
x in pointsListif S = +x, andb = y if E is an elementy
of pointsListor b is a new element immediately preceding
y in pointsList if S = −y. Note thatInstantiateadds 0, 1
or 2 elements topointsList(these elements will be removed
during each backtrack).

At the beginning ofI-BT , pointsList is initialized with
two elements(A, Z) where A and Z respectively stand
for −∞ and+∞. GenerateAllIntervalsbuilds the first re-
finement listLR(v) of each variablev. If preV (v) = ∅,
LR(v) contains for each abstract interval[a, b] over the
currentpointsList the refinement intervals〈a, b〉, 〈+a, b〉,
〈a,−b〉 and〈+a,−b〉. Otherwise,LR(v) contains the ab-
stract intervals of the previous construction that are com-
patible with the current candidate of the first variable in
preV (v). Note that, to avoid the unconstrained generation
of refinement intervals inLR(v) (a quadratic number in the
size ofpointsList), we implemented 13 different specialized
functions, one for each Allen relation, that directly generate
the required refinement intervals inLR(v). It is immediate
to check thatI-BT enumerates exactly the same candidates
as the naı̈veBT with quadratic domain.

Proposition 2 I-BT is sound and complete w.r.t. the set of
abstract solutions.

Fig. 2 shows the search tree ofI-BT on Ex. 1.

ReorderVariablesprovides the variable ordering(I, J, K).
Each node represents refinement lists, that contain refine-
ment intervals. Each edge is labeled by the current state of
pointsListand the current candidates (the abstract intervals)
of the instantiated variables are represented at the bottom
of these lists. On this example,I-BT returnsTRUE, i.e.,
the TCN is satisfiable. However, we also present in Fig. 2
all other solutions of the TCN for a better understanding of
refinement intervals (only a slight adjustment of Alg. 1 is
required to enumerate or count all solutions of a TCN).

Α Zba
I

c d
J

Α Z
I

ba e

J

I

a bΑ Z

Α Z

ba
I
K

J

e ZΑΑ Z

J

b g eaf
I
K

Z

J

b ea
I
K

iΑ

<+A,−Z>

<+A,−a> <b,−Z>I{bi,m}J

I{d,s}K

J{oi,f}K <+A,−e> <+A,e> <a,−e> <a,e>

I

Α ah
I
K

e Zb

<+A,−Z> <c,−Z> <+c,−Z> <d,−Z> <+d,−Z> <a,−Z> <+A,−e> <+A,e> <+A,−Z> <a,−e> <a,e> <a,−Z>

SolutionFound SolutionFound SolutionFound SolutionFound

J

Figure 2. Backtrack tree of I-BT .

3.3. Problems with forward checking

Forward Checking (FC) [8] is an enhancement easily im-
plemented with refinement lists. InI-BT , refinement lists
of v are computed whenv is explored. However, the refine-
ment listλ(v, vi) can be computed as soon asvi is explored.
In that case, refinement lists ofv are already built when ex-
ploring v: we only have to iterate through the candidates
and propagate their choice to the variables inpostV (v). If a
refinement list in somev′i ∈ postV (v) is emptied by prop-
agation, then we choose another candidate. This method
avoids backtracks across all variables betweenv andv′i.

ThoughI-BT is more efficient than the naı̈veBT with
quadratic domains, the data structure we use does not allow
extension to FC, although this extension is in general sound
and complete. The reason is thatI-BT computes candidates
according to a list of instantiationspointsList. Hence, an ex-
tension to FC should compute candidates according to this
list. However, let us explore a variablev having two prede-
cessors inpreV (v), v1 andv2. The two refinement lists ofv
are function of the current state ofpointsList, itself depen-
dent upon the instantiations of bothv1 andv2. Suppose we
backtrack and change the instantiation ofv2. FC relies on
the fact that the refinement intervals in the first refinement
list (built fromv1) are still valid; but this is false in this case,
since this list depends upon the instantiation ofv2. This
problem is easy to identify on Fig. 2. The first refinement
lists of the third level corresponding toI{d, s}K contain
different references to points inpointsListdepending on the
instantiation of the refinement interval corresponding toJ .

4. BI-BT: Refining Bi-Intervals

To upgrade our algorithm to forward checking, we have
to ensure that the refinement list of a variablev built from
the instantiation of one of its predecessorsv′ depends only
on the elements ofpointsListpresent during the exploration
of v′. This is the goal of the following version that relies on
bi-intervals (intervals of intervals) in the refinement lists.
Bi-intervals have the same function as refinement intervals
in I-BT . However, they encode sets of abstract intervals (a
bi-interval can be instantiated by many abstract intervals).

4.1. Bi-intervals

A bi-interval over a listL is a pair〈†1a, b†2, †3c, d†4〉
where the symbols†i stand for the usual interval delimiters
[or], a, b, c andd are elements ofL, and the maximal el-
ement of†3c, d†4 is greater than the minimal element of
†1a, b†2. Bi-intervals encode sets of abstract intervals.

Definition 5 (Interpretation of a bi-interval) Let B =
〈†1a, b†2, †3c, d†4〉 be a bi-interval overL. The interpre-
tation of B in L is the set of all abstract intervals[x, y]
such thatx ∈ †1a, b†2 andy ∈ †3c, d†4 and either:

• bothx andy are elements ofL;
• x or y is an element ofL and the other is a new element

between two contiguous elements ofL;
• x andy are two new elements placed between two con-

tiguous elements ofL;
• x andy are two new elements placed between two dis-

tinct pairs of contiguous elements ofL.

The next definition, along with Prop. 3, states that it
is possible to build successive refinement lists using bi-
intervals: the union of the interpretations of bi-intervals in
the last refinement lists corresponds to candidates inI-BT .

Definition 6 (Refining a bi-interval) Let I be an abstract
interval, B a bi-interval overL and r an Allen relation.
Therefinement ofB following I andr is the subset of the
interpretation ofB in L composed of all abstract intervals
J such that〈I, J〉 ∈ r.

Proposition 3 LetI be an abstract interval,B a bi-interval
overL andr an Allen relation. The refinement ofB follow-
ing I andr is either the empty set or the interpretation of a
bi-intervalB′ overL.

Our implementation is a proof of that proposition. We
implemented 13 different refining functions (one for each
Allen relation) and enumerated in these functions all pos-
sible interactions between an abstract interval and a bi-
interval. Prop. 3 is always verified. Alg. 3 is an example
of these 13 functions for thefinished-byrelation.

Algorithm 3 : Refining a bi-interval constrained by the
finished-byrelation

Data: A bi-interval I = 〈†1a, b†2, †3c, d†4〉, and an abstract
intervalJ = [x, y].

Result: Let R be the refinement ofI following J and thefinished-by
relation. We returnFALSE if R is empty or a bi-interval
whose interpretation inpointsListis R otherwise.

if y 6∈ †3c, d†4 then return FALSE;
if b ≤ x then return FALSE;
if a ≥ y then return FALSE;
if (a ≤ x andb ≥ y) then return 〈]x, y[, [y, y]〉;
if (a ≤ x andb < y) then return 〈]x, b†2, [y, y]〉;
if (a > x andb ≥ y) then return 〈†1a, y[, [y, y]〉;
if (a > x andb < y) then return 〈†1a, b†2, [y, y]〉;

4.2. Backtracking with bi-intervals

In BT, enumeration of candidates starts with a given
finite domain. Each successive refinement list contains a
smaller subset of this domain and finally the last refinement
list contains the candidates. InI-BT , the procedure is sim-
ilar but begins with a generation of the abstract intervals
required in the first refinement list (GenerateAllIntervals).
The size of the first refinement list can be quadratic in the
size ofpointsList.

Our version ofBT that relies on bi-intervals is calledBI-
BT. This time, the domain of a variablev is represented
by a single bi-interval〈]A, Z[,]A, Z[〉 (as in I-BT , A and
Z are initial elements ofpointsListthat stand for−∞ and
+∞). If preV (v) = ∅, the refinement listλ(v) contains this
single bi-interval (instead of the quadratic number inI-BT).
Though inBT and I-BT each refinement list contained a
subset of the previous one, refinement listsgrow in BI-BT .
For each bi-intervalB ∈ λ(v, vk) and for each Allen re-
lation r ∈ ρ(〈v, vk+1〉) (or ρ(〈vk+1, v〉)), λ(v, vk+1) con-
tains the bi-interval representing the refinement ofB fol-
lowing the current candidate ofvk+1 andr (see Def. 6 and
Prop. 3), if this set is not empty. A refinement list of sizek
can thus be followed by a refinement listλ(v, v′) of size at
mostk × |ρ(〈v, v′〉)|. Finally, the last refinement list con-
tains bi-intervals but the candidates we look for are abstract
intervals: the set of candidates we must iterate through is
then the union of the interpretations of these bi-intervalsin
pointsList.

Prop. 3 ensures that the candidates chosen inBI-BT are
exactly the same as the ones chosen byI-BT . The following
proposition immediately follows:

Proposition 4 BI-BT is sound and complete w.r.t the set of
abstract solutions.

Fig. 3 shows the backtracking tree ofBI-BT on Ex. 1.
Refinement lists now contain bi-intervals and are smaller
than in Fig. 2. The property required for FC is satisfied.

Α Z

ZΑ bac d
IJ

Z

J

b ea
I

Α i

a bΑ Z

I

Α Z
I

ba e

J

Α Zb g eaf
I

Α ah
I

e Zb

J

ba
I J

e ZΑ

K
J

K K K

<]A,Z[,]A,Z[>

<]A,a[,]A,a[> <[b,b],]b,Z[>

I

I{bi,m}J

<]A,a[,]b,Z[> <[a,a],]b,Z[>

J{oi,f}K
I{d,s}K <]A,a[,]b,Z[> <[a,a],]b,Z[>

<]A,a[,]b,e[> <]A,a[,[e,e]> <[a,a],]b,e[> <[a,a],[e,e]>

SolutionFound SolutionFound SolutionFound SolutionFound

Figure 3. Backtrack tree of BI-BT .

4.3. Extension to forward checking

BI-BT can be enhanced with FC (BI-BT+FC):

Proposition 5 SupposepreV (v) = (v1, . . . , vk) and
α(v1), . . . , α(vi) are identical in two distinct branches of
the search tree. Thenλ(v, v1), . . . , λ(v, vi) are also identi-
cal.

Proposition 6 BI-BT+FC is sound and complete w.r.t the
set of abstract solutions.

5. Experiments

We compare the three algorithms (I-BT , BI-BT , BI-
BT+FC) presented in this paper with the basic path-
consistency-based one in [10] denotedPC-BT2. Moreover,
we also implement other optimizations schemes such as
BackMark [6] (BI-BT+BM) that also relies on Prop. 5 and
BackJump [6, 4, 11] (BI-BT+BJ)3.

Our benchmark was composed of 2600 complete and
half-complete TCNs with 10 variables each. By varying the
constraint hardness, we observe the efficiency of our algo-
rithms in the transition region [14]. We ran the 6 above-
mentioned algorithms on the instances of the benchmark
using an Intel 2GHz machine with 2Gb of RAM. Note that
the design of this benchmark (random instances covering
the transition region) is meant to evaluate these algorithms
on hard instances.

We have represented in Fig. 4(a) and 4(b) the average
run time of each of the algorithms to check the satisfiability
of the networks. Moreover, we apply on the same kind of
TCNs with 15 variables eachBI-BT+FC with a pre-step of
path-consistency [1] (the cost of this elementary pre-step,
that does not solve the problem by itself, is visualized by
1PC). Results are reported in Fig. 4(c) and 4(d). Our inter-
pretation of the results follows:

2We do not use the C-program of [10] to keep the same instantiation
order as inBI-BT . Moreover, we do not want results to be twisted by
additional optimizations: we only compare two look-ahead techniques.

3The Java-program that was used for the evaluation is available from
http://temporalsolver.gforge.inria.fr

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12

M
e
a
n
 T

im
e
 [
m

s
]

Number of Allen relations on each edge

I-BT
BI-BT

BI-BT+BM
BI-BT+FC
BI-BT+BJ

PC-BT

(a) 10 variables, 100% degree size.

0

200

400

600

800

1000

1200

1400

2 4 6 8 10 12

M
e
a
n
 T

im
e
 [
m

s
]

Number of Allen relations on each edge

I-BT
BI-BT

BI-BT+BM
BI-BT+FC
BI-BT+BJ

PC-BT

(b) 10 variables, 50% degree size.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

2 4 6 8 10 12

M
e
a
n
 T

im
e
 [
m

s
]

Number of Allen relations on each edge

BI-BT+FC
BI-BT+FC + 1PC

1PC
PC-BT

(c) 15 variables, 100% degree size.

0

2000

4000

6000

8000

10000

2 4 6 8 10 12

M
e
a
n
 T

im
e
 [
m

s
]

Number of Allen relations on each edge

BI-BT+FC
BI-BT+FC + 1PC

1PC
PC-BT

(d) 15 variables, 50% degree size.

Figure 4. Experimental results.

• BI-BT is equivalent or better thanI-BT due to the
complex bi-interval refinements involved and to its
larger partition;

• however,BI-BT can be improved: its extensionsBI-
BT+BM andBI-BT+BJ are better thanI-BT , and its
extension toBI-BT+FC is clearly more efficient;

• PC-BT filters more thanBI-BT+FC (the search tree
is on average 10 times smaller). However,BI-BT+FC
can be improved in a hybrid algorithm that usesPC-
BT because applying one step of path-consistency
(1PC) beforeBI-BT+FC improvesBI-BT+FC .

We wanted to compare our results with the efficient but
incomplete local search-based algorithmTSAT [15]. We
ranBI-BT+FC on random instances with 80 variables with
the same hardness parameters as in [15]. On highly con-
strained problems,BI-BT+FC rapidly cuts all branches
of the search tree, whileTSAT has its worse results and
is slower thanBI-BT+FC (or PC-BT). While BI-BT+FC
fails in the transition region,TSAT remains quick but
misses most solutions.

6. Conclusion

We have presented sound and complete algorithms for
satisfiability of TCNs. They do not rely on usual path-
consistency techniques but use the weaker forward check-
ing. We have shown that a partition of infinite domains in

bi-intervals allows backtracking optimizations. Moreover,
these algorithms can be used in a hybrid algorithm that uses
generic CSPs optimization techniques as well as specific
TCNs path-consistency optimizations thus improving the
backtracking part of path-consistency-based algorithms.

Before implementing this hybrid algorithm, we intend to
explore other generic techniques such as variables and con-
straints orderings [10], structure-based optimizations [2],
and use more efficient look-ahead filtering techniques such
as MAC [3].

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals.
Com. of the ACM, 26(11):832–843, 1983.

[2] J.-F. Baget and Y. S. Tognetti. Backtracking through bicon-
nected components of a constraint graph. InProc. of IJ-
CAI’01, pages 291–296, 2001.

[3] C. Bessiere and J.-C. Régin. MAC and combined heuristics:
two reasons to forsake FC (and CBJ?) on hard problems. In
Proc. of CP’96, pages 61–75, 1996.

[4] R. Dechter. Enhancement schemes for constraint process-
ing: Backjumping, learning, and cutset decomposition.Ar-
tificial Intelligence, 41(3):273–312, 1990.

[5] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61–95, 1991.

[6] J. Gaschnig. Performance measurement and analysis of cer-
tain search algorithms. Technical Report CMU-CS-79-124,
Carnegie Mellon University, 1979.

[7] S. W. Golomb and L. D. Baumert. Backtrack programming.
Journal of the ACM, 12(5):516–524, 1965.

[8] R. M. Haralick and G. L. Elliott. Increasing tree search effi-
ciency for constraint satisfaction problems.Artificial Intel-
ligence, 14:263–314, 1980.

[9] I. Meiri. Combining qualitative and quantitative constraints
in temporal reasonings.Artificial Intelligence, 87:343–385,
1996.

[10] B. Nebel. Solving hard qualitative temporal reasoningprob-
lems: Evaluating the efficiency of using the ORD-horn class.
In Proc. of ECAI’96, pages 38–42, 1996.

[11] P. Prosser. Hybrid algorithms for the constraint satisfaction
problem.Computational Intelligence, 9(3):268–299, 1993.

[12] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of con-
straint satisfaction problems. InProc. of ECAI’90, pages
550–556, 1990.

[13] E. Schwalb and R. Dechter. Processing temporal constraint
networks.A. I., 93:29–61, 1997.

[14] B. M. Smith and S. A. Grant. Sparse constraint graphs and
exceptionally hard problems. InProc. of IJCAI’95, pages
646–654, 1995.

[15] J. Thornton, M. Beaumont, A. Sattar, and M. Maher. A lo-
cal search approach to modelling and solving interval alge-
bra problems.J. of Logic and Computation, 14(1):93–112,
2004.

[16] P. van Beek and D. W. Manchak. The design and experimen-
tal analysis of algorithms for temporal reasoning.Journal of
Artificial Intelligence Research, 4:1–18, 1996.

