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Abstract

A graph theoretical model is presented for constructing calendars for sports leagues where balancing
requirement have to be considered with respect to the different venues where competitions are to be
located. An inductive construction is given for leagues having a number of teams 2n which is of the
form 2p in particular.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many types of scheduling problems arise in the domain of sports (see for example
[1,7–9,4]). We shall consider here the problem of constructing a season schedule for a
sports league consisting of 2n teams. All these teams have to play against each other at least
once.

In addition there are n stadiums (not related to the various teams) in which the games
have to be played. One desires that each team plays the same number of games in each
stadium. Furthermore, all teams have to be involved in a game in each day where games are
scheduled. Finally two teams should not play against each other twice in the same stadium.
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This question has been considered by various authors (see for instance Urban and Russell
[11]) in different contexts. It occurs among other situations when one has to schedule intra-
squad competitions on various drill stations for spring training; a case with 2n = 8 teams is
described in [11] and recently a solution for 2n = 16 was obtained in [12]. There are four
stations and the question was to find if a schedule satisfying all requirements does exist. An
integer programming model was designed to construct solutions which would satisfy these
requirements or at least violate the requirements as little as possible. Such a model has been
refined by other authors but the approach is essentially the same.

A related problem (where each team plays exactly once against every other team) has been
solved with different techniques based on groups, orthogonal latin squares, room squares
(see [3,6,10] for a sample).

Here we intend to use a graph theoretical formulation and to develop an interactive
procedure which is based on the existence of two disjoint semi-leagues in a league of 2n

teams. This will give us a special type of factorization of the complete graph K2n (see
[4] for the use of similar factorizations) and will provide the basis for a simple inductive
construction.

By designing solutions that have a regular structure; we hope to get more insight into the
problem and to be able to adapt the procedure to arbitrary values of 2n.

We insist that our problem differs slightly from the classical case handled in [3,6,10]
for instance: we introduce a new round so that each one of the 2n teams has to play 2n

games (instead of 2n−1 in the usual case) and there is an additional condition on the round
introduced.

We will use the terminology of Berge [2] for all graph theoretical concepts not defined
here.

We will not consider the case where stadiums are associated to the various teams and reg-
ular patterns of alternating home-games and away-games have to be constructed. The reader
is referred to [1,7–9,4,5] for results related to the construction of such patterns and for other
basic models where teams may have to travel between several home cities of other teams.

2. The basic graph-theoretical model

Since each team competes every other team at least once, we may represent the games by
edges in a graph as follows: each team u corresponds to a node u and each game between
teams u and v to an edge [u, v]. So we will have a graph on 2n nodes where each edge
[u, v] occurs at least once. Now all teams have to be involved in a game every day where
competitions are scheduled; it is known that a schedule in 2n − 1 days can be constructed
with n games (involving the 2n teams) scheduled in each day, when we assume that each
team meets every other team exactly once (see [5]). It is also required that every team plays
the same number of games in each one of the n stadiums. Since each team has to play 2n−1
games on n stadiums, there will be in the best case one stadium in which only one game is
played by this team and there will be two games involving this team in all remaining n − 1
stadiums.

So in order to have the same number (i.e., two) of games of each team in each sta-
dium, each team should play 2n games (or a multiple of n). So let us consider a complete
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graph K2n on 2n nodes (each edge occurs exactly once); there we choose a 1-factor, say
[1, 2], [3, 4], . . . , [2n − 1, 2n] and we double all these edges. We obtain a graph K∗

2n in
which all nodes have degree 2n. A schedule for these games in exactly 2n days is known to
exist (it is a usual edge coloring of K∗

2n) if we do not consider the balancing requirements
on the stadiums.

Now considering an edge coloring F1, F2, . . . , F2n of K∗
2n, i.e., a partition of the edge

set E(K∗
2n) into 1-factors (collections of n node disjoint edges) Fj , we have to consider

the stadiums 1, . . . , n where the competitions occur. In other words in each Fj we have to
assign labels 1, 2, . . . , n to the n edges of Fj in order to indicate in which stadium each
competition occurs. This assignment has to be done in such a way that

(a) for any i (1� i�n) each node of K∗
2n is adjacent to exactly two edges with label i.

(b) for every pair of parallel edges [2u − 1, 2u] (introduced to transform K2n into K∗
2n) the

labels are different.

Requirement (b) expresses the fact that no two teams can meet twice in the same stadium.
The question is now to determine whether there exists an edge 2n-coloring (F1, . . . , F2n)

of K∗
2n associated to an appropriate labeling (satisfying (a) and (b)). If it exists, we shall

say that K∗
2n has a feasible schedule.

We will examine this in the next sections and we will start with the cases where 2n = 4
or 8. Then a general construction procedure will be sketched for 2n= 2p where p is integer
and satisfies p�3.

3. Some special cases

Let us consider first a league of 2n = 4 teams; we construct a graph K∗
2n by duplicating

edges [1, 2] and [3, 4] (see Fig. 1a).
It is easy to see that no feasible solution exists for 2n = 4 teams and n = 2 stadiums.

Fig. 1a shows a “best possible” schedule.
Let us now consider the case 2n=8. For this we shall use the solution of the case 2n=4.

Let a, b, c, d, a′, b′, c′, d ′ be the teams (nodes of K∗
8 ). We start by constructing a schedule

for the games internal to {a, b, c, d} and to {a′, b′, c′, d ′}; this gives the partial schedule
represented in Fig. 2. Notice that nodes a, a′, b, b′ have some imbalance of labels which
will have to be compensated in the second part of the schedule.
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Fig. 1. The case of four teams.
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Fig. 2. A partial schedule for K∗
8 .

a' b' c' d'

a 4 1 4 2

b 2 3 1 3

c 3 1 2 4

d 2 4 3 1

Fig. 3. The labels of the edges of K4,4.
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Fig. 4. The second part of the schedule for K∗
8 .

Wemustnowconsiderallgamesinvolvingateamin{a, b, c, d}andateamin{a′, b′, c′, d ′}.
This can be represented by a 4 × 4 array A giving the label (stadium) associated to each
game.

For the case of K∗
8 , the array A is given in Fig. 3; A(u, v)=i means that the game between

teams u and v is played in stadium i. Considering the stadiums of the partial schedule of
Fig. 2, we notice that each team plays exactly twice in each stadium.

It suffices now to give the second part of the schedule.
It is given in Fig. 4 and we observe that in each Fj the labels of the edges are different.

So we have constructed a feasible schedule for 2n = 8 teams.
In the next section we shall give the general construction for the case where 2n = 2p

(p integer, p�4).
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Remark 1. One may verify that no solution can be found for 2n = 6 teams although there
is a solution for the classical case (without additional round) where each team plays at most
twice in each stadium (see [4]). This will be shown in the appendix.

4. The case of 2p teams (p�4)

We have seen that for p = 3, there exists a feasible schedule, while for p = 2, no such
schedule could be constructed. We shall now describe the general construction which can
be used for obtaining schedules in a league of 2p teams. In such a situation we have 2p−1

simultaneous games and 2p−1 stadiums.
We may assume that there exists a feasible schedule for a league of n = 2p−1 teams and

a collection of 2p−2 stadiums.
In fact we will show a stronger result.

Proposition 2. For K∗
2n where 2n = 2p(p�3), there exists a feasible schedule such that

for any i(1� i�2p−1) the set Ei of edges with label i (games played on stadium i) is the
union of two perfect matchings.

This means in particular that Ei consists of a collection of node disjoint even cycles
covering all nodes. Notice that since from (b) parallel edges must have different labels, all
these cycles will have length at least 4.

As an illustration one may verify that in the construction given for K∗
8 in Section 3, each

Ei (1� i�4) is a cycle of length 8. So the construction proves the case p = 3. The general
case will be established by giving a construction for K∗

2n.
For preparing the formulation of an inductive procedure we need some preliminaries.
Let us consider for the moment that the games to be played by the 2n = 2p teams of a

league are represented by the edges of a complete bipartite graph Kn,n (where n = 2p−1).
This amounts to considering that we have two subleagues A, B with 2p−1 teams each; all
games must involve a team in A and a team in B. Assume that we have 2p−1 stadiums.
Then we can state

Proposition 3. If the games are represented by the edges of Kn,n (where n = 2p−1 with
p�3), there exists a schedule in n=2p−1 days such that each team plays exactly one game
in each stadium.

Proof. For K4,4 we construct the schedule given in Fig. 5. We have teams 1,2,3,4 on the
left and 1′, 2′, 3′, 4′ on the right

Such a schedule can also be represented by the matrix A in Fig. 6.
In Fig. 6, F1 is represented by entries of A with circled figures, F2 by the entries with

bold figures.
In order to obtain a matrix A (corresponding to a schedule) for Kn,n from a matrix

A associated to Kn/2,n/2 we proceed as follows: we consider the symbols 1, 2, . . . , n as
forming a cyclic order.
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Fig. 5. A schedule for K4,4.

1’ 2’ 3’ 4’

1 1 3 2 4

2 4 2 3 1

3 2 4 1 3

4 3 1 4 2

Fig. 6. The matrix A corresponding to the schedule in Fig. 5.

1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’

1 2 3 6 7 5 4 1 8

2 4 1 8 5 3 6 7 2

3 1 8 5 4 6 7 2 3

4 7 2 3 6 8 5 4 1

5 5 4 1 8 2 3 6 7

6 3 6 7 2 4 1 8 5

7 6 7 2 3 1 8 5 4

8 8 5 4 1 7 2 3 6

Fig. 7. The matrix A associated to a schedule for K8,8.

Each entry of A containing an i is replaced by a square of four entries with values

if i is odd or values else.

Here the integers are taken modulo n between 1 and n. For example, we would get the
matrix A of Fig. 7 from the A of Fig. 6.

One observes that all labels 1, . . . , 8 occur exactly once in each row and in each column.
Now to every matching Fj of K4,4 correspond two matchings of K8,8; for instance, consider
F2 in K4,4 which corresponds to the entries in A with bold figures.
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The corresponding entries with bold figures in A define two matchings by taking first the
first diagonal with the bold figures in the 2 × 2 squares corresponding to an odd i in A and
the second diagonal for those corresponding to an even i in A.

The second matching is obtained by taking the remaining teams with the bold figures in
the (2 × 2) squares.

One sees that in each one of these matchings all eight edges have different labels.
So this construction will give the required schedule for Kn,n. This ends the proof of

Proposition 3. �

Proof (of Proposition 2). Assume that the result is true for K∗
n where n = 2p−1 (with

p − 1�3). We will show that it holds for K∗
2n.

Our league consists of two subleagues of n teams each, the games inside these subleagues
are represented by two graphs K∗

n and (K∗
n)′.

So we have for K∗
n a feasible schedule with n/2 = 2p−2 stadiums; each team plays two

games in each one of the stadiums. By assumption the set Ei of edges with label i is the
union of two perfect matchings having n/2 edges each (for i = 1, . . . , n/2). For each i we
change the labels on one of these two matchings from i to n/2+ i. This gives a schedule for
K∗

n where each team plays exactly once in each one of n stadiums. Now there is a one-to-one
correspondence between the edges e of K∗

n and the edges e′ of (K∗
n)′. We take the same

coloring for (K∗
n)′ as for K∗

n ; but the labels are defined as follows: if e has label i, then e′
will have label i + n/2 where all these values are taken modulo n between 1 and n.

Now we form the graph K∗
2n by taking K∗

n , (K∗
n)′ and the edges of Kn,n colored and

labeled as in the construction of Proposition 3.
Then it follows from the construction that each node of K∗

2n is adjacent to exactly two
edges with label i for i = 1, . . . , n (in fact if v is a node in K∗

n , one edge labeled i is inside
K∗

n ; it belongs to a perfect matching in K∗
n . The other edge is between v and a node in

(K∗
n)′).
As a consequence the edges labeled i in K∗

2n form a collection of even cycles covering all
nodes (no cycle can be odd since it has to cross an even number of times the edges between
K∗

n and (K∗
n)′ and since edges labeled i inside K∗

n (and inside (K∗
n)′) are not adjacent). So

the edges labeled i in K∗
2n are the union of two disjoint perfect matchings.

Let us now finally show that the colors and labels given to the edges of K∗
2n form a

feasible schedule. This is certainly true for the n perfect matchings defined on the edges of
Kn,n by the construction of Proposition 3; in each such matching all n edges have different
labels. Then we construct the perfect matchings in K∗

n

⋃
(K∗

n)′ by taking the matchings Fj

in the factorization of K∗
n corresponding to the initial schedule that was assumed to exist

and associating the corresponding perfect matching F ′
j in (K∗

n)′.
It just remains to verify that condition (b) on parallel edges is still verified. This can be

seen as follows: for K∗
8 the initial labeling is such that in every family of parallel edges the

difference in the labels is one. Then one may modify the label of one or of both edges in a
pair of parallel edges; but the difference in the labels of parallel edges will always keep the
same parity (odd) since the only changes in labels are additions of an even quantity n/2 and
computations modulo an even integer n. So we see that the labels in each pair of parallel
edges will remain different.

We now have obtained a feasible schedule for K∗
2n and Proposition 2 is proved. �
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Remark 4. It should also be observed that the above construction produces a schedule such
that for any team the two games played on the same stadium involve another team of the
same subleague for one game and a team of the other subleague for the second game.

In terms of graphs we may also formulate the existence of feasible schedules in the
following way.

Proposition 5. Let K∗
2n be a complete graph on 2n nodes where the edges of an arbitrary

perfect matching have been doubled. Assume n = 2p (with p�2 integral).
Then there exists a labeling (�(e), �(e)) of each edge e such that

(i) �(e) ∈ {1, . . . , 2n}, �(e) ∈ {1, . . . , n}.
(ii) for any two edges e, e′ (�(e), �(e)) �= (�(e′), �(e′)).

(iii) all edges e with the same label �(e) = � form a perfect matching (for any �(e) ∈
{1, . . . , 2n}).

(iv) for any node v and any � (1���n), there are exactly two edges e, e′ adjacent to v

for which

�(e) = �(e′) = �.

(v) if e, e′ are parallel edges, then �(e) �= �(e′).

Another formulation based on the above construction (without condition (v)) would be:
There exists a labeling (�(e), �(e)) of each edge e such that

(I) �(e), �(e) ∈ {1, . . . , 2n}.
(II) for any two edges e, e′ (�(e), �(e)) �= (�(e′), �(e′)).

(III) all edges e with the same label �(e) = � form a perfect matching
(1���2n).

(IV) all edges e with the same label �(e) = � form a perfect matching
(1���2n).

In some sense the labels �(e) and �(e) define two “orthogonal” edge colorings of K∗
2n.

5. Final remarks

The construction procedure given in Section 4 applies to the special case where 2n =
2p; this is due to its inductive nature. Feasible schedules for 2n = 16 teams by integer
programming techniques have recently been obtained, see [12]; notice that solutions exist
for the classical case without additional round.

Feasible schedules have been obtained for 2n = 10 or 2n = 12 and our construction
is a priori not able to handle these cases. Further research is needed to develop a gen-
eral construction procedure based on semi-leagues which could provide feasible schedules
whenever they exist.
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Appendix A. The case of 2n = 6 teams

For a league of 2n = 6 teams playing on n = 3 stadiums, there exists a schedule in
2n − 1 = 5 days where each team plays at most twice in each stadium. It is given in [3]:

F1 = [2, 4], [3, 1], [6, 5]
F2 = [5, 3], [4, 1], [6, 2]
F3 = [5, 4], [3, 6], [1, 2]
F4 = [2, 3], [4, 6], [1, 5]
F5 = [1, 6], [2, 5], [3, 4]

In each Fi , the game j is played in stadium j (j = 1, 2, 3).
However, for the problem discussed in this note (factorization of K∗

2n) there is no schedule
satisfying requirements (a) and (b).

This can be seen as follows: K∗
6 has three nonisomorphic factorizations that are given in

Fig. A.1. The games to be played twice are [1,2], [3,4], [5,6].
We let D be the set of double edges [1,2], [3,4], [5,6] in K∗

6 . In any edge 6-coloring
F1, . . . , F6 of K∗

6 we have |D ∩ Fi | �= 2, since an Fi which would contain two edges of D
would also contain a third edge of D. So we have |D ∩ Fi | ∈ {0, 1, 3}. If we associate to an
edge 6-coloring F1, . . . , F6 the values |D ∩F1|� |D ∩F2|� · · · � |D ∩F6| the only cases
are (A) (1, 1, 1, 1, 1, 1), (B) (0, 0, 1, 1, 1, 3) and (C) (0, 0, 0, 0, 3, 3).

Let now Hj represent the games played in stadium j for j = 1, 2, 3.

Proposition 6. If there exists a feasible schedule for K∗
6 , then each Hj is a C6 (cycle on 6

nodes).

Proof. Hj is a 2-factor in K∗
6 (all degrees are 2 since every team plays exactly two games

in each stadium); Hj cannot consist of a C4 (cycle on 4 nodes) and a double edge ([1,2],
[3,4] or [5,6]), since this would mean that (b) is violated.

Hj cannot consist of two triangles; this can be seen as follows: assume Hj consists of
two triangles T1 and T2; each one contains at most one of the edges of D; so we have
|Hj ∩ D|�2.

Each triangle can contain at most one pair of nodes linked by double edges. Assume
w.l.o.g. that T1 � 1, 2 linked by an edge in Hj and an edge in H�. The edge [1,2] in Hl will
be contained in a matching Fk which will use at most one edge e of T2 ∩ Hj . After removal
of Fk we have a triangle T1 with three edges in Hj (and no double edges between nodes of
T1) and at least two edges in T2 ∩ Hj . Let e ∈ T2 ∩ Hj ; it will belong to a matching Fk

which will also contain an edge between a node of T2 and a node of T1 (belonging to some
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Fig. A.1. The factorization of K∗
6 . (A) First factorization, (B) Second factorization, (C) Third factorization.

Hj1 with j1 �= j); the two remaining nodes of T1 are linked by only one edge and this edge
is in Hj .

This is impossible (two games in stadium j on day k). �

Proposition 7. There is no feasible schedule associated to the factorization C of K∗
6 .

Proof. Consider the factorization C (associated to the values (0, 0, 0, 0, 3, 3) of |D ∩ Fi |)
(see Fig. A.1. C). It consists of matchings Fe, Fg, Fg, Fh, Ff ′ , Ff ; w.l.o.g. we can assume
that for Ff ′ : 12 ∈ H1, 34 ∈ H2, 56 ∈ H3 and for Ff : 12 ∈ H2, 34 ∈ H3 and 56 ∈ H1.
Now consider Fh = 16, 23, 45.

Case 1: 16 ∈ H1: Then 23, 45, 15, 26, 34 /∈ H1. But then 4 cannot play in stadium 1
against 1, 6 (already 2 games in stadium 1), nor 3 (games already in H2 and H3), nor 5
(since this would give 45, 16 ∈ H1 ∩ Fh). It can play only against 2, but 4 has two games
to play in stadium 1.

Case 2: 16 ∈ H2: Then 23, 45 /∈ H2; 26 /∈ H2 from Proposition 6. Now 13, 14, 15 /∈ H2.
Looking at Fg we see that 35 ∈ H2. But then the only way to complete H2 is to have games
25 and 46 in stadium 2 (this is not possible since both occur on the same day in Fe) or
games 24 and 56 in stadium 2 (this is again impossible since the two games between 5 and
6 are in H1 and in H3).



D. de Werra et al. / Discrete Applied Mathematics 154 (2006) 47–58 57

Case 3: 16 ∈ H3: From Proposition 6, 15 /∈ H3 and also 26, 36, 46 /∈ H3. Since 16 ∈ Fh

we also have 23, 45 /∈ H3. But now 15, 36 ∈ Fg imply 24 ∈ H3. But then 2 can only play
the second game in H3 against 5, so 25 ∈ H3. The only remaining teams (having one more
game to play in stadium 3 are 1 and 3); they cannot play since 13 ∈ Fe which contains also
25 ∈ H3. �

Proposition 8. There is no feasible schedule associated to the factorization B of K∗
6 .

Proof. Consider the factorization B (associated to the values (0, 0, 1, 1, 1, 3) of |D ∩ Fi |)
(see Fig. A.1. B). It consists of matchings Fe, Fe, Fb, Fb, Fc, Ff ; w.l.o.g. we may assume
for Ff : 12 ∈ H1, 34 ∈ H2, 56 ∈ H3 and for Fc : 15 ∈ H1, 26 ∈ H2, 34 ∈ H3. Now
from Proposition 6, we have 25 /∈ H1 also 13, 14, 16 /∈ H1. From Fe we have 46 ∈ H1.

Case 1: 13 ∈ H2: Then 25 ∈ H3 (from Fe). We have 23, 35, 36 /∈ H2. Also 14 /∈ H2 from
Proposition 6. From Fb we have 56 ∈ H2. But then 16 /∈ H2, which implies 16 ∈ H3. It
follows 12 /∈ H3 so 12 ∈ H2. In order to have a C6 for H2 we should have 45 ∈ H2, but 45,
12 ∈ Fb and we cannot have these two games on the same day.

Case 2: 13 ∈ H3: Then 25 ∈ H2. From Proposition 6, 56 /∈ H2 so from (b) we must have
56 ∈ H1. But then 36 /∈ H1 and team 3 could play only with team 2 in stadium 1 and it
should play two games. �

Proposition 9. There is no feasible schedule associated to the factorization A of K∗
6 .

Proof. Consider the factorization A (associated to the values (1, 1, 1, 1, 1, 1) of |D ∩ Fi |)
(see Fig. A.1.A). It consists of matchings Fa, Fa, Fb, Fb, Fc, Fd . w.l.o.g. we can assume
for Fa : 13 ∈ H1, 24 ∈ H2, 56 ∈ H3 and for Fb 56 ∈ H1.

Case 1: 14 ∈ H2: Then from Fb 23 ∈ H3. But then 12 /∈ H2 from Proposition 6. Also 34,
45, 46 /∈ H2. Since 13 /∈ H2, we must have 35, 36 ∈ H2 (because 15, 26 ∈ Fa and so they
are scheduled on the same day). So we must have 25, 16 ∈ H2, but this is again impossible
since 25, 16 ∈ Fd .

Case 2: 14 ∈ H3: Then from Fb 23 ∈ H2. From Proposition 6, we have 34 /∈ H2 hence
34 ∈ H1 and 34 ∈ H3. Now 12, 25, 26 /∈ H2 and it follows 12 ∈ H1, 12 ∈ H3. From Fd we
must have 16 ∈ H2.

If 26 ∈ H3 or H1, then from Fc we have 15 ∈ H2; we cannot have 36, 45 ∈ H2 because
these games are played the same day (36, 45 ∈ Fb; so we must have 35, 46 but these are
again played the same day (35, 46 ∈ Fa). �

Since all cases have been examined, we have established that there is no feasible solution
for K∗

6 .
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