
P. Eklund and O. Haemmerlé (Eds.): ICCS 2008, LNAI 5113, pp. 297–310, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Griwes: Generic Model and Preliminary Specifications
for a Graph-Based Knowledge Representation Toolkit

Jean-François Baget 1,2, Olivier Corby1, Rose Dieng-Kuntz1,
Catherine Faron-Zucker3, Fabien Gandon1, Alain Giboin1, Alain Gutierrez1,

Michel Leclère2, Marie-Laure Mugnier2, and Rallou Thomopoulos 2,4

1 Edelweiss, INRIA Sophia Antipolis Méditerranée
{First.Last}@inria.fr
2 RCR, LIRMM, UMII, CNRS
{First.Last}@lirmm.fr

3 KEWI, I3S, UNSA, CNRS
{First.Last}@unice.fr

4 IATE Joint Research Unit, INRA Montpellier

Abstract. Griwes is an initiative to develop a common model and an open-
source freeware platform shared by different graph-based frameworks. We
provide an overview of its objectives, architecture and specifications. We detail
some of the basic mathematical structures that are used to characterize the
primitives for graph-based knowledge representation. We then propose to
factorize recurrent knowledge representation primitives that can be shared
across specific graph-based languages and we provide a proof of concept by
showing how two languages (Simple Conceptual Graphs and RDF) can be
described in this framework.

Keywords: graph-based languages, semantic web, platform.

1 Introduction

Graph-based knowledge representation formalisms are more and more common, from
Conceptual graphs (CG) [19] which are historical descendants of semantic networks,
to more recently proposed representations such as RDF1, SKOS1 or Topic Maps2.

The web is playing an important role in the emergence of these new formalisms
and in recent web architectures the RDF graph model became a core layer of the stack
of standards3. Many knowledge representation frameworks are now used online
(RDF, RDFS, SKOS, OWL, GRDDL, RDFa, µFormats, etc.)1 allowing human and
artificial agents to weave graphs describing web resources or just any entity and the
relations existing between them. In a recent post4 Tim Berners-Lee insisted on the

1 W3C Semantic Web Activity http://www.w3.org/2001/sw/
2 http://www.topicmaps.org/
3 One Web http://www.w3.org/Consortium/technology
4 Giant Global Graph, Tim Berners-Lee, http://dig.csail.mit.edu/breadcrumbs/node/215

298 J.-F. Baget et al.

graph nature (Giant Global Graph) of the semantic web and the importance of this
structure in developing and exploiting the semantic web (i.e. the web of data).

Reasonings on these different graph formalisms are often very similar. We could
share many operations and their implementation across frameworks and even within
them on different levels of their models e.g. transitive closure in RDFS class
hierarchy, in SKOS concept narrower / broader links, in instances of OWL transitive
properties, in CG the concept type hierarchy, etc. In fact when we compare these
different languages we can find many similarities. Consider for instance the
similarities between RDF/S and CG as underlined in [5] and [1]:

• both models consider assertions as positive, conjunctive and existential;
• both models represent assertions as labeled graphs;
• the class hierarchy (resp. property hierarchy) of RDFS is equivalent to the

concept type (resp. relation type) hierarchy of CG;
• properties in RDF/S are first class citizens, declared outside classes just like

relations are first class citizens in CG;
• subsumption in RDF/S is equivalent to projection in CG;

The reasonings on these different graph-based frameworks are sometimes also shared
with other non graph-based formalisms e.g., databases. [19]

Tools designed and developed for these different graph-based frameworks are
tailored to specific languages and/or scenarios and this criticism includes the tools we
have been working on in the past years such as Cogitant [9] or Corese [5]. These
experiences convinced us that it would be interesting to share these efforts and avoid
re-designing and re-implementing the same structures and operators again and again.
For this reason we started the project Griwes that stands for Graph-based
Representations and Inferences for Web Semantics. The main objective of this
initiative is to bootstrap an open-source platform, to share efforts on developing
graph-based data structures and algorithms with anyone who wants to contribute. This
also implies a proper definition of the considered graph structures shared by the
different graph-based formalisms.

In the rest of this article we give an overview of the objectives and architecture of
Griwes and we position it w.r.t. other contributions in the field (section 2). We then
give some details of the basic mathematical structures that are used to characterize the
primitives for graph-based knowledge representation (section 3). We proceed with the
layer factorizing recurrent knowledge representation primitives that can be shared
across specific graph-based languages (section 4). Finally we provide a proof of
concept by showing how two languages (Simple Conceptual Graphs and RDF) can be
described in this framework (section 5). We conclude with a discussion on several
difficulties and perspectives we identified. These sections are extracted from the
working draft of a more detailed research report from Griwes available online5.

2 Griwes Initiative

This section is an introduction to the Griwes initiative to develop a common model
and an open-source freeware platform shared by different graph-based frameworks.

5 http://www-sop.inria.fr/acacia/project/griwes/

 Griwes: Generic Model and Preliminary Specifications 299

2.1 Objectives of the Griwes Initiative

In order to develop a common model and an open-source freeware platform shared by
different graph-based frameworks, the objectives of the Griwes initiative can be
divided into four kinds of tasks:

• Identification of users’ and developers’ profiles in the graph-based knowledge
modeling communities and semantic web communities, and definition of usage
scenarios for the platform;

• Definition of a common representation model shared by different graph-based
formalisms and of architectural principles for the organization of the toolkit,
allowing the platform to federate contributions and extensions and fostering
reuse across graph-based representation models;

• Implementation of the API, interfaces and components in an open-source
freeware platform.

• Bootstrapping a community of contributors for this platform (users and
developers).

2.2 Architecture of the Griwes Toolkit

As summarized in figure 1, the current vision of the framework distinguishes three
layers of abstraction and one transversal component for interaction:

• Structure layer: this layer gathers and defines the basic mathematical
structures (e.g. oriented acyclic labeled graph) that are used to characterize the
primitives for knowledge representation (e.g. type hierarchy)

• Knowledge layer: this layer factorizes recurrent knowledge representation
primitives (e.g. a rule) that can be shared across specific knowledge
representation languages (e.g. RDF/S, Conceptual Graphs).

• Language & Strategy: this layer is two-sided. One side gathers definitions
specific to languages (e.g. RDF triple). The other side identifies the strategies
that can be applied to these languages (e.g. validation of a knowledge base,
completion of a fact by rules).

The interaction and interfaces aspect was deemed transversal to these layers. It
gathers events (e.g. additional knowledge needed) and reporting capabilities (e.g.
validity warning) needed to synchronize conceptual representations and interface
representations. In Griwes, we intend to analyze the requirements of that aspect for
each layer as soon as the first draft of these layers is stable.

Fig. 1. The three abstraction layers of the current architecture of Griwes

Structure Layer

Knowledge Layer

Language Strategy

In
te

ra
ct

io
n

in
te

rf
ac

es

300 J.-F. Baget et al.

Before delving into some extracts of the Knowledge and Structure layers, the next
section reviews a number of contributions that prefigured, inspired and justified this
initiative.

2.3 Related Work

There exist a growing number of platforms to reason on graph-based knowledge
formalisms, be they in the conceptual graph families or in the RDF graph family.

On2Brocker [7] is an early ontology-based system to handle RDF annotations.
Ontologies, queries and rules are expressed in Frame Logic. The query engine
translates Frame Logic data into Horn Logic to answer a query. Triple [17] is a query
language initially designed for RDF/S and DAML+OIL. Its core is an RDF query
language based on Horn Logic extended with syntactical features supporting
namespaces, resources and statements (triples). This core language is compiled into
Horn Logic programs executed by a Prolog engine. The core Triple language is
extended with rules for axiomatizing the semantics of RDFS; they can be used
together with a Horn Logic based inference engine to derive additional knowledge
from an RDF Schema specification. DAML+OIL or OWL DL cannot be mapped to
Horn Logic directly and therefore Triple accesses a Description Logic classifier to
handle these extensions. Triple has a layered architecture to handle different
knowledge models. Both On2Brocker and Triple remain focused on logic-based
engines not exploiting the graph structures of the RDF model.

Sesame [3] is a generic architecture for persistent storing of RDF(S) data into Data
Based Management Systems (DBMS) and querying of RDF(S) data with the RQL
language. RQL [15] is an RDF query language defined by means of a set of core
queries, a set of basic filters and a way to build new queries through functional
composition and iterators. When parsing an RQL query, Sesame builds an optimized
query tree model from this composition which is then evaluated through a set of calls
to the storage and inference modules of Sesame. Sesame supports querying at the
semantic level but does not support XML Schema Datatypes, nor does it support
inference rules.

DAMLJessKB [13], its successor OWLJessKB and the e-Wallet [8] are tools for
reasoning with the Semantic Web and DAML or OWL-Lite. They map the RDF
triples and the ontologies into facts of the CLIPS-like language of Jess6 and apply
rules implementing the semantics of RDF, RDFS, XSD and DAML or OWL-Lite.
These systems can perform class instance reasoning and terminological reasoning
about the relationships among classes. In addition, the e-Wallet is able to run rules to
complete the knowledge base, to invoke external services to obtain new knowledge,
to answer queries and to control the precision and truthfulness of answers to preserve
privacy. Here again these engines remain focused on production rule reasoning not
exploiting the graph structure of the RDF model and relying on their internal logic
language for query expression.

Jena [4] is one of the most complete platforms offering persistence and reasoning
for RDF as well as SPARQL querying. It includes a forward-chaining engine (RETE)
and a backward-chaining engine to allow hybrid reasoning and to implement the

6 JESS engine http://herzberg.ca.sandia.gov/

 Griwes: Generic Model and Preliminary Specifications 301

semantics of RDFS and OWL. Jena relies on a fixed database structure for large
storage and on a custom data structure for main-memory storage.

WebKB [14] is an early ontology server and Web robot based on Conceptual
Graphs. WebKB interprets and automatically translates into CGs chunks of
knowledge statements expressed in a CG linear notation and embedded in Web
documents. It also provides commands to query lexical or structural properties of
HTML documents or to display specializations or generalizations of a concept or a
relation or a CG. OntoSeek [10] is another early system that relies on Conceptual
Graphs for ontology-driven content matching. Queries and resource annotations are
lexical conceptual graphs to match one against the other. Neither WebKB nor
OntoSeek handle RDF(S) data or rules. Moreover they both focus on a specific family
of web applications not aiming at allowing different mapping to their graph-based
representations and not providing a generic expressive query language.

With the OWL recommendation at W3C, Description Logics (DL) became
especially important in the spectrum of logic-based systems on the web. Several
systems exist here: Fact and its successor Fact++ [20], KAON2 [16], KAON that
remains focused on RDFS, Racer [11] and Pellet [18]. These engines offer classical
DL operations such as identification, classification and validation. Queries are usually
limited to conjunctive queries and the graph structure of the RDF model is not
exploited at the core of these engines.

To summarize, none of these contributions is offering a pivot model and an open-
source platform to efficiently implement querying and reasoning on graph-based
models. Most of them are tied to specific languages, logics or even applications.

Members of Griwes also developed platforms of their own over the last decade. Let
us mention two of them: Cogitant [9] dedicated to conceptual graph reasoning and
Corese [5] dedicated to a conceptual graph operationalisation of RDF/S.

Our own tools based upon CGs implementations and also contributions like Amine
[12] relying on a combination of Prolog and CGs, suffer from their closed design
preventing reuse and cross-pollination. The next section is a guided tour of some
extracts of the specifications of Griwes as defined in the current working draft of its
research report.

3 Structure Layer

The structure layer is the core layer of the architecture of Griwes. We extracted here
some definitions of the basic mathematical structures that we chose to characterize the
primitives for knowledge representation.

3.1 ERGraphs: Entity-Relation Graphs

Our core representation primitive is intended to describe a set of entities and
relationships between these entities; it is called an Entity-Relation graph (ERGraph in
short). An entity is anything that can be the topic of a conceptual representation. A
relationship, or simply relation, might represent a property of an entity or might relate
two or more entities.

302 J.-F. Baget et al.

The relations can have any number of arguments including zero and these
arguments are totally ordered. In graph theoretical terms, an ERGraph is an oriented
hypergraph, where nodes represent the entities and hyperarcs represent the relations
on these entities. However, a hypergraph has a natural graph representation associated
with it: a bipartite graph, with two kinds of nodes respectively representing entities
and relations, and edges linking a relation node to the entity nodes arguments of the
relation; the edges incident to a relation node are totally ordered according to the
order on the arguments in the relation.

The nodes (Entities) and hyperarcs (Relations) in an ERGraph have labels. At the
structure level, they are just elements of a set L that can be defined in intension or in
extension. Labels obtain a meaning at the knowledge level.

Definition of an ERGraph: An ERGraph relative to a set of labels L is a 4-tuple
G=(EG, RG, nG, lG) where

• EG and RG are two disjoint finite sets respectively, of nodes called entities and
of hyperarcs called relations.

• nG : RG → EG
* associates to each relation a finite tuple of entities called the

arguments of the relation. If nG(r)=(e1,...,ek) we note nG
i(r)=ei the ith argument

of r.
• lG : EG ∪ RG → L is a labelling function of entities and relations.

In some knowledge representation primitives and some algorithms it is useful to
distinguish some entities of a graph. For this purpose we define a second core
primitive, called λ−ERGraph.

Definition of a λ-ERGraph: A λ-ERGraph λG is a couple of an ERGraph G and a
tuple of entities of G: λG = ((e1,…ek), G), ei∈ EG. We say that k is the size of λG and
that (e1,…ek) are distinguished in G.

Definition of an induced SubERGraph: Let G=(EG, RG, nG, lG) be an ERGraph. Let
EG' be a subset of EG. The SubERGraph of G induced by EG' is the ERGraph G'=(EG',
RG', nG', lG') defined by: (1) RG'= { r ∈ RG ⏐ ∀ 1≤i≤card(nG(r)) , nG

i(r) ∈ EG' } (2) nG' is
the restriction of nG to RG' (3) lG' is the restriction of lG to EG' ∪ RG'

Definition of a Merge: let G=((g1,…gk), G') et H=((h1,…hk), H') two λ-ERGraphs of
same size, the merge of H in G modifies G' by adding a copy C(H') of H' to G' and
then for 1≤i≤k by merging the entities C(hi) and gi.

Note that the labels of the merged entities are obtained by applying a method defined
at higher levels.

3.2 Mapping between ERGraphs

Intuitively, a Mapping associates entities of a query ERGraph to entities of an
ERGraph in a knowledge base of ERGraphs. Mapping entities of graphs is a
fundamental operation for comparing and reasoning with ERGraphs.

Definition of an EMapping: Let G and H be two ERGraphs, an EMapping from H to
G is a partial function M from EH to EG i.e. a binary relation that associates each

 Griwes: Generic Model and Preliminary Specifications 303

element of EH with at most one element of EG ; not every element of EH has to be
associated with an element of EG.

Definition of an ERMapping: Let G and H be two ERGraphs, an ERMapping from
H to G is an EMapping M from H to G such that: Let H' be the SubERGraph of H
induced by M-1(EG),∀r'∈RH' ∃r∈ RG such that card(nH'(r'))= card(nG(r)) and ∀
1≤i≤card(nG(r)), M(nH'

i(r'))= nG
i(r). We call r a support of r' in M and note r∈M(r')

Mapping is a basic operation used in many more complex operations e.g. rule
application. Let us note that by default an EMapping is partial. This enables us to
manipulate and reason on EMappings during the process of mapping graphs. When
this process is finished, the EMapping – if any – is said total: all the entities of the
query graph H are mapped. In general we use specific mappings that preserve some
chosen characteristics of the graphs (e.g., compatibility of labels, structural
information etc.); figure 2 shows their hierarchy.

In particular an ERMapping constrains the structure of the graphs being mapped
and an EMapping<X> constrains the labelling of entities in the graphs being mapped.
An ERMapping is an EMapping that leads to map each relation in H to a relation in
G with the same arity. An EMapping<X> is an EMapping that satisfies a compatibility
relation X on entities labels. An ERMapping<X> is both an ERMapping and an
EMapping<X>. A Homomorphism is a total ERMapping. Other specializations
include: injective mappings, surjective mappings, faithful mappings (preserve the
absence of hyperarcs), etc.

Fig. 2. EMapping specialization hierarchy

In conceptual graph projections, many systems map not only entities, but relations
as well. The notion of projection as defined in conceptual graphs corresponds to a
Homomorphism<X> that is to say a total ERMapping<X>, where X is a preorder over the
label set L.

3.3 Proofs of a Mapping

We define the proof of a mapping as a kind of "reification" of the mapping; a proof
provides a static view over the dynamic operation of mapping, enabling thus to access
information relative to the state of the mapping. Formally the proof of a mapping is

EMapping

ERMappingEMapping<X>

ERMapping<X> Homomorphism

IsomorphismHomomorphism<X>

Ident-Isomorphism Equiv-Isomorphism

304 J.-F. Baget et al.

the set(s) of associations detailing the exact association from each entity and relation
of the query graph H to entities and relations of G.

We follow the hierarchy of mappings outlined in the previous section and associate
with each kind of EMapping a notion of proof: EProof, ERProof and ERProof<X>. For
instance the proof for a homomorphism corresponds to the proof of a total
ERMapping<X> where X is a preorder over the label set L and defined as follows:

Definition of an EProof: Let G and H be two ERGraphs, and M an EMapping from
H to G. The EProof of M is a set ME = { (eH,eG) ∈ EH×EG | eG=M(eH) }.

Definition of an ERProof: Let G and H be two ERGraphs, and M an ERMapping
from H to G. Let H' be the SubERGraph of H induced by M-1(EG). An ERProof of M
is a couple P=(ME,MR) where ME is the EProof of M and MR= {(r1,r'1),… (rk,r'k)} with
{r1,…,rk}=RH' and ∀1≤i≤k r'i∈M(ri).

Definition of an ERProof<X>: Let G and H be two ERGraphs, and M an EMapping
from H to G. An ERProof<X> of M is a couple P=(MEX,MRX) where MEX is the
EProof<X> of M and MRX= {(r1,r'1,p1)… (rk,r'k,pK)} where {(r1,r'1)… (rk,r'k,)} is the
second element of an ERProof of M and ∀1≤i≤k pi is a proof of (lG(M(r)), lH(r))∈ X.

At this point we make no assumption on the structure of pi and the means to obtain it.
A system for comparing labels should be able to produce such proofs, e.g. a chain of
subsumption relations which transitive closure confirms the comparison of two labels.
Note that several different ERProofs can be associated to a same ERMapping (e.g.
when there are two twin relations in G that can support a same relation of H).

3.4 Constraints System for Mappings

An EMapping constraint system is a function C that sets additional conditions that an
EMapping must satisfy in order to be correct.It takes the form of an evaluable
expression which must evaluate to true for an EMapping to satisfy the constraint
system.

Definition of an EMapping Constraint System: An EMapping constraint system for
an EMapping M from H to G is a function C(E) where E is the triple (H,P,V) called
the environment, with P the proof of M and V a binary relation associating to
variables vi a unique entity or relation of H. This function can evaluate to {true, false,
unknown, error}.

An EMapping M satisfies (resp. violates) a constraint system C if C(M)=true (resp. if
C(M)=false).

This facet of the specifications was motivated by scenarios using expressive query
languages such as SPARQL [6]. For instance, let us consider the following SPARQL
query and in particular its FILTER clause (line 7):

1. PREFIX inria: <http://www.inria.fr#>
2. SELECT ?student ?name
3. WHERE {
4. ?student rdf:type inria:Student
5. ?student inria:name ?name .
6. ?student inria:age ?age .
7. FILTER (xsd:integer(?age) > 22 && regex(?name, "A.*")) }

 Griwes: Generic Model and Preliminary Specifications 305

The triples of the query pattern can be seen as a graph pattern requesting students
(line 4) with their name (line 5) and their age (line 6):

[Student]-
 (name)->[?name]
 (age)->[?age].

Line 7 however is an additional constraint pattern that has to be satisfied in order for
the matching to be correct; it specifies that the integer value of the age has to be
greater than 22 and that the name should start with an "A".

These kinds of constraints motivated the definition of constraint systems in our
specifications but constraint systems are also envisaged to provide efficient access
means to indexes of graphs, for instance to retrieve all the arcs of a graph satisfying a
given constraint system.

4 Knowledge Layer

In our architecture, a knowledge base B is defined by a vocabulary, one or several
bases of facts, optionally a base of rules and a base of queries. B= (Vocabulary, Fact
Base +, Rule Base*, Query Base*).

A vocabulary is a set of none necessarily disjoint named sets of elements called
vocabulary subsets together with preorders on the union of these sets:

Definition of a Vocabulary: A Vocabulary V is a tuple

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ≤≤==
≤≤

),...,(, 1
1

q
ki

iVUV ∪ where Vi are k sets of elements and ≤i are q

preorders on U.

Definition of a Fact: A Fact is an ERGraph.

Definition of a Base of Facts: A Base of Facts is a set of Facts.

Let us note that every ERGraph G in a base of facts respects lG : EG ∪ RG → L where L
is constructed from the set U of elements of the vocabulary V of the knowledge base.

Definition of a Query: A Query is a couple Q=(q, C) of a λ-ERGraph q=((e1,…ek),
G) and a Constraint system C.

The answers to a query depend on the kind of EMapping used to query the base. In
the next definitions, the letter X stands for a type of EMapping;

X-Answer to a Query: Let Q=(((e1,…ek), G), C) be a query and F be a Fact.
A=(a1,…ak) is an X-Answer to Q in F iff there exists an EMapping M of type X from
G to F satisfying C such that M(ei)=ai .

Note: the proof of an X-Answer is the proof of the EMapping associated to that X-
Answer.

Definition of a Base of Queries: A Base of Queries is a set of Queries.

306 J.-F. Baget et al.

Definition of a Rule: A Rule is a couple R=(H,C) of a Query H=(G, C) and a λ-
ERGraph C of the same size as G. H is the hypothesis of the rule, and C is its
conclusion.

X-applicable Rule: A rule R=(H,C) is X-applicable to a fact F iff there exists an X-
Answer to H in F.

X-applying a Rule: Let R=(H,C) be a rule X-applicable to a fact F, and A be an X-
Answer to H in F. The X-Application of R on F with respect to A merges C in (A,F).

Definition of a Base of Rules: A Base of Rules is a set of Rules.

Definition of an ERFunction: An ERFunction F is a function associating to an
ERProof P a label or an error.

Definition of a functional ERGraph: A functional ERGraph is an ERGraph where
some entities or relations are labelled with ERFunctions.

Evaluation of a functional ERGraph: The evaluation of a functional ERGraph G
with respect to an EProof P and an environment E is a copy G' of G where every
functional label is replaced by the evaluation of the function against P. If any of the
evaluations returns an error then G'=∅.

Definition of a Functional Rule: A functional rule is a rule R=(H,C) where C is a
functional λ-ERGraph.

X-applying a Functional Rule: let R=(H,C) be a functional rule X-applicable to a
fact F, and A be an X-Answer to H in F and P be a proof of that X-Answer. The X-
functional-Application of R on F with respect to P merges the evaluation of C with
respect to P in (A,F).

Definition of Co-Reference: A Co-Reference relation R is an equivalence relation
over the set of entities of G..

Definition of a Normal Form: let G be an ERGraph with a co-reference relation R
and a function fusion(E1,E2,…, En) that returns a new entity from a set of entities, the
normal form of G is the graph NF(G) obtained by merging every entities of a same
equivalence class defined by R as a new entity calculated by calling fusion on the
entities of this class.

Co-reference and fusion are abstract functions which must be specified at the
language level.

5 Validating Against Two Languages: Simple Graphs and RDF

This article focuses on the structure layer and the knowledge layer of Griwes and does
not include a description of the language and strategy layer still under discussions.
However this section shows how the primitives of the pivot model defined in Griwes
can be used to represent the semantics of two languages: Simple (conceptual) Graphs
and RDF. This practice would, ultimately, be the objective of the language layer.

 Griwes: Generic Model and Preliminary Specifications 307

5.1 Representing Simple Graphs in the Griwes Model

Non-surprisingly, the SG [2] graphs map smoothly to the core model of Griwes since
this model was inspired by the conceptual graphs formalism.

Primitive SG Griwes translation

Primitive concept type Member of a specific finite vocabulary sub-set TC defined in extension. This
finite vocabulary sub-set has a partial order ≤TC .

Primitive relation type Member of a specific finite vocabulary sub-set TR defined in extension and
providing a label l, an arity k, and a signature s ∈ (TCC)k. This finite
vocabulary sub-set has a partial order ≤TR defined only for labels with the
same arity.

Conjunctive concept
type

Member of a specific vocabulary sub-set TCC defined in intension; sub-set of
power set of Primitive concept types. This finite vocabulary sub-set has a
partial order ≤TCC derived from ≤TC . NB: TC⊂TCC

Individual marker and
Generic marker *

Member of a specific finite vocabulary sub-set M=I∪{*} defined in intension.
This finite vocabulary sub-set has a partial order ≤M such that ∀i∈M i ≤M *.

Concept An entity where the label is a couple (t, m) with t ∈ TCC and m∈M. We
define ≤C a partial order on these labels such that (t1, m1) ≤C (t2, m2) iff t1≤TCC
t2 and m1≤M m2.

Relation a relation where the label is a type t ∈ TR
Fact A Fact.
Simple Graph An ERGraph respecting labelling functions.
Query A query Q=(q, C) with C =∅.
Rule A rule R=(H, C) with C =∅.
Banned concept type Member of a specific vocabulary sub-set BT sub set of power set of primitive

concept types; members of this sub-set should never be used in other sets of
the vocabulary, in facts, in queries or rules.

Support the vocabulary V.
Graph specialization Let ≤ be the partial order defined by ≤C when applied to two entities, by ≤TR

when applied to two relations, and not holding for any other case.
A graph G specializes a graph H if there exists a homomorphism≤ from H to
G.

Graph deduction H is deduced from G iff the normal form NF(G) specializes H or G is
inconsistent; NF(G) is defined by corefSG and fusionSG.

5.2 Representing RDF in the Griwes Model

This section shows how the RDF graph model can be mapped to the core model of
Griwes. Mappings given in the following table rely on the following preorder.

Definition: let ≤RDF be a preorder over V such that

- x ≤RDF y if y ∈ Blanks
- x ≤RDF y if x, y ∈ Literals² and value(x)=value(y)
- x ≤RDF y if x=y

Primitive RDF Griwes translation

Blank Member of a specific vocabulary sub-set defined in intension.
Literal Member of a specific vocabulary sub-set defined in intension.
Literal ^^datatype Member of a specific vocabulary sub-set defined in intension.
Literal @lang Member of a specific vocabulary sub-set defined in intension.
URI ref Member of a specific vocabulary sub-set defined in intension.

308 J.-F. Baget et al.

Triple: subject, predicate, object (x p y) a relation in an ERGraph ; it would naturally be binary but
additional coding information may be added with n-ary
relations e.g. quadratic relations specifying the source and the
property reified.
The ERGraph G includes the relation Rp such that
nG(Rp)=(ex,ep,ey)

RDF graph G (i.e. a set of triples on a
given vocabulary)

An ERGraph such that for each distinct term t appearing in a
triple of G the ERGraph E associated to G contains a distinct
entity e(t) and for each triple (s,p,o) of G, E contains a relation
r such that nE(r)=(e(s),e(p),e(o)).
Remark : a well-formed RDF ERGraph:
 - has no isolated entity;
 - first element of relations must not be a Literal;
 - a property name is only a URI ref;
One may have to work on non-well-formed RDF ERGraph.

RDF nodes Entities appearing in position 1 and 3 of a relation.
Vocabulary (set of names) Vocabulary.
RDF Vocabulary (rdf:Property, rdf:type) a specific vocabulary sub-set defined in extension for RDF.
Simple RDF entailment H entails G iff there exists a Homomorphism≤RDF from G to

the normal form NF(H) defined by corefRDF and fusionRDF.
RDF axioms the ERGraph representation of the triples of the axiomatic

triples of RDF are asserted in every base of facts.
x rdf:type t as any other triple. (NB: t can be integrated in the label of the

entity representing x)
RULE 1
IF x p y in RDF graph G
THEN p rdf:type rdf:Property

R=(H,C) where H=((e(y)),H') with H' is the graph associated
with {(x,y,z)} where x, y and z are blanks and C=((e(u)),C')
with C' the graph associated with {(u, rdf:type, rdf:Property)}
where u is a blank and rdf:type and rdf:Property are URI refs
of the RDF vocabulary.

RULE 2
IF x p y^^d in RDF graph G
 and y^^d well-typed
THEN y^^d rdf:type d

R=(Q,D) a functional rule, where Q=(H,C) with H=((e(z)),H')
with H' is the graph associated with {(x,y,z)} where x, y and z
are blanks, C is satisfied iff e(z) is labelled by a well-typed
datatype literal. D=((e(a)),D') is the lambda functional
ERGraph associated with {(a, rdf:type, fun:getType(im(e(z)))
), (x, fun:id(im(r(y)), fun:getNormalForm(im(e(z)))) ,
(fun:getNormalForm(im(e(z))), rdf:type, fun:getType(im(e(z)))
) } where a is a blank and rdf:type is a URI ref of the RDF
vocabulary and fun:getType() is a function extracting the type
from a literal.

6 Discussion

In this article we presented an initiative to design a common model and specify a
platform to share state-of-the-art structures and algorithms across several graph-based
knowledge representation frameworks such as RDF/S, Conceptual Graphs, Topic
Maps or SKOS. This article is extracted from the working draft of a more detailed
research report from Griwes available online7.

We identified a number of limitations and problems that we intend to address in a
near future:

• Generalization of lambdas to relation labels: we may have to consider two tuples
in lambda graphs, a tuple of entities and a tuple of relations (or a tuple of entities
and relations) in order to use variables on relations as allowed in SPARQL.

7 http://www-sop.inria.fr/acacia/project/griwes/

 Griwes: Generic Model and Preliminary Specifications 309

• Structure of proofs: at this point of the design, we made no assumptions on the
structure of the proofs and the means to obtain them; this may have to be detailed in
the future and extended to reasoning in general.

• Index of graphs: in order to wrap different efficient accesses to graphs and also
heterogeneous arc producers (e.g. database wrappers) we are currently working on
introducing indexes as companion structures of graphs that provide constrained
listing of the components of a graph to support efficient access mechanisms.

• Relations with different arities: in the ERMapping, we may have to generalize the
constraint on arity and matching for instance to map relations with different arities
or different orders in their arguments.

• Complex modifiers in queries: a query language like SPARQL introduces
constructors for representing optional parts in queries, disjunctive parts, constraints
with complex scopes, constraints between different answers to a query, etc. These
extensions will require additional work.

• Architectural choices: for instance there is an ongoing discussion on the status of
queries and the fact they should or should not be linked to knowledge base.

• Subtleties in domains of interpretations: the distinction between terms and values
in SPARQL-RDF is full of complex cases that require us to find the right
compromise between efficiency and size of data.

To illustrate these questions, let us just detail this last example to consider the options
one could have in representing datatyped literals and their value. Currently RULE 2 of
the RDF mapping presented here does not cover coreference between a Literal Entity
and its datatyped value representation. We identified three solutions to this problem:

• Explicitly indicate coreference between these entities and handle them in the
algorithms;

• Consider composite labels representing sets of literals and modify preorders on
labels and normalization so as to indicate original destinations of arcs on the
arcs themselves;

• Use hyperarcs containing the literal representation, its type and its value and
modify ERMappings to handle a variable number of arguments in the arc.

The current work in Griwes includes discussing these options and finding the right
compromise between efficiency, generality and feasibility.

To summarize, we now have a first draft of three layers of our architecture. We
intend to refine and extend this architecture and, even more importantly, to start the
open-source design of the corresponding APIs and their implementations.

Acknowledgments. We are grateful to the COLOR funding program of INRIA.

References

1. Baget, J.B.: RDF entailment as a graph homomorphism. In: Proceedings of the 4th
International Semantic Web Conference. LNCS, pp. 82–96. Springer, Heidelberg (2005)

2. Baget, J.-F., Mugnier, M.-L.: The SG Family: Extensions of Simple Conceptual Graphs.
In: IJCAI, pp. 205–212 (2001)

310 J.-F. Baget et al.

3. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC
2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

4. Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
Implementing the semantic web recommendations. Technical Report HP Lab (2003)

5. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the Semantic Web with the
Corese Search Engine. In: ECAI, pp. 705–709. IOS Press, Amsterdam (2004)

6. Corby, O., Faron-Zucker, C.: Implementation of SPARQL Query Language based on
Graph Homomorphism. In: Proc. 15th International Conference on Conceptual Structures
(2007)

7. Fensel, D., Angele, J., Decker, S., Erdmann, M., Schnurr, H.-P., Staab, S., Studer, R., Witt,
A.: On2broker: Semantic-based access to information sources at the WWW. In: World
Conference on the WWW and Internet (1999)

8. Gandon, F., Sadeh, N.: Semantic Web Technologies to Reconcile Privacy and Context
Awareness. Web Semantics: Science, Services and Agents on the World Wide Web 1(3),
241–260 (2004)

9. Genest, D., Salvat, E.: A Platform Allowing Typed Nested Graphs: How CoGITo Became
CoGITaNT. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453,
pp. 154–161. Springer, Heidelberg (1998)

10. Guarino, N., Masolo, C., Vetere, G.: Ontoseek: Content-based access to the Web. IEEE
Intelligent, Systems 14(3), 70–80 (1999)

11. Haarslev, V., Möller, R.: Racer: An OWL Reasoning Agent for the Semantic Web. In:
Proceedings of the International Workshop on Applications, Products and Services of
Web-based Support Systems, Halifax, Canada, October 13, pp. 91–95 (2003)

12. Kabbaj, A., Bouzoubaa, K., ElHachimi, K., Ourdani, N.: Ontology in Amine Platform:
Structures and Processes. In: 14th Proc. Int. Conf. Conceptual Structures, ICCS 2006,
Aalborg, Denmark (2006)

13. Kopena, J., Regli, W.: DAMLJessKB: A Tool for Reasoning with the Semantic Web.
IEEE Intelligent Systems 18(3), 74–77 (2003)

14. Martin, P., Eklund, P.: Knowledge Retrieval and the World Wide Web. IEEE Intelligent,
Systems 15(3), 18–25 (2000)

15. Miller, L., Seaborne, A., Reggiori, A.: Three Implementations of SquishQL, a Simple RDF
Query Language. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp.
423–435. Springer, Heidelberg (2002)

16. Motik, Sattler, U.: KAON2, A Comparison of Reasoning Techniques for Querying Large
Description Logic Aboxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 227–241. Springer, Heidelberg (2006)

17. Sintek, M., Decker, S.: Triple: A Query, Inference and Transformation Language for the
Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 364–
378. Springer, Heidelberg (2002)

18. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics 5(2) (2007)

19. Sowa, J.F.: Conceptual graphs for a database interface. IBM Journal of Research and
Development 20(4), 336–357 (1976)

20. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description.
LNCS, vol. 4130. Springer, Heidelberg (2006)

	Griwes: Generic Model and Preliminary Specifications for a Graph-Based Knowledge Representation Toolkit
	Introduction
	Griwes Initiative
	Objectives of the Griwes Initiative
	Architecture of the Griwes Toolkit
	Related Work

	Structure Layer
	ERGraphs: Entity-Relation Graphs
	Mapping between ERGraphs
	Proofs of a Mapping
	Constraints System for Mappings

	Knowledge Layer
	Validating Against Two Languages: Simple Graphs and RDF
	Representing Simple Graphs in the Griwes Model
	Representing RDF in the Griwes Model

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

