- Exemple introductif et modèle de calcul -

HLIN508: Fondement de l'algorithmique

2018

- -I- Exemple introductif -
- Comment calculer x^n -

But

- Pour un réel x et un entier $n \ge 1$, on veut calculer x^n , sur une machine.
- Pour cela on va proposer plusieurs algorithmes, démontrer leur validité et estimer leur complexité, c'est-à-dire les ressources en temps et en espace mémoire nécessaire au déroulement du programme.

On verra aussi leur implémentation...

Analyse de l'algo:

Analyse de l'algo:

▶ Terminaison:

À la fin de la boucle pour, l'algo termine.

```
ALGOTABLEAU (x, n)
\overline{T} un tableau de taille n;
T[0] \longleftarrow x;

pour tous les i de 1 à n-1 faire
\bot T[i] \longleftarrow x * T[i-1];

retourner T[n-1];
```

Analyse de l'algo:

- ▶ Terminaison:
 - À la fin de la boucle pour, l'algo termine.
- Complexité (en espace):
 - On utilise 3 variables (x, n et i) et un tableau de taille n. En dehors des besoins du système, on consomme n+3 cases mémoire.
 - On dira qu'on a une **complexité en espace en** O(n).

Analyse de l'algo:

- Complexité (en temps):
 - On compte le nombre d'opérations élémentaires:
 - Hors de la boucle pour, on déclare un tableau, on affecte une valeur et on retourne une valeur: 3 op.
 - ▶ Dans la boucle **pour**, on incrémente une variable (i), on fait une multiplication, et on affecte une variable (T[i]):
 3 op. faites n − 1 fois: 3n − 3 op.

En tout on fait 3n opérations élémentaires.

On dira qu'on a une **complexité en temps en** O(n).


```
ALGOTABLEAU (x, n)
\overline{T} un tableau de taille n;
T[0] \longleftarrow x;
pour tous les i de 1 à n-1 faire
\bot T[i] \longleftarrow x * T[i-1];
retourner T[n-1];
```

Analyse de l'algo:

► Validité :

On va établir la propriété (invariant de l'algorithme):

 \mathcal{P}_i : 'après i tours de boucle, T[i] contient x^{i+1} '

Pour cela, on procède par récurrence (l'arme fatale!):

- ▶ Pour i = 0, \mathcal{P}_0 est vraie: avant la boucle, $\mathcal{T}[0]$ vaut $x (= x^1)$.
- ▶ Supposons que pour $i \ge 1$, \mathcal{P}_{i-1} soit vraie. Alors au ième tour de boucle, T[i] prendra la valeur $x \times T[i-1]$. Comme on a déjà fait i-1 tour de boucles et que \mathcal{P}_{i-1} est vrai, T[i-1] vaut $x^{(i-1)+1} = x^i$. Donc $T[i] = x \times x^i = x^{i+1}$ et \mathcal{P}_i est vraie.

Donc, par récurrence, $T[n-1] = x^n$ à la fin de l'algo.


```
ALGOSANSTABLEAU (x, n)

y un réel;

y \leftarrow x;

pour tous les i de 1 à n-1 faire

y \leftarrow x * y;

retourner y;
```

Analyse de l'algo:

```
ALGOSANSTABLEAU (x, n)

y un réel;

y \leftarrow x;

pour tous les i de 1 à n-1 faire

y \leftarrow x * y;

retourner y;
```

Analyse de l'algo:

► Terminaison:

À la fin de la boucle pour, l'algo termine.

```
ALGOSANSTABLEAU (x, n)

y un réel;

y \leftarrow x;

pour tous les i de 1 à n-1 faire

y \leftarrow x * y;

retourner y;
```

Analyse de l'algo:

- ► Terminaison:
 - À la fin de la boucle pour, l'algo termine.
- Complexité (en espace):
 - On utilise 4 variables (x, n, y et i). En dehors des besoins du système, on consomme 4 cases mémoire.
 - On dira qu'on a une **complexité en espace en** O(1).

```
ALGOSANSTABLEAU (x, n)

y un réel;

y \leftarrow x;

pour tous les i de 1 a n-1 faire

y \leftarrow x * y;

retourner y;
```

Analyse de l'algo:

- Complexité (en temps):
 - On compte le nombre d'opérations élémentaires:
 - ► Hors de la boucle **pour**, on déclare une variable (y), on affecte une valeur et on retourne une valeur: 3 op.
 - ▶ Dans la boucle **pour**, on incrémente une variable (i), on fait une multiplication, et on affecte une variable (y):
 3 op. faîtes n − 1 fois: 3n − 3 op.

En tout on fait **3n opérations élémentaires**. On dira qu'on a une **complexité en temps en** O(n).

```
ALGOSANSTABLEAU (x, n)

y un réel;

y \leftarrow x;

pour tous les i de 1 à n-1 faire

y \leftarrow x * y;

retourner y;
```

Analyse de l'algo:

► Validité :

On va établir la propriété (invariant de l'algorithme):

 \mathcal{P}_i : 'après i tours de boucle, y contient x^{i+1} '

Pour cela, on procède par récurrence (quelle surprise...):

- ▶ Pour i = 0, \mathcal{P}_0 est vraie: avant la boucle, y vaut $x (= x^1)$.
- ▶ Supposons que pour $i \geq 1$, \mathcal{P}_{i-1} soit vraie. Alors au ième tour de boucle, y prendra la valeur $x \times y$. Comme on a déjà fait i-1 tour de boucles et que \mathcal{P}_{i-1} est vrai, y vaut $x^{(i-1)+1} = x^i$ à ce moment. Donc y prend la valeur $x \times y = x^{i+1}$ et \mathcal{P}_i est vraie.

Donc, par récurrence, $y = x^n$ à la fin de l'algo $x = x^n$

```
ALGOD&C (x, n)

si n = 1 alors retourner x;

sinon

z = ALGOD&C (x, \lfloor n/2 \rfloor);

si n est pair alors retourner z \times z;

si n est impair alors retourner x \times z \times z;
```

Analyse de l'algo:

```
ALGOD&C (x, n)

si n = 1 alors retourner x;

sinon
 z = ALGOD&C <math>(x, \lfloor n/2 \rfloor);
si n est pair alors retourner z \times z;
si n est impair alors retourner x \times z \times z;
```

Analyse de l'algo:

▶ Terminaison:

On fait un nombre fixe d'opération et un appel récursif. À chacun de ces appels le second paramètre diminue strictement, donc l'algo termine.

```
ALGOD&C (x, n)

si n = 1 alors retourner x;

sinon
 z = ALGOD&C <math>(x, \lfloor n/2 \rfloor);
si n est pair alors retourner z \times z;
si n est impair alors retourner x \times z \times z;
```

Analyse de l'algo:

► Terminaison:

On fait un nombre fixe d'opération et un appel récursif. À chacun de ces appels le second paramètre diminue strictement, donc l'algo termine.

Complexité (en temps et en espace): A chaque appel, l'algorithme fait un nombre borné d'opérations élémentaires (au pire 3 tests, 3 multiplications et 1 retour de valeur). La complexité en temps et en espace est proportionnelle au nombre d'appel récursifs.


```
ALGOD&C (x, n)

si n = 1 alors retourner x;

sinon
 z = ALGOD&C <math>(x, \lfloor n/2 \rfloor);
si n est pair alors retourner z \times z;
si n est impair alors retourner x \times z \times z;
```

Analyse de l'algo:

- Nbre d'appels récursifs (nbre de fois qu'on peut diviser n par 2 → log n)
 Par récurrence ('forte' cette fois...):
 P_p: 'ALGOD&C(x, p) fait au plus log p appels récursifs'
 - ▶ Vrai pour p = 1...
 - ▶ Pour $n \ge 2$ supposons que \mathcal{P}_p soit vrai pour tout p < n. Le nombre d'appels réc. de $\mathrm{ALGOD\&C}(x,n)$ est 1+ le nombre d'appels réc. de $\mathrm{ALGOD\&C}(x,\lfloor n/2 \rfloor)$. Par $\mathcal{P}_{\lfloor n/2 \rfloor}$, c'est $\le 1+\log \lfloor n/2 \rfloor \le 1+\log (n/2)=1+(\log n-1)=\log n$

Complexité (en tps et esp) au plus proportionnelle à log n (en O(log n)).

```
ALGOD&C (x, n)

si n = 1 alors retourner x;

sinon
 z = ALGOD&C <math>(x, \lfloor n/2 \rfloor);
si n est pair alors retourner z \times z;
si n est impair alors retourner x \times z \times z;
```

Analyse de l'algo:

▶ Validité :

On va établir \mathcal{P}_p : 'ALGOD&C(x, p) renvoie x^p ' (réc...)

- ▶ Pour p = 1, \mathcal{P}_1 est vraie: \mathcal{P}_1 : ALGOD&C(x, 1) renvoie $x = x^1$
- ▶ Pour $n \ge 2$ supposons que \mathcal{P}_p soit vrai pour tout p < n. Comme $\lfloor n/2 \rfloor < n$, $\mathcal{P}_{\lfloor n/2 \rfloor}$ est vraie et $\mathrm{ALGOD\&C}(x, \lfloor n/2 \rfloor)$ renvoie $x^{\lfloor n/2 \rfloor}$.
 - Si n est pair, $n = \lfloor n/2 \rfloor + \lfloor n/2 \rfloor$ et ALGOD&C(x, n) renvoie $z * z = x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} = x^n$
 - ► Si n est impair, $n = 1 + \lfloor n/2 \rfloor + \lfloor n/2 \rfloor$ et ALGOD&C(x, n) renvoie $x * z * z = x * x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} = x^n$.

Donc \mathcal{P}_n est vraie.

Algo 4: Algo de l'arnaque

ALGOARNAQUE (x, n) retourner pow(x, n);

Algo 4: Algo de l'arnaque

```
ALGOARNAQUE (x, n) retourner pow(x, n);
```

- ► Très pratique, mais qu'est ce qu'il y a dessous...
- Quelques idées:

```
http://www.cplusplus.com/reference/cmath/pow/
https://www.quora.com/
What-is-the-time-complexity-of-the-pow-function-in-c+
+-language-Is-it-log-b-or-O-1
```

▶ Si on veut vraiment savoir, il faut analyser le code de pow...

-II- Modèle pour la complexité algorithmique -

Pour répondre à la question: Quelle ressource (en temps et en espace) va nécessiter la résolution d'un problème algorihtmique?

- Pour répondre à la question: Quelle ressource (en temps et en espace) va nécessiter la résolution d'un problème algorihtmique?
- Difficile à estimer: dépend du programme, du langage, de la machine, du système d'exploitation...

- Pour répondre à la question: Quelle ressource (en temps et en espace) va nécessiter la résolution d'un problème algorihtmique?
- Difficile à estimer: dépend du programme, du langage, de la machine, du système d'exploitation...

Mais on va tout de même considérer un modèle, qui va nous permettre de faire des prédictions...

- On va décrire les algorithmes en pseudo-code:
 - Des opérations élémentaires:
 - Déclaration de variable
 - Affectation
 - Lecture, écriture de variables
 - Opération arithmétique: $+, -, \times, \div$
 - Test élémentaire
 - Appel de fonction
 - ▶ Des **boucles**: *pour* et *tant que*.

- On va décrire les algorithmes en pseudo-code:
 - Des opérations élémentaires:
 - Déclaration de variable
 - Affectation
 - Lecture, écriture de variables
 - Opération arithmétique: $+,-, imes,\div$
 - Test élémentaire
 - Appel de fonction
 - ▶ Des **boucles**: *pour* et *tant que*.
- Dans notre modèle, on va considérer que:
 - Chaque opération élémentaire prend un temps constant
 - Chaque déclaration de variable (simple) et appel de fonction consomme un espace machine constant.

- On va décrire les algorithmes en pseudo-code:
 - Des opérations élémentaires:
 - Déclaration de variable
 - Affectation
 - Lecture, écriture de variables
 - Opération arithmétique: $+, -, \times, \div$
 - Test élémentaire
 - Appel de fonction
 - Des boucles: pour et tant que.
- Dans notre modèle, on va considérer que:
 - Chaque opération élémentaire prend un temps constant
 - Chaque déclaration de variable (simple) et appel de fonction consomme un espace machine constant.

(modèle WORD-RAM, pas très vrai en fait, mais suffisant ici...)

- compter le nombre d'opérations élémentaires (pour établir la complexité en temps)
- compter le nombre de déclarations de variables et d'appels de fonctions (pour établir la complexité en espace)

- compter le nombre d'opérations élémentaires (pour établir la complexité en temps)
- compter le nombre de déclarations de variables et d'appels de fonctions (pour établir la complexité en espace)
- ► Exprimer ces valeurs **en fonction des paramètres d'entrée** de l'algorithme.

- compter le nombre d'opérations élémentaires (pour établir la complexité en temps)
- compter le nombre de déclarations de variables et d'appels de fonctions (pour établir la complexité en espace)
- Exprimer ces valeurs en fonction des paramètres d'entrée de l'algorithme.
- ▶ De manière asymptotique

- compter le nombre d'opérations élémentaires (pour établir la complexité en temps)
- compter le nombre de déclarations de variables et d'appels de fonctions (pour établir la complexité en espace)
- Exprimer ces valeurs en fonction des paramètres d'entrée de l'algorithme.
- De manière asymptotique
- ▶ Dans le **pire des cas**, et si on n'arrive pas à compter exactement, on établira une borne supérieure sur ces valeurs.

La 'recette' pour cela:

- 1. Ecrire le pseudo-code de l'algorithme
- Choisir les structures de données à utiliser les variables (va influencer la complexité de l'algo!)
- 3. Analyser l'algorithme:

La 'recette' pour cela:

- 1. Ecrire le pseudo-code de l'algorithme
- Choisir les structures de données à utiliser les variables (va influencer la complexité de l'algo!)
- 3. Analyser l'algorithme:
 - 3.1 Terminaison
 - 3.2 Complexité en temps et en espace
 - 3.3 Validité de l'algorithme

Quelques remarques:

1. Dans ce cours, on va voir certaines stratégies pour écrire des algorithmes...

Quelques remarques:

- 1. Dans ce cours, on va voir certaines stratégies pour écrire des algorithmes...
- 2. Vous connaissez certaines structures de données: les types simples (entiers, réels, booléens, caractères...), les chaînes de caractères, les tableaux, les listes (doublement) chaînées, les piles, les files... On va en (re?)voir deux autres: les tas et les arbres de recherche.

Quelques remarques:

- 1. Dans ce cours, on va voir certaines stratégies pour écrire des algorithmes...
- Vous connaissez certaines structures de données: les types simples (entiers, réels, booléens, caractères...), les chaînes de caractères, les tableaux, les listes (doublement) chaînées, les piles, les files...
 - On va en (re?)voir deux autres: les tas et les arbres de recherche.
- 3. Sur la validité de l'algorithme:
 - Parfois (souvent), on omet la terminaison, cela découle de la borne sur la compexité en temps.
 - On cherche une borne supérieure sur la complexité de l'algorithme dans le pire des cas ('je suis sûr que mon algo ne consommera pas plus que...')
 - Pour prouver la validité de l'algorithme, on utilise souvent un **invariant d'algorithme**, une propriété vraie tout au long de l'algorithme (du genre \mathcal{P}_i : 'après i tour de boucles, appels récursifs, on a ...').
 - On montre souvent la validité de l'invariant par **récurrence** (sur le nombre de tour de boucles, d'appels récursifs...)