- Notes de cours -

1 Généralités

1.1 Graphes

- Un graphe (fini) G = (V, E) est constitué :
 - d'un ensemble (fini) de sommets V (ou V(G)) de taille n et
 - d'un ensemble d'arêtes E (ou E(G)), paires d'éléments de V, de taille m.
- Deux sommets $x, y \in V$ tels que $\{x, y\} \in E$ sont dits voisins, reliés ou adjacents. On note $\{x, y\} \in E$ ou $xy \in E$ (ou $yx \in E$). L'arête xy est incidente aux sommets x et y qui sont ses extrémités. Si deux arêtes ont une extrémité en commun, elles sont adjacentes, sinon elles sont disjointes.
- Les graphes considérés dans ce cours ne contiennent ni **boucle** (arête de type xx) ni d'arête multiple (arête en plusieurs exemplaires).
- Le voisinage de x, noté $N_G(x)$, est l'ensemble des voisins du sommet x.

Lemme 1 (Nbre max d'arêtes) Tout graphe G vérifie $m \leq \frac{n(n-1)}{2}$.

1.2 Sous-graphes

- Deux graphes G et G' sont **isomorphes** si il existe une bijection f de V(G) dans V(G') telle que pour tout $x, y \in V(G)$ on ait $xy \in E(G) \Leftrightarrow f(x)f(y) \in E(G')$. La fonction f est un **isomorphisme** entre G et G'. On considèrera (improprement...) que G et G' sont égaux si il existe un isomorphisme entre eux.
- \bullet Soient G et H deux graphes.
 - Si $V(H) \subseteq V(G)$ et $E(H) \subseteq E(G)$ alors H est un sous-graphe de G.
 - Si V(H) = V(G) et $E(H) \subseteq E(G)$ alors H est un sous-graphe couvrant de G.
 - Si $V(H) \subseteq V(G)$ et $E(H) = \{uv : uv \in EG(G), u \in V(H), v \in E(H)\}$ alors H est un sous-graphe induit de G.
 - On dira (improprement...) que G contient H si H est isomorphe à un sous-graphe de G.
- Pour $X \subseteq V(G)$ on note G[X] le graphe induit par G sur X. On note $G \setminus X$ le graphe $G[V(G) \setminus X]$. Pour $F \subseteq E(G)$ on note G F le graphe $(V(G), E(G) \setminus F)$.
- Un graphe est **biparti** si on peut partitionner ses sommets en deux ensembles indépendants X et Y. On appelle (X,Y) la **bipartition** de G.

Théorème 1 (Caractérisation des bipartis) Un graphe G est biparti ssi il ne contient pas de cycle impair. On peut détecter cela en temps linéaire (c'est -à-dire en O(n+m)).

• Dans un graphe G un **chemin hamiltonien** est un chemin de longueur n-1. Un **cycle hamiltonien** est un cycle de longueur n.

1.3 Arbres, connexité

• Soient $x, y \in V(G)$, une xy-marche de G est une suite $M = (x = x_0, x_1, \dots x_{l-1}, x_l = y)$ telle que pour tout $i \in \{0, \dots, l-1\}$ on ait $x_i x_{i+1} \in E(G)$. La longueur de M est l.

1 GÉNÉRALITÉS

Si tous les x_i sont distincts alors on dit que M est un xy-chemin.

Lemme 2 (Marche/chemin) Soient x et y deux sommets de G. Le graphe G contient une xy-marche ssi G contient un xy-chemin.

- Un graphe G est **connexe** si pour tous sommets x et y de G, le graphe G contient un xy-chemin. Une **composante connexe** de G est un ensemble de sommets de G qui induit un sous-graphe connexe de G et qui est maximal pour cela. Si G est connexe alors il possède une seule composante connexe.
- Un arbre est un graphe connexe et sans cycle. Une forêt est un graphe sans cycle. Une feuille est un sommet ayant exactement un voisin.

Lemme 3 (Propriétés des arbres) Un arbre ayant au moins deux sommets contient au moins deux feuilles. Une forêt ayant c composantes connexes possède n-c arêtes.

Théorème 2 (Arbre couvrant) Un graphe G est connexe ssi il possède un arbre couvrant. On peut tester cela en temps linéaire (par un algo de parcours par exemple).

- Un chemin de longueur minimum entre deux sommets x et y est appelé un plus court chemin de x à y et sa longueur est la distance de x et y, notée $dist_{\mathbf{G}}(x,y)$.
- Le diamètre de G est $\max\{dist_G(x,y): x,y \in V(G)\}\$ (ou $+\infty$ si G n'est pas connexe).

1.4 Degrés

• Le **degré** d'un sommet x est le nombre de ses voisins, on le note $d_G(x)$ (autrement dit $d_G(x) = |N_G(x)|$).

```
Lemme 4 (Formule des degrés) Pour tout graphe G on a \sum_{x \in V(G)} d_G(x) = 2m
```

- Un graphe est k-régulier si les degrés de tous ses sommets valent k.
- Le degré moyen de G est $\overline{deg}(G) = \frac{1}{n} \sum_{x \in V(G)} d_G(x) = \frac{2m}{n}$ Le degré min de G est $\delta(G) = \min\{d_G(x) : x \in V(G)\}$ Le degré max de G est $\Delta(G) = \max\{d_G(x) : x \in V(G)\}$
- Une marche est **fermée** si son sommet d'arrivée et son sommet de départ sont les mêmes. Une marche d'un graphe G est **eulérienne** si elle est fermée et passe exactement une fois par chaque arête de G.

Théorème 3 (Marche eulérienne) Un graphe G admet une marche eulérienne ssi G est connexe et tous les degrés de ses sommets sont pairs.

1.5 Quelques invariants et opérateurs

- Le complémentaire d'un graphe G, noté \overline{G} est le graphe $(V(G), \{xy : x, y \in V(G), xy \notin V(G)\})$.
- Le line graph de G, noté L(G) est le graphe $(E(G), \{ef : e, f \in E(G), e \cap f \neq \emptyset\})$.
- La stabilité (ou independence number) de G, noté $\alpha(G)$, est la taille du plus grand stable de G (c'est-à-dire la taille du plus grand ensemble de sommets deux-à-deux non reliés).
- Le clique number de G, noté $\omega(G)$, est la taille de la plus grande clique de G (c'est-à-dire la taille du plus grand ensemble de sommets deux-à-deux reliés).
- Une k-coloration de G est une fonction $c: V(G) \to \{1, ..., k\}$ telle que $xy \in E(G) \Rightarrow c(x) \neq c(y)$. Si G possède une k-coloration, alors G est dit k-colorable. Le nombre chromatique de G, noté $\chi(G)$, est min $\{k: G \text{ admet une } k\text{-coloration}\}$.
- Un vertex cover de G est un ensemble $X \subseteq V(G)$ qui touche toutes les arêtes de G (autrement dit $V(G) \setminus X$ est un stable). On note $vc(G) = \min\{|X| : X \text{ est un vertex cover de } G\}$.
- Un feedback vertex set de G est un ensemble $X \subseteq V(G)$ qui intersecte tous les cycles de G (autrement dit $V(G) \setminus X$ est une forêt). On note $fvs(G) = \min\{|X| : X \text{ est un feedback vertex set de } G\}$.

2 Couplages

• Un couplage est **maximal** si on ne peut pas l'étendre (c'est-à-dire trouver une arête supplémentaire pour trouver un couplage plus grand).

Un couplage est maximum si il est taille la plus grande possible parmi tous les couplages du graphe.

2.1 Chemins augmentants

- Un sommet x d'un graphe G est dit saturé ou couvert par un couplage M de G si x est incident à une arête de M.
- \bullet Un couplage d'un graphe G est **parfait** si il couvre tous les sommets de G.
- La taille d'un couplage maximum de G est notée $\mu(G)$.
- Soit M un couplage de G. Un chemin P est M-alternant si les arêtes de P alternent entre M et $E(G) \setminus M$. De plus si $P = v_1 \dots v_k$ est M-alternant et si v_1 et v_k ne sont pas couverts par M alors P est dit M-augmentant.

Théorème 4 (Théorème de Berge) Un couplage M d'un graphe G est maximum ssi G ne contient pas de chemin M-augmentant.

2.2 Couplages dans les graphes bipartis

• Pour un ensemble $X \subseteq V(G)$ on note $N_G(X) = \bigcup_{x \in X} N_G(x)$.

Théorème 5 (Théorème de Hall, Lemme des mariages) Un graphe biparti $(X \cup Y, E)$ contient un couplage qui sature X ssi pour toute partie $S \subseteq X$ on a $|N_G(S)| \ge |S|$.

Corollaire 1 (Taille d'un couplage max) Pour un graphe $G = (X \cup Y, E)$ biparti, on a $\mu(G) = \max^*\{|S| - |N_G(S)| : S \subseteq X\}.$

Corollaire 2 (Bipartis réguliers) Tout graphe biparti et régulier admet un couplage parfait.

Théorème 6 (Algorithme de Egerváry) Il existe un algorithme polynomial pour calculer un couplage maximum dans un graphe biparti.

2.3 Couplages dans les graphes généraux

- Un sommet v de G est **universel** si $N_G(v) = V(G) \setminus v$.
- Une composante connexe de G contenant un nombre impair (resp. pair) de sommets est appelée une composante impaire de G (resp. composante paire de G). Le nombre de composantes impaires de G est noté o(G).

Théorème 7 (Théorème de Tutte) un graphe G admet un couplage parfait ssi pour toutes parties $S \subseteq V(G)$ on a $o(G \setminus S) \leq |S|$.

• Une arête e d'un graphe connexe G est dite **séparatrice** si G - e n'est pas connexe.

Corollaire 3 (Théorème de Petersen) Tout graphe cubique sans arête séparatrice admet un couplage parfait.

2.4 L'algo de Edmonds

• Soient G = (V, E) un graphe et X un sous-ensemble de sommets de G. Le graphe obtenu en **contractant** X est le graphe dont les sommets sont $(V \setminus X) \cup \{v_X\}$, où v_X est un nouveau sommet pour G, et dont les arêtes sont $\{xy : xy \in E(G), x \notin X, y \notin X\} \cup \{v_Xy : xy \in E(G), x \in X, y \notin X\}$.

Théorème 8 (Algo d'Edmonds) Il existe un algorithme polynomial pour calculer un couplage maximum dans un graphe (quelconque).

2.5 Mariages stables

• Un **ensemble de préférences** pour un graphe G = (V, E) est un ensemble d'ordres $(<_v)_{v \in V}$ où pour tout v, l'ordre $<_v$ est un ordre total sur les arêtes incidentes à v.

Un couplage M de G est **stable** si pour toute arête $e = uv \notin M$ il existe une arête f de M soit incidente à u avec $e <_u f$ soit incidente à v avec $e <_v f$.

Théorème 9 (Théorème des mariages stables) Pour tout graphe G biparti et tout ensemble de préférences pour G, il existe un mariage stable.

3 Flots

3.1 Réseaux de transport, flots

- Un graphe orienté D = (V, A) est constitué d'un ensemble (fini) V de sommets et d'un ensemble d'arcs A constitué de couples d'éléments de V.
- Pour $(x,y) \in A$, on note $xy \in A$ et on dit que x domine y, que y est voisin sortant de x et que x est voisin entrant de y.
- Le voisinage sortant de x (resp. voisinage entrant de x) noté $N_D^+(x)$ (resp. $N_D^-(x)$) est l'ensemble des voisins sortants de x (resp. des voisins entrants de x). De plus, on note $d_D^+(x) = |N_D^+(x)|$ (resp. $d_D^-(x) = |N_D^-(x)|$) le degré sortant de x (resp. le degré entrant de x).
- Un sommet x de D est une source (resp. un puit) si $d_D^-(x) = 0$ (resp. $d_D^+(x) = 0$).
- Un **réseau de transport** $\mathcal{N} = (D, s, p, c)$ est formé d'un graphe orienté D, d'une source s de D, d'une puit p de D et d'une **fonction de capacité** $c: A \to \mathbb{R}^{+*}$.
- Un flot f sur un réseau (D, s, p, c) est une fonction $f: A \to \mathbb{R}^+$ vérifiant :
 - Pour tout $xy \in A$ on a $0 \le f(xy) \le c(xy)$ (contraintes de capacité)
 - Pour tout $x \in V(D) \setminus \{s,p\}$ on a $\sum_{y \in N_D^-(x)} f(yx) = \sum_{z \in N_D^+(x)} f(xz)$ (conservation du flot)
- Etant donné un flot f sur un réseau de transport $\mathcal{N} = (D, s, p, c)$, on note $\mathbf{f}(\mathbf{X}, \mathbf{Y}) = \sum_{x \in X, y \in Y, xy \in A} f(xy)$ et $\mathbf{c}(\mathbf{X}, \mathbf{Y}) = \sum_{x \in X, y \in Y, xy \in A} c(xy)$.
- La valeur d'un flot f est |f| = f(s, V).

```
Lemme 5 (Propriétés des flots) Pour un flot f sur un réseau de transport \mathcal{N} = (D, s, p, c), on a:

- \forall X \subseteq V \setminus \{s, p\} f(X, V \setminus X) = f(V \setminus X, X)

- \forall X \subseteq V \setminus \{p\} avec s \in X f(X, V \setminus X) = |f| + f(V \setminus X, X)

- |f| = f(V, p)
```

3.2 Flot max, coupe min, algorithme de Ford-Fulkerson

• Pour un flot f sur un réseau de transport $\mathcal{N} = (D, s, p, c)$, le **réseau résiduel** $\mathcal{N}_f = (D', s, p, c')$ est défini sur le graphe orienté D' avec V(D') = V(D) où pour chaque arc xy de D on ajoute à D' l'arc xy de

3 FLOTS

capacité c'(xy) = c(xy) - f(xy) et, si $x \neq s$ et $y \neq p$, l'arc yx de capacité c'(yx) = f(xy).

Lemme 6 (Flot sur un réseau résiduel) Si f est un flot de $\mathcal{N} = (D, s, p, c)$ et f' est un flot sur le réseau résiduel \mathcal{N}_f , alors g défini par g(xy) = f(xy) + f'(xy) - f'(yx) pour tout arc xy de D est un flot de \mathcal{N} de valeur |g| = |f| + |f'|.

- Un **chemin améliorant** pour un flot f défini sur un réseau \mathcal{N} est un chemin orienté P de s à p dans le réseau résiduel $\mathcal{N}_f = (D', s, p, c')$. Le **flot améliorant** f' correspondant est défini par f'(xy) = c si xy est un arc de P et f'(xy) = 0 sinon, où $c = \min\{c(xy) : xy \text{ est un arc de } P\}$.
- Pour un réseau $\mathcal{N}=(D,s,p,c)$, une (s,p)-coupe est un ensemble $X\subseteq V(D)$ avec $s\in X$ et $p\notin X$. Les arcs de la coupe sont les arcs xy de D avec $x\in X$ et $y\notin X$. La capacité de la coupe X est $c(X,V\setminus X)$.

Lemme 7 (Borne flot-coupe) Pour un réseau de transport $\mathcal{N} = (D, s, p, c)$ et pour tout flot f de \mathcal{N} et toute coupe X de D on a $|f| \leq c(X, V \setminus X)$.

Théorème 10 ('min cut = max flow') Pour un réseau $\mathcal{N} = (D, s, p, c)$ sont équivalents :

- f a une valeur maximale sur \mathcal{N} .
- \mathcal{N}_f ne contient pas de chemin améliorant.
- il existe une coupe X de D avec $|f| = c(X, V \setminus X)$.

De plus X vérifie $c(X, V \setminus X) = \min\{c(Y, V \setminus Y) : Y \text{ est une coupe de } D\}$

Corollaire 4 (Ford-Fulkerson pour les capacités entières) $Si\ c: A \to \mathbb{N}$ est à valeur entière, alors l'algorithme de Ford-Fulkerson trouve un flot maximum f et une coupe minimum de $\mathcal{N}=(D,s,p,c)$ en temps O((n+m).|f|)

3.3 Circulations

• Une **circulation** d'un graphe G=(V,E) connexe et sans pont est donnée par une orientation D=(V,A) de G et une fonction $f:A\to\mathbb{N}^*$ telle que pour tout sommet x de D on ait $\sum_{y\in N_D^-(x)}f(yx)=\sum_{z\in N_D^+(x)}f(xz)$.

Lemme 8 (Existence de circulation) Tout graphe sans pont admet une circulation

• Pour $k \geq 2$, une k-circulation de G, sans pont, est une circulation (D, f) de G vérifiant $\forall xy \in A f(xy) < k$.

Théorème 11 (Relation circulation-cycles) G admet une k-circulation ssi il existe une orientation D de G et une collection C de cycles orientés de D telle que chaque arc xy de D soit dans au moins 1 et au plus k-1 cycles de C.

• On note $\varphi(G)$ l'entier minimum k pour lequel G admet une k-circulation.

Lemme 9 (2-circulation) Un graphe sans pont admet une 2-circulation ssi il est eulérien.

Lemme 10 (3-circulation des cubiques) Un graphe G sans pont et cubique vérifie $\varphi(G)=3$ ssi G est biparti.

4 Connectivité

4.1 Définitions, généralités

- Soit G = (V, E) un graphe connexe. Un ensemble $X \subseteq V$ est un **sommet-séparateur** de G si $G \setminus X$ n'est pas connexe.
 - Un ensemble $F \subseteq E$ est un **arête-séparateur** de G si G F n'est pas connexe.
- Un graphe G est k-sommet-connexe si tout sommet-séparateur de G a taille au moins k. Un graphe G est k-arête-connexe si tout arête-séparateur de G a taille au moins k.
- La sommet-connectivité d'un graphe G, notée $\kappa(G)$, est $\max\{k: G \text{ est } k\text{-sommet-connexe}\}$. L'arête-connectivité d'un graphe G, notée $\lambda(G)$, est $\max\{k: G \text{ est } k\text{-arête-connexe}\}$.

Lemme 11 (Relation connectivités-degré) Tout graphe G vérifie $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

4.2 Théorèmes de Menger

- Soient x et y deux sommets de G connexe. Un ensemble $X \subseteq V \setminus \{x,y\}$ est un (x,y)-sommet-séparateur si $G \setminus X$ n'est pas connexe et x et y appartiennent à des composantes connexes différentes de $G \setminus X$. On note $\kappa_G(x,y)$ la valeur min $\{|X|: X \text{ est un } (x,y)\text{-sommet-séparateur}\}$.
- Soient x et y deux sommets de G connexe. Un ensemble $F \subseteq E$ est un (x, y)-arête-séparateur si G F n'est pas connexe et x et y appartiennent à des composantes connexes différentes de G F. On note $\lambda_G(x, y)$ la valeur min $\{|F|: F \text{ est un } (x, y)\text{-arête-séparateur}\}.$

Théorème 12 (Menger local version sommets) On a $\kappa_G(x,y) \ge k$ ssi G contient k chemins sommetdisjoints (sauf en leurs extrémités) de x à y.

Théorème 13 (Menger local version arêtes) On a $\lambda_G(x,y) \ge k$ ssi G contient k chemins arête-disjoints de $x \ à y$.

Théorème 14 (Menger global version sommets) On a $\kappa(G) \geq k$ ssi pour tous sommets x et y de G, le graphe G contient k chemins sommet-disjoints (sauf en leurs extrémités) de x à y.

Théorème 15 (Menger global version arêtes) On a $\lambda(G) \geq k$ ssi pour tous sommets x et y de G, le graphe G contient k chemins arête-disjoints de x à y.

4.3 Packing d'arbres couvrants

• Pour une partition $\mathcal{P} = (P_1, \dots, P_l)$ des sommets d'un graphe G, une arête xy de G **croise** la partition \mathcal{P} si $x \in P_i$ et $y \in P_j$ avec $i \neq j$. On note $e(\mathcal{P})$ l'ensemble des arêtes de G qui croisent \mathcal{P} .

Théorème 16 (Tutte-Nash Williams, 1961) Un graphe G contient k arbres couvrants arête-disjoints si, et seulement si, pour toute partition $\mathcal{P} = (P_1, \ldots, P_l)$ des sommets de G, on a $|e(\mathcal{P})| \leq k(l-1)$.

Corollaire 5 (Arbres couvrants disjoints et connexité) $Si\ G\ est\ 2k$ -arête-connexe, alors $G\ admet\ k$ arbres couvrants arête-disjoints.

4.4 Structure des graphes 2-connexes

• Soient G = (V, E) un graphe et H un sous-graphe de G. Un H-chemin x_0, x_1, \ldots, x_k est un chemin de G avec $x_0, x_k \in V(H)$ et pour tout $i \in \{1, \ldots, k-1\}$ $x_i \notin V(H)$.

Une **décomposition en anses** de G est une suite H_0, \ldots, H_p de sous-graphes de G telle que H_0 est un cycle de G, pour tout $i \geq 1$, H_i est un $(\bigcup_{j=0}^{i-1} H_j)$ -chemin et $G = \bigcup_{j=0}^p H_j$.

Théorème 17 (Décomposition en anses) G admet une décomposition en anses ssi G est 2-sommetconnexe.

• Soient G = (V, E) un graphe et H un sous-graphe de G. Un H-chemin faible x_0, x_1, \ldots, x_k est un chemin (si $x_0 \neq x_k$) ou un cycle (si $x_0 = x_k$) de G avec $x_0, x_k \in V(H)$ et pour tout $i \in \{1, \ldots, k-1\}$ $x_i \notin V(H)$.

Une **décomposition en anses faible** de G est une suite H_0, \ldots, H_p de sous-graphes de G telle que H_0 est un cycle de G, pour tout $i \geq 1$, H_i est un $(\bigcup_{j=0}^{i-1} H_j)$ -chemin faible et $G = \bigcup_{j=0}^p H_j$.

Théorème 18 (Décomposition en anses faible) G admet une décomposition en anses faible ssi G est 2-arête-connexe.

ullet Un **bloc** d'un graphe G connexe est soit une arête séparatrice de G et ses deux extrémités, soit un sousgraphe de G 2-sommet-connexe et arête maximal pour cela.

Un sommet séparateur de G est un sommet x de G tel que $G \setminus x$ n'est pas connexe.

Le block graph de G est le graphe biparti construit sur {blocks de G} et {sommets séparateurs de G} où on relie le bloc B au sommet séparateur x si $x \in B$.

Théorème 19 (Block graph) Pour tout graphe G connexe, le block graph de G est un arbre.

5 Colorations

5.1 Coloration des sommets

Théorème 20 (Algo first-fit) Pour tout graphe G, on a $\chi(G) \leq \Delta(G) + 1$ et l'algorithme first-fit produit en temps polynomial une coloration de G en $\Delta(G) + 1$ couleurs.

• Un graphe G est dit d-dégénéré pour un entier $d \in \mathbb{N}$ si G et tous ses sous-graphes possèdent toujours un sommet de degré inférieur ou égal à d. Si G est d-dégénéré on lui associe un **ordre de dégénérescence** v_1, \ldots, v_n tel que pour tout $i = 2, \ldots, n$ on ait $|N_G(v_i) \cap \{v_1, \ldots, v_{i-1}\}| \leq d$.

Théorème 21 (Dégénérescence) Tout graphe d-dégénéré G vérifie $\chi(G) \leq d$.

Théorème 22 (Brooks, 1941) Si G n'est ni un graphe complet ni un cycle impair, alors on a $\chi(G) \leq \Delta(G)$.

Théorème 23 (Construction de Myscelski, 1932) Pour tout entier $k \ge 1$ il existe un graphe sans triangle et de nombre chromatique k.

• Si G n'est pas une forêt, on définit $g(G) = \min\{|C| : C \text{ est un cycle de } G\}$.

Théorème 24 (Erdős, 1959) Pour tout entier $k \ge 1$ il existe un graphe G avec $g(G) \ge k$ et $\chi(G) \ge k$.

5.2 Coloration des arêtes

• Une k-coloration des arêtes de G = (V, E) est une application $c : E \to \{1, ..., k\}$ telle que $c(e) \neq c(e')$ si e et e' sont deux arêtes de G ayant une extrémité en commun.

6 DEUX CLASSES DE GRAPHES : PLANAIRES ET CHORDAUX

L'indice chromatique de G, noté $\chi'(G)$ est le plus petit entier k tel que G admette une k-arête coloration.

Lemme 12 (Borne sur χ') Tout graphe G ayant au moins une arête vérifie $\Delta(G) \leq \chi'(G) \leq 2\Delta(G) - 1$

Théorème 25 (Vizing, 1964) Tout graphe G vérifie $\chi'(G) \leq \Delta(G) + 1$.

6 Deux classes de graphes : planaires et chordaux

6.1 Les graphes planaires

- Un graphe plan est un graphe dessiné dans le plan : ses sommets sont des points de \mathbb{R}^2 , ses arêtes sont des courbes de \mathbb{R}^2 telles que deux arêtes ne s'intersectent pas, sauf éventuellement en leurs extrémités qui doivent être des sommets du graphe.
 - Un graphe est **planaire** si il admet une **représentation planaire**, c'est-à-dire, si il existe un graphe plan qui lui soit isomorphe.
- Étant donné un graphe plan G = (V, E) les points de $\mathbb{R}^2 \setminus (V \cup E)$ se partitionnent en parties connexes maximales : les **faces** de G. Parmi les faces de G, une est non-bornée, on la nomme la **face externe** du graphe G.
 - Le graphe induit par les sommets et les arêtes incidents à une face f de G est appelé la **frontière** de f et est noté Fr(f).

Lemme 13 (Faces d'un graphe plan) Soit G un graphe plan.

- Si G n'est pas une forêt alors la frontière de chaque face de G contient un cycle et G a au moins deux faces.
- Si G est une forêt alors G n'a qu'une seule face dont la frontière est G.
- Si G est 2-sommet-connexe alors la frontière de toute face de G est exactement un cycle.

Lemme 14 (Projection stéréographique) Un graphe est planaire si, et seulement si, il est plongeable sans croisement sur la sphère.

Théorème 26 (Formule d'Euler, 1740) Si G est un graphe plan et connexe alors G vérifie n-m+f=2, où f est le nombre de faces de G.

Corollaire 6 (Borne sur m) Tout graphe planaire G avec $n \ge 3$ vérifie $m \le 3n - 6$.

• Un graphe planaire G vérifiant m = 3n - 6 est appelé une **triangulation plane**. Dans toute représentation plane de G, chaque face est un triangle.

Corollaire 7 (Dégénérescence des planaires) Tout graphe planaire est 5-dégénéré.

• Soit G un graphe plan 3-arête connexe. Le **dual** de G, noté G^* est le graphe dont les sommets sont les faces de G et dont deux faces sont reliées dans G^* si leur frontière partage une arête.

Lemme 15 (Graphe dual) Pour tout graphe G plan et 3-arête connexe on a G^* est planaire, $G^{**} = G$ et $n(G^*) = f(G)$, $m(G^*) = m(G)$ et $f(G^*) = n(G)$ dans n'importe quel représentation plane de G^* .

Théorème 27 (Heawood, 1890) Tout graphe planaire G vérifie $\chi(G) \leq 5$

• Le graphe obtenu par **contraction d'une arête** xy d'un graphe G est le graphe de sommets $(V(G) \setminus \{x,y\}) \cup \{v_{xy}\}$ et d'arêtes $(E(G) \setminus (\{xz : z \in N_G(x)\} \cup \{yz : z \in N_G(y)\})) \cup \{v_{xy}z : z \in (N_G(x) \cup \{yz : z \in N_G(y)\})\}$

6 DEUX CLASSES DE GRAPHES : PLANAIRES ET CHORDAUX

 $N_G(y) \setminus \{x,y\}\}.$

Un graphe H est un **mineur** d'un graphe G si on peut obtenir H à partir de G par une suite de retraits de sommet, de retraits d'arêtes et de contraction d'arêtes.

Théorème 28 (Kuratowski, 1930) Un graphe G est planaire si, et seulement si, il ne contient pas K_5 ou $K_{3,3}$ comme mineur.

Théorème 29 (Exemple de déchargement) Tout triangulation plane G avec $\delta(G) = 5$ contient deux sommets de degré 5 adjacent ou un sommet de degré 5 adjacent à un sommet de degré 6.

6.2 Graphes chordaux

- Une **corde** d'un cycle C d'un graphe G est une arête de G reliant deux sommets de C non consécutifs le long de C. Un graphe G est **chordal** si tout cycle de G de longueur supérieure ou égale à 4 admet une corde.
- Un sommet x est simplicial dans un graphe G si $N_G(x)$ induit une clique de G. Un **ordre parfait d'élimination simplicial (opes)** d'un graphe G est un ordre v_1, \ldots, v_n sur les sommets de G tel que pour tout $i = 2, \ldots, n$ le sommet v_i est simplicial dans le graphe $G[v_1, \ldots, v_i]$.

Théorème 30 (Simpliciaux dans les chordaux) Tout graphe chordal G qui n'est pas une clique contient deux sommets simpliciaux non adjacents.

Corollaire 8 (Opes) Un graphe G est chordal si, et seulement si, il admet un opes.

Théorème 31 (LEXBFS) Pour tout graphe G, l'algorithme LEXBFS retourne en temps linéaire un opes de G si G est chordal ou signale que G n'est pas chordal sinon.

• Soit $(X_1, ..., X_n)$ une séquence de sous-ensemble d'un espace U. Un graphe G est un **graphe d'intersection** de modèle $(U, (X_1, ..., X_n))$ si $V(G) = \{x_1, ..., x_n\}$ et x_i est relié à x_j si, et seulement si, X_i et X_j s'intersectent.

Théorème 32 (Intersections de sous-arbres) Un graphe G est chordal si, et seulement si, G est le graphe d'intersection d'un ensemble de sous-arbres d'un arbre.

Théorème 33 (Calculs sur les chordaux) Sur les graphes chordaux, les calculs de α , ω et χ se font en temps polynomial.