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Abstract. Griwes is an initiative to develop a common model and an open-
source freeware platform shared by different graph-based frameworks. We 
provide an overview of its objectives, architecture and specifications. We detail 
some of the basic mathematical structures that are used to characterize the 
primitives for graph-based knowledge representation. We then propose to 
factorize recurrent knowledge representation primitives that can be shared 
across specific graph-based languages and we provide a proof of concept by 
showing how two languages (Simple Conceptual Graphs and RDF) can be 
described in this framework. 

Keywords: graph-based languages, semantic web, platform. 

1   Introduction 

Graph-based knowledge representation formalisms are more and more common, from 
Conceptual graphs (CG) [19] which are historical descendants of semantic networks, 
to more recently proposed representations such as RDF1, SKOS1 or Topic Maps2. 

The web is playing an important role in the emergence of these new formalisms 
and in recent web architectures the RDF graph model became a core layer of the stack 
of standards3. Many knowledge representation frameworks are now used online 
(RDF, RDFS, SKOS, OWL, GRDDL, RDFa, µFormats, etc.)1 allowing human and 
artificial agents to weave graphs describing web resources or just any entity and the 
relations existing between them. In a recent post4 Tim Berners-Lee insisted on the 
                                                           
1 W3C Semantic Web Activity http://www.w3.org/2001/sw/ 
2 http://www.topicmaps.org/ 
3 One Web http://www.w3.org/Consortium/technology 
4 Giant Global Graph, Tim Berners-Lee, http://dig.csail.mit.edu/breadcrumbs/node/215 
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graph nature (Giant Global Graph) of the semantic web and the importance of this 
structure in developing and exploiting the semantic web (i.e. the web of data). 

Reasonings on these different graph formalisms are often very similar. We could 
share many operations and their implementation across frameworks and even within 
them on different levels of their models e.g. transitive closure in RDFS class 
hierarchy, in SKOS concept narrower / broader links, in instances of OWL transitive 
properties, in CG the concept type hierarchy, etc. In fact when we compare these 
different languages we can find many similarities. Consider for instance the 
similarities between RDF/S and CG as underlined in [5] and [1]: 

• both models consider assertions as positive, conjunctive and existential; 
• both models represent assertions as labeled graphs; 
• the class hierarchy (resp. property hierarchy) of RDFS is equivalent to the 

concept type (resp. relation type) hierarchy of CG; 
• properties in RDF/S are first class citizens, declared outside classes just like 

relations are first class citizens in CG; 
• subsumption in RDF/S is equivalent to projection in CG; 

The reasonings on these different graph-based frameworks are sometimes also shared 
with other non graph-based formalisms e.g., databases. [19] 

Tools designed and developed for these different graph-based frameworks are 
tailored to specific languages and/or scenarios and this criticism includes the tools we 
have been working on in the past years such as Cogitant [9] or Corese [5]. These 
experiences convinced us that it would be interesting to share these efforts and avoid 
re-designing and re-implementing the same structures and operators again and again. 
For this reason we started the project Griwes that stands for Graph-based 
Representations and Inferences for Web Semantics. The main objective of this 
initiative is to bootstrap an open-source platform, to share efforts on developing 
graph-based data structures and algorithms with anyone who wants to contribute. This 
also implies a proper definition of the considered graph structures shared by the 
different graph-based formalisms. 

In the rest of this article we give an overview of the objectives and architecture of 
Griwes and we position it w.r.t. other contributions in the field (section 2). We then 
give some details of the basic mathematical structures that are used to characterize the 
primitives for graph-based knowledge representation (section 3). We proceed with the 
layer factorizing recurrent knowledge representation primitives that can be shared 
across specific graph-based languages (section 4). Finally we provide a proof of 
concept by showing how two languages (Simple Conceptual Graphs and RDF) can be 
described in this framework (section 5). We conclude with a discussion on several 
difficulties and perspectives we identified. These sections are extracted from the 
working draft of a more detailed research report from Griwes available online5. 

2   Griwes Initiative 

This section is an introduction to the Griwes initiative to develop a common model 
and an open-source freeware platform shared by different graph-based frameworks. 

                                                           
5 http://www-sop.inria.fr/acacia/project/griwes/ 
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2.1   Objectives of the Griwes Initiative 

In order to develop a common model and an open-source freeware platform shared by 
different graph-based frameworks, the objectives of the Griwes initiative can be 
divided into four kinds of tasks: 

• Identification of users’ and developers’ profiles in the graph-based knowledge 
modeling communities and semantic web communities, and definition of usage 
scenarios for the platform; 

• Definition of a common representation model shared by different graph-based 
formalisms and of architectural principles for the organization of the toolkit, 
allowing the platform to federate contributions and extensions and fostering 
reuse across graph-based representation models; 

• Implementation of the API, interfaces and components in an open-source 
freeware platform. 

• Bootstrapping a community of contributors for this platform (users and 
developers). 

2.2   Architecture of the Griwes Toolkit 

As summarized in figure 1, the current vision of the framework distinguishes three 
layers of abstraction and one transversal component for interaction: 

• Structure layer: this layer gathers and defines the basic mathematical 
structures (e.g. oriented acyclic labeled graph) that are used to characterize the 
primitives for knowledge representation (e.g. type hierarchy) 

• Knowledge layer: this layer factorizes recurrent knowledge representation 
primitives (e.g. a rule) that can be shared across specific knowledge 
representation languages (e.g. RDF/S, Conceptual Graphs). 

• Language & Strategy: this layer is two-sided. One side gathers definitions 
specific to languages (e.g. RDF triple). The other side identifies the strategies 
that can be applied to these languages (e.g. validation of a knowledge base, 
completion of a fact by rules). 

The interaction and interfaces aspect was deemed transversal to these layers. It 
gathers events (e.g. additional knowledge needed) and reporting capabilities (e.g. 
validity warning) needed to synchronize conceptual representations and interface 
representations. In Griwes, we intend to analyze the requirements of that aspect for 
each layer as soon as the first draft of these layers is stable. 
 

 

Fig. 1. The three abstraction layers of the current architecture of Griwes 
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Before delving into some extracts of the Knowledge and Structure layers, the next 
section reviews a number of contributions that prefigured, inspired and justified this 
initiative. 

2.3   Related Work 

There exist a growing number of platforms to reason on graph-based knowledge 
formalisms, be they in the conceptual graph families or in the RDF graph family.  

On2Brocker [7] is an early ontology-based system to handle RDF annotations. 
Ontologies, queries and rules are expressed in Frame Logic. The query engine 
translates Frame Logic data into Horn Logic to answer a query. Triple [17] is a query 
language initially designed for RDF/S and DAML+OIL. Its core is an RDF query 
language based on Horn Logic extended with syntactical features supporting 
namespaces, resources and statements (triples). This core language is compiled into 
Horn Logic programs executed by a Prolog engine. The core Triple language is 
extended with rules for axiomatizing the semantics of RDFS; they can be used 
together with a Horn Logic based inference engine to derive additional knowledge 
from an RDF Schema specification. DAML+OIL or OWL DL cannot be mapped to 
Horn Logic directly and therefore Triple accesses a Description Logic classifier to 
handle these extensions. Triple has a layered architecture to handle different 
knowledge models. Both On2Brocker and Triple remain focused on logic-based 
engines not exploiting the graph structures of the RDF model. 

Sesame [3] is a generic architecture for persistent storing of RDF(S) data into Data 
Based Management Systems (DBMS) and querying of RDF(S) data with the RQL 
language. RQL [15] is an RDF query language defined by means of a set of core 
queries, a set of basic filters and a way to build new queries through functional 
composition and iterators. When parsing an RQL query, Sesame builds an optimized 
query tree model from this composition which is then evaluated through a set of calls 
to the storage and inference modules of Sesame. Sesame supports querying at the 
semantic level but does not support XML Schema Datatypes, nor does it support 
inference rules. 

DAMLJessKB [13], its successor OWLJessKB and the e-Wallet [8] are tools for 
reasoning with the Semantic Web and DAML or OWL-Lite. They map the RDF 
triples and the ontologies into facts of the CLIPS-like language of Jess6 and apply 
rules implementing the semantics of RDF, RDFS, XSD and DAML or OWL-Lite. 
These systems can perform class instance reasoning and terminological reasoning 
about the relationships among classes. In addition, the e-Wallet is able to run rules to 
complete the knowledge base, to invoke external services to obtain new knowledge, 
to answer queries and to control the precision and truthfulness of answers to preserve 
privacy. Here again these engines remain focused on production rule reasoning not 
exploiting the graph structure of the RDF model and relying on their internal logic 
language for query expression. 

Jena [4] is one of the most complete platforms offering persistence and reasoning 
for RDF as well as SPARQL querying. It includes a forward-chaining engine (RETE) 
and a backward-chaining engine to allow hybrid reasoning and to implement the 

                                                           
6 JESS engine http://herzberg.ca.sandia.gov/ 
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semantics of RDFS and OWL. Jena relies on a fixed database structure for large 
storage and on a custom data structure for main-memory storage. 

WebKB [14] is an early ontology server and Web robot based on Conceptual 
Graphs. WebKB interprets and automatically translates into CGs chunks of 
knowledge statements expressed in a CG linear notation and embedded in Web 
documents. It also provides commands to query lexical or structural properties of 
HTML documents or to display specializations or generalizations of a concept or a 
relation or a CG. OntoSeek [10] is another early system that relies on Conceptual 
Graphs for ontology-driven content matching. Queries and resource annotations are 
lexical conceptual graphs to match one against the other. Neither WebKB nor 
OntoSeek handle RDF(S) data or rules. Moreover they both focus on a specific family 
of web applications not aiming at allowing different mapping to their graph-based 
representations and not providing a generic expressive query language. 

With the OWL recommendation at W3C, Description Logics (DL) became 
especially important in the spectrum of logic-based systems on the web. Several 
systems exist here: Fact and its successor Fact++ [20], KAON2 [16], KAON that 
remains focused on RDFS, Racer [11] and Pellet [18]. These engines offer classical 
DL operations such as identification, classification and validation. Queries are usually 
limited to conjunctive queries and the graph structure of the RDF model is not 
exploited at the core of these engines. 

To summarize, none of these contributions is offering a pivot model and an open-
source platform to efficiently implement querying and reasoning on graph-based 
models. Most of them are tied to specific languages, logics or even applications. 

Members of Griwes also developed platforms of their own over the last decade. Let 
us mention two of them: Cogitant [9] dedicated to conceptual graph reasoning and 
Corese [5] dedicated to a conceptual graph operationalisation of RDF/S. 

Our own tools based upon CGs implementations and also contributions like Amine 
[12] relying on a combination of Prolog and CGs, suffer from their closed design 
preventing reuse and cross-pollination. The next section is a guided tour of some 
extracts of the specifications of Griwes as defined in the current working draft of its 
research report. 

3   Structure Layer 

The structure layer is the core layer of the architecture of Griwes. We extracted here 
some definitions of the basic mathematical structures that we chose to characterize the 
primitives for knowledge representation. 

3.1   ERGraphs: Entity-Relation Graphs 

Our core representation primitive is intended to describe a set of entities and 
relationships between these entities; it is called an Entity-Relation graph (ERGraph in 
short). An entity is anything that can be the topic of a conceptual representation. A 
relationship, or simply relation, might represent a property of an entity or might relate 
two or more entities. 
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The relations can have any number of arguments including zero and these 
arguments are totally ordered. In graph theoretical terms, an ERGraph is an oriented 
hypergraph, where nodes represent the entities and hyperarcs represent the relations 
on these entities. However, a hypergraph has a natural graph representation associated 
with it: a bipartite graph, with two kinds of nodes respectively representing entities 
and relations, and edges linking a relation node to the entity nodes arguments of the 
relation; the edges incident to a relation node are totally ordered according to the 
order on the arguments in the relation.  

The nodes (Entities) and hyperarcs (Relations) in an ERGraph have labels. At the 
structure level, they are just elements of a set L that can be defined in intension or in 
extension. Labels obtain a meaning at the knowledge level.  

Definition of an ERGraph: An ERGraph relative to a set of labels L is a 4-tuple 
G=(EG, RG, nG, lG) where 

• EG and RG are two disjoint finite sets respectively, of nodes called entities and 
of hyperarcs called relations. 

• nG : RG → EG
* associates to each relation a finite tuple of entities called the 

arguments of the relation. If nG(r)=(e1,...,ek) we note nG
i(r)=ei the ith argument 

of r. 
• lG : EG ∪ RG → L is a labelling function of entities and relations. 

In some knowledge representation primitives and some algorithms it is useful to 
distinguish some entities of a graph. For this purpose we define a second core 
primitive, called λ−ERGraph. 

Definition of a λ-ERGraph: A λ-ERGraph λG is a couple of an ERGraph G and a 
tuple of entities of G: λG = ((e1,…ek), G), ei∈ EG. We say that k is the size of λG and 
that (e1,…ek) are distinguished in G. 

Definition of an induced SubERGraph: Let G=(EG, RG, nG, lG) be an ERGraph. Let 
EG' be a subset of EG. The SubERGraph of G induced by EG' is the ERGraph G'=(EG', 
RG', nG', lG') defined by: (1) RG'= { r ∈ RG ⏐ ∀ 1≤i≤card(nG(r)) , nG

i(r) ∈ EG' } (2) nG' is 
the restriction of  nG  to RG' (3) lG' is the restriction of  lG  to EG' ∪ RG' 

Definition of a Merge: let G=((g1,…gk), G') et H=((h1,…hk), H') two λ-ERGraphs of 
same size, the merge of H in G modifies G' by adding a copy C(H') of H' to G' and 
then for 1≤i≤k by merging the entities C(hi) and gi. 

Note that the labels of the merged entities are obtained by applying a method defined 
at higher levels. 

3.2   Mapping between ERGraphs 

Intuitively, a Mapping associates entities of a query ERGraph to entities of an 
ERGraph in a knowledge base of ERGraphs. Mapping entities of graphs is a 
fundamental operation for comparing and reasoning with ERGraphs. 

Definition of an EMapping: Let G and H be two ERGraphs, an EMapping from H to 
G is a partial function M from EH to EG i.e. a binary relation that associates each 
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element of EH with at most one element of EG ; not every element of EH has to be 
associated with an element of EG. 

Definition of an ERMapping: Let G and H be two ERGraphs, an ERMapping from 
H to G is an EMapping M from H to G such that: Let H' be the SubERGraph of H 
induced by M-1(EG),∀r'∈RH' ∃r∈ RG such that card(nH'(r'))= card(nG(r)) and ∀ 
1≤i≤card(nG(r)), M(nH' 

i(r'))= nG 
i(r). We call r a support of r' in M and note r∈M(r') 

Mapping is a basic operation used in many more complex operations e.g. rule 
application. Let us note that by default an EMapping is partial. This enables us to 
manipulate and reason on EMappings during the process of mapping graphs. When 
this process is finished, the EMapping – if any – is said total: all the entities of the 
query graph H are mapped. In general we use specific mappings that preserve some 
chosen characteristics of the graphs (e.g., compatibility of labels, structural 
information etc.); figure 2 shows their hierarchy.  

In particular an ERMapping constrains the structure of the graphs being mapped 
and an EMapping<X> constrains the labelling of entities in the graphs being mapped. 
An ERMapping is an EMapping that leads to map each relation in H to a relation in 
G with the same arity. An EMapping<X> is an EMapping that satisfies a compatibility 
relation X on entities labels. An ERMapping<X> is both an ERMapping and an 
EMapping<X>. A Homomorphism is a total ERMapping. Other specializations 
include: injective mappings, surjective mappings, faithful mappings (preserve the 
absence of hyperarcs), etc. 

 

Fig. 2. EMapping specialization hierarchy 

In conceptual graph projections, many systems map not only entities, but relations 
as well. The notion of projection as defined in conceptual graphs corresponds to a 
Homomorphism<X> that is to say a total ERMapping<X>, where X is a preorder over the 
label set L. 

3.3   Proofs of a Mapping 

We define the proof of a mapping as a kind of "reification" of the mapping; a proof 
provides a static view over the dynamic operation of mapping, enabling thus to access 
information relative to the state of the mapping. Formally the proof of a mapping is 
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the set(s) of associations detailing the exact association from each entity and relation 
of the query graph H to entities and relations of G. 

We follow the hierarchy of mappings outlined in the previous section and associate 
with each kind of EMapping a notion of proof: EProof, ERProof and ERProof<X>. For 
instance the proof for a homomorphism corresponds to the proof of a total 
ERMapping<X> where X is a preorder over the label set L and defined as follows: 

Definition of an EProof: Let G and H be two ERGraphs, and M an EMapping from 
H to G. The EProof of M is a set ME = { (eH,eG) ∈ EH×EG | eG=M(eH) }. 

Definition of an ERProof: Let G and H be two ERGraphs, and M an ERMapping 
from H to G. Let H' be the SubERGraph of H induced by M-1(EG). An ERProof of M 
is a couple P=(ME,MR) where ME is the EProof of M and MR= {(r1,r'1),… (rk,r'k)} with 
{r1,…,rk}=RH' and ∀1≤i≤k  r'i∈M(ri). 

Definition of an ERProof<X>: Let G and H be two ERGraphs, and M an EMapping 
from H to G. An ERProof<X> of M is a couple P=(MEX,MRX) where MEX is the 
EProof<X> of M and MRX= {(r1,r'1,p1)… (rk,r'k,pK)} where {(r1,r'1)… (rk,r'k,)} is the 
second element of an ERProof of M and ∀1≤i≤k pi is a proof of (lG(M(r)), lH(r))∈ X. 

At this point we make no assumption on the structure of pi and the means to obtain it. 
A system for comparing labels should be able to produce such proofs, e.g. a chain of 
subsumption relations which transitive closure confirms the comparison of two labels. 
Note that several different ERProofs can be associated to a same ERMapping (e.g. 
when there are two twin relations in G that can support a same relation of H).  

3.4   Constraints System for Mappings 

An EMapping constraint system is a function C that sets additional conditions that an 
EMapping must satisfy in order to be correct.It takes the form of an evaluable 
expression which must evaluate to true for an EMapping to satisfy the constraint 
system.  

Definition of an EMapping Constraint System: An EMapping constraint system for 
an EMapping M from H to G is a function C(E) where E is the triple (H,P,V) called 
the environment, with P the proof of M and V a binary relation associating to 
variables vi a unique entity or relation of H. This function can evaluate to {true, false, 
unknown, error}. 

An EMapping M satisfies (resp. violates) a constraint system C if C(M)=true  (resp. if 
C(M)=false). 

This facet of the specifications was motivated by scenarios using expressive query 
languages such as SPARQL [6]. For instance, let us consider the following SPARQL 
query and in particular its FILTER clause (line 7): 

1. PREFIX inria: <http://www.inria.fr#> 
2. SELECT ?student ?name 
3. WHERE { 
4.  ?student rdf:type inria:Student 
5.  ?student inria:name ?name . 
6.  ?student inria:age ?age . 
7.  FILTER (xsd:integer(?age) > 22 && regex(?name, "A.*")) } 
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The triples of the query pattern can be seen as a graph pattern requesting students 
(line 4) with their name (line 5) and their age (line 6): 

 
[Student]- 
   (name)->[?name] 
   (age)->[?age]. 
 

Line 7 however is an additional constraint pattern that has to be satisfied in order for 
the matching to be correct; it specifies that the integer value of the age has to be 
greater than 22 and that the name should start with an "A".  

These kinds of constraints motivated the definition of constraint systems in our 
specifications but constraint systems are also envisaged to provide efficient access 
means to indexes of graphs, for instance to retrieve all the arcs of a graph satisfying a 
given constraint system.  

4   Knowledge Layer 

In our architecture, a knowledge base B is defined by a vocabulary, one or several 
bases of facts, optionally a base of rules and a base of queries. B= (Vocabulary, Fact 
Base +, Rule Base*, Query Base*). 

A vocabulary is a set of none necessarily disjoint named sets of elements called 
vocabulary subsets together with preorders on the union of these sets: 

Definition of a Vocabulary: A Vocabulary V is a tuple 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ≤≤==
≤≤

),...,(, 1
1

q
ki

iVUV ∪  where Vi are k sets of elements and ≤i are q 

preorders on U. 

Definition of a Fact: A Fact is an ERGraph. 

Definition of a Base of Facts: A Base of Facts is a set of Facts. 

Let us note that every ERGraph G in a base of facts respects lG : EG ∪ RG → L where L 
is constructed from the set U of elements of the vocabulary V of the knowledge base. 

Definition of a Query: A Query is a couple Q=(q, C) of a λ-ERGraph q=((e1,…ek), 
G) and a Constraint system C. 

The answers to a query depend on the kind of EMapping used to query the base. In 
the next definitions, the letter X stands for a type of  EMapping;  

X-Answer to a Query: Let Q=(((e1,…ek), G), C) be a query and F be a Fact. 
A=(a1,…ak) is an X-Answer to Q in F iff there exists an EMapping M of type X from 
G to F satisfying C  such that M(ei)=ai . 

Note: the proof of an X-Answer is the proof of the EMapping associated to that X-
Answer. 

Definition of a Base of Queries: A Base of Queries is a set of Queries. 
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Definition of a Rule: A Rule is a couple R=(H,C) of a Query H=(G, C) and a λ-
ERGraph C of the same size as G. H is the hypothesis of the rule, and C is its 
conclusion.  

X-applicable Rule: A rule R=(H,C) is X-applicable to a fact F iff there exists an X-
Answer to H in F. 

X-applying a Rule: Let R=(H,C) be a rule X-applicable to a fact F, and A be an X-
Answer to H in F. The X-Application of R on F with respect to A merges C in (A,F). 

Definition of a Base of Rules: A Base of Rules is a set of Rules. 

Definition of an ERFunction: An ERFunction F is a function associating to an 
ERProof P a label or an error. 

Definition of a functional ERGraph: A functional ERGraph is an ERGraph where 
some entities or relations are labelled with ERFunctions. 

Evaluation of a functional ERGraph: The evaluation of a functional ERGraph G 
with respect to an EProof P and an environment E is a copy G' of G where every 
functional label is replaced by the evaluation of the function against P. If any of the 
evaluations returns an error then G'=∅. 

Definition of a Functional Rule: A functional rule is a rule R=(H,C) where C is a 
functional λ-ERGraph. 

X-applying a Functional Rule: let R=(H,C) be a functional rule X-applicable to a 
fact F, and A be an X-Answer to H in F and P be a proof of that X-Answer. The X-
functional-Application of R on F with respect to P merges the evaluation of C with 
respect to P in (A,F). 

Definition of Co-Reference: A Co-Reference relation R is an equivalence relation 
over the set of entities of G.. 

Definition of a Normal Form: let G be an ERGraph with a co-reference relation R 
and a function fusion(E1,E2,…, En) that returns a new entity from a set of entities, the 
normal form of G is the graph NF(G) obtained by merging every entities of a same 
equivalence class defined by R as a new entity calculated by calling fusion on the 
entities of this class. 

Co-reference and fusion are abstract functions which must be specified at the 
language level. 

5   Validating Against Two Languages: Simple Graphs and RDF 

This article focuses on the structure layer and the knowledge layer of Griwes and does 
not include a description of the language and strategy layer still under discussions. 
However this section shows how the primitives of the pivot model defined in Griwes 
can be used to represent the semantics of two languages: Simple (conceptual) Graphs 
and RDF. This practice would, ultimately, be the objective of the language layer. 
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5.1   Representing Simple Graphs in the Griwes Model 

Non-surprisingly, the SG [2] graphs map smoothly to the core model of Griwes since 
this model was inspired by the conceptual graphs formalism. 

 
Primitive SG Griwes translation 

Primitive concept type Member of a specific finite vocabulary sub-set TC defined in extension. This 
finite vocabulary sub-set has a partial order ≤TC . 

Primitive relation type Member of a specific finite vocabulary sub-set TR defined in extension and 
providing a label l, an arity k, and a signature s ∈ (TCC)k. This finite 
vocabulary sub-set has a partial order ≤TR defined only for labels with the 
same arity. 

Conjunctive concept 
type 

Member of a specific vocabulary sub-set TCC defined in intension; sub-set of 
power set of Primitive concept types. This finite vocabulary sub-set has a 
partial order ≤TCC derived from ≤TC . NB: TC⊂TCC 

Individual marker and 
Generic marker * 

Member of a specific finite vocabulary sub-set M=I∪{*} defined in intension. 
This finite vocabulary sub-set has a partial order ≤M such that ∀i∈M  i ≤M *. 

Concept An entity where the label is a couple (t, m) with t ∈ TCC and m∈M. We 
define ≤C a partial order on these labels such that (t1, m1) ≤C (t2, m2) iff t1≤TCC 
t2 and m1≤M m2. 

Relation a relation where the label is a type t ∈ TR  
Fact A Fact. 
Simple Graph An ERGraph respecting labelling functions. 
Query A query Q=(q, C) with C =∅. 
Rule A rule R=(H, C) with C =∅. 
Banned concept type Member of a specific vocabulary sub-set BT sub set of power set of primitive 

concept types; members of this sub-set should never be used in other sets of 
the vocabulary, in facts, in queries or rules. 

Support the vocabulary V. 
Graph specialization Let ≤ be the partial order defined by ≤C when applied to two entities, by ≤TR 

when applied to two relations, and not holding for any other case. 
A graph G specializes a graph H if there exists a homomorphism≤  from H to 
G. 

Graph deduction H is deduced from G iff the normal form NF(G) specializes H or G is 
inconsistent; NF(G) is defined by corefSG and fusionSG. 

5.2   Representing RDF in the Griwes Model 

This section shows how the RDF graph model can be mapped to the core model of 
Griwes. Mappings given in the following table rely on the following preorder.  

Definition: let ≤RDF be a preorder over V such that 

- x ≤RDF y  if y ∈ Blanks 
- x ≤RDF y  if x, y ∈ Literals² and value(x)=value(y) 
- x ≤RDF y  if  x=y 

 
Primitive RDF Griwes translation 

Blank Member of a specific vocabulary sub-set defined in intension. 
Literal Member of a specific vocabulary sub-set defined in intension. 
Literal ^^datatype Member of a specific vocabulary sub-set defined in intension. 
Literal @lang Member of a specific vocabulary sub-set defined in intension. 
URI ref Member of a specific vocabulary sub-set defined in intension. 
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Triple: subject, predicate, object   (x p y) a relation in an ERGraph ; it would naturally be binary but 
additional coding information may be added with n-ary 
relations e.g. quadratic relations specifying the source and the 
property reified. 
The ERGraph G includes the relation Rp such that 
nG(Rp)=(ex,ep,ey)  

RDF graph G (i.e. a set of triples on a 
given vocabulary) 

An ERGraph such that for each distinct term t appearing in a 
triple of G the ERGraph E associated to G contains a distinct 
entity e(t) and for each triple (s,p,o) of G, E contains a relation 
r such that nE(r)=(e(s),e(p),e(o)).  
Remark : a well-formed RDF ERGraph: 
 - has no isolated entity; 
 - first element of relations must not be a Literal; 
 - a property name is only a URI ref;  
One may have to work on non-well-formed RDF ERGraph. 

RDF nodes Entities appearing in position 1 and 3 of a relation. 
Vocabulary (set of names) Vocabulary. 
RDF Vocabulary (rdf:Property, rdf:type) a specific vocabulary sub-set defined in extension for RDF. 
Simple RDF entailment H entails G iff there exists a Homomorphism≤RDF from G to 

the normal form NF(H) defined by corefRDF and fusionRDF. 
RDF axioms the ERGraph representation of the triples of the axiomatic 

triples of RDF are asserted in every base of facts. 
x rdf:type t as any other triple. (NB: t can be integrated in the label of the 

entity representing x) 
RULE 1 
IF x p y in RDF graph G  
THEN p rdf:type rdf:Property 

R=(H,C) where H=((e(y)),H') with H' is the graph associated 
with {(x,y,z)} where x, y and z are blanks and C=((e(u)),C') 
with C' the graph associated with {(u, rdf:type, rdf:Property)} 
where u is a blank and rdf:type and rdf:Property are URI refs 
of the RDF vocabulary.  

RULE 2 
IF x p y^^d  in RDF graph G 
     and y^^d well-typed 
THEN y^^d rdf:type d 

R=(Q,D) a functional rule, where Q=(H,C) with H=((e(z)),H') 
with H' is the graph associated with {(x,y,z)} where x, y and z 
are blanks, C is satisfied iff e(z) is labelled by a well-typed 
datatype literal. D=((e(a)),D') is the lambda functional 
ERGraph associated with  {(a, rdf:type, fun:getType(im(e(z))) 
), (x, fun:id(im(r(y)), fun:getNormalForm(im(e(z)))) , 
(fun:getNormalForm(im(e(z))), rdf:type, fun:getType(im(e(z))) 
)  } where a is a blank and rdf:type is a URI ref of the RDF 
vocabulary and fun:getType() is a function extracting the type 
from a literal. 

6   Discussion 

In this article we presented an initiative to design a common model and specify a 
platform to share state-of-the-art structures and algorithms across several graph-based 
knowledge representation frameworks such as RDF/S, Conceptual Graphs, Topic 
Maps or SKOS. This article is extracted from the working draft of a more detailed 
research report from Griwes available online7. 

We identified a number of limitations and problems that we intend to address in a 
near future: 

• Generalization of lambdas to relation labels: we may have to consider two tuples 
in lambda graphs, a tuple of entities and a tuple of relations (or a tuple of entities 
and relations) in order to use variables on relations as allowed in SPARQL. 

                                                           
7 http://www-sop.inria.fr/acacia/project/griwes/ 
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• Structure of proofs: at this point of the design, we made no assumptions on the 
structure of the proofs and the means to obtain them; this may have to be detailed in 
the future and extended to reasoning in general. 

• Index of graphs: in order to wrap different efficient accesses to graphs and also 
heterogeneous arc producers (e.g. database wrappers) we are currently working on 
introducing indexes as companion structures of graphs that provide constrained 
listing of the components of a graph to support efficient access mechanisms. 

• Relations with different arities: in the ERMapping, we may have to generalize the 
constraint on arity and matching for instance to map relations with different arities 
or different orders in their arguments. 

• Complex modifiers in queries: a query language like SPARQL introduces 
constructors for representing optional parts in queries, disjunctive parts, constraints 
with complex scopes, constraints between different answers to a query, etc. These 
extensions will require additional work. 

• Architectural choices: for instance there is an ongoing discussion on the status of 
queries and the fact they should or should not be linked to knowledge base. 

• Subtleties in domains of interpretations: the distinction between terms and values 
in SPARQL-RDF is full of complex cases that require us to find the right 
compromise between efficiency and size of data. 

To illustrate these questions, let us just detail this last example to consider the options 
one could have in representing datatyped literals and their value. Currently RULE 2 of 
the RDF mapping presented here does not cover coreference between a Literal Entity 
and its datatyped value representation. We identified three solutions to this problem: 

• Explicitly indicate coreference between these entities and handle them in the 
algorithms; 

• Consider composite labels representing sets of literals and modify preorders on 
labels and normalization so as to indicate original destinations of arcs on the 
arcs themselves; 

• Use hyperarcs containing the literal representation, its type and its value and 
modify ERMappings to handle a variable number of arguments in the arc. 

The current work in Griwes includes discussing these options and finding the right 
compromise between efficiency, generality and feasibility. 

To summarize, we now have a first draft of three layers of our architecture. We 
intend to refine and extend this architecture and, even more importantly, to start the 
open-source design of the corresponding APIs and their implementations. 

 
Acknowledgments. We are grateful to the COLOR funding program of INRIA. 
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