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Abstract

We prove that every tournament T with no three disjoint cycles contains a set X of at most
four vertices such that T −X is acyclic.
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1 Introduction

In this paper, we are interested in computing the size of a minimal cycle transversal in tournaments.
First, we precise notations. The notation not given below can be found in [3].

We denote the vertex set and arc set of a digraph D by V (D) and A(D), respectively and write
D = (V,A) where V = V (D) and A = A(D). If xy is an arc of D we say that x dominates y and
that y is dominated by x. Extending this to disjoint subsets of vertices X,Y ⊂ V (D), we say that
X dominates Y when x dominates y for every choice of x ∈ X and y ∈ Y . For a digraph D = (V,A)
the out-neighbourhood N+

D (x) (resp. in-neighbourhood N−D (x)) of a vertex x ∈ V is the set of
vertices y in V − x such that xy (resp. yx) is an arc of A. The out-degree of x, denoted by d+D(x) is
the cardinality of N+

D (x), and the in-degree of x, denoted by d−D(x) is the cardinality of N−D (x). For
X ⊆ V , we shall also write d+X(x) to denote the number of vertices in X that are dominated by x.

In the present paper, paths and cycles are always assumed to be directed unless other qualified.
A k-cycle is a cycle of length k. For convenience we will use the shorthand notation xyz to mean
a 3-cycle on vertices x, y, z and arcs xy, yz, zx. A digraph D is acyclic if it does not contain any
cycle. An (s, t)-path in a digraph D is a directed path from the vertex s to the vertex t. A digraph
D = (V,A) is strongly connected (or just strong) if there exists an (x, y)-path and a (y, x)-path
in D for every choice of distinct vertices x, y of D, and D is k-strong if D − X is strong for every
subset X ⊆ V of size at most k− 1. A subset Y ⊆ V of a digraph D is a vertex-cut of D if D−Y is
not strong. A strong component (or when there is no confusion a component) of a digraph D is a
maximal set of vertices X such that D〈X〉 is strong. If a digraph is not strong then we can order its
strong components D1, D2, . . . , Dp in such a way that there is no arc from a vertex in Dj to a vertex
in Di when i < j (or equivalently, the digraph induced on the components Di is acyclic). A strong
component with no arcs entering (resp. leaving) is called an initial (resp. terminal) component of
D. Moreover, a strong component is trivial if it contains a unique vertex.

For a subset X of V (D) we denote by D〈X〉 the subdigraph induced by the vertices in X. The
underlying graph of a digraph D, denoted UG(D), is obtained from D by suppressing the orientation
of each arc and deleting multiple edges. In a digraph D, if X and Y are two disjoint subsets of vertices
of D or subdigraphs of D, we say that there is a k-matching from X to Y if the arcs from X to
Y contain a matching (in UG(D)) of size at least k. A tournament is an orientation of a complete
graph (and so, does not contain any 2-cycle). We denote by TTk the unique acyclic tournament on k
vertices. This is also called the transitive tournament on k vertices.
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A cycle transversal X of a digraph D is a set of vertices of D which intersects all the cycles of
D, or equivalently, such that D−X is acyclic. We denote by τ(D) the size of a minimum cardinality
cycle transversal of D. A digraph D is intercyclic if D does not have a pair of vertex-disjoint cycles.
The problem of deciding whether a digraph is intercyclic is highly nontrivial for general digraphs.
McCuaig [8] found a very complex polynomial algorithm for testing whether a given input digraph is
intercyclic and he also proved the following.

Theorem 1.1 [8] If a digraph D is intercyclic then τ(D) ≤ 3 and this is best possible.

This result was generalized some years later by Reed, Robertson, Seymour and Thomas [10] who
positively answered to an old-standing conjecture from Younger and proved the following.

Theorem 1.2 [10] For every natural number k there exists a natural number f(k) such that every
digraph D which has no set of k + 1 vertex-disjoint cycles satisfies τ(D) ≤ f(k).

In this paper we are focusing on tournaments, and give bounds on the parameter τ for this class
of digraphs. First, remark that this parameter is hard to compute, even for tournaments.

Theorem 1.3 [4] It is NP-hard to find a minimum cycle transversal in a tournament.

A natural lower bound on the size of a minimum cardinality cycle transversal is the maximum
number of vertex-disjoint cycles. So, as in the statement of Theorem 1.2, for tournaments we define
the following.

ft(k) = min{p : every tournament with no k+1 vertex-disjoint cycles has a cycle transversal of size p}

The following special case of Moon’s theorem allows us to restrict our interest to vertex-disjoint
3-cycles when we consider tournaments without many vertex-disjoint cycles.

Theorem 1.4 [9] Every vertex of a strong tournament T is contained in a 3-cycle. In particular, T
has k disjoint cycles if and only if it has k disjoint 3-cycles.

Thus if a tournament T has no set of k + 1 disjoint cycles, then, by Theorem 1.4, T has at most
k disjoint 3-cycles and the vertex set of these has size at most 3k and forms a cycle transversal of T .
Thus, we obtain an easy bound on ft.

Corollary 1.5 We have ft(k) ≤ 3k.

A lower bound on ft has been known for a long time. Indeed, Erdős and Moser ([7] or see Alon [1]
for a short probabilistic proof) show that for every n there exists a tournament on n vertices containing
no transitive subtournament on more than 2 log2 n+1 vertices. So, such a tournament on 3k+2 vertices
has no k + 1 vertex-disjoint 3-cycles and no cycle transversal with less than 3k − 2 log2(3k + 2) + 1
vertices. We then obtain the following.

Theorem 1.6 [7] For k ≥ 2, we have ft(k) ≥ 3k − 2 log2 k − 3.

So, the gap between the lower and the upper bound on ft is not large. Our intuition is that it is
possible to be as far as desired from the upper bound of 3k.

Conjecture 1.7 For every p ≥ 1, there exists a value kp such that for all k ≥ kp, every tournament
without k + 1 disjoint cycles has a cycle transversal of size 3k − p.

The main purpose of the paper is to compute the value of ft(k) for small values of k, and then
give some evidence for Conjecture 1.7. For k = 1, by Theorem 1.1, we know that ft(1) ≤ 3, but it is
possible to sharpen this bound.

Theorem 1.8 Every intercyclic tournament T has a cycle transversal of size 2. In particular, we
have ft(1) = 2.
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Proof: The rotational tournament on five vertices RT5 has vertex set {1, 2, 3, 4, 5}, and ij ∈
A(RT5) if j − i = 1 or 2 modulo 5. This tournament is intercyclic and has no cycle transversal of
size one, so ft(1) ≥ 2. It is also possible to give an infinite family of strong tournaments at which
this bound is attained. For instance, consider a transitive tournament T ′ and add four vertices, x1,
x2 and x3 which form a 3-cycle and y. The remaining arcs are given by: {x1, x2, x3} dominates y
and is dominated by T ′ and y dominates T ′. It is straightforward to prove that the the tournament
obtained in result is intercyclic and has no cycle transversal of size one.

To prove the reverse inequality, consider a minimal counter-example T , i.e. an intercyclic tourna-
ment with no cycle transversal of size two. First, if T ′ is a subtournament of T which is not strong, T ′

has at most one non trivial strong component, otherwise we could find two disjoint cycles in T ′ and
then in T . In particular, as T has no vertex with out-degree or in-degree 0 (otherwise, if x is such a
vertex, then T − x forms a smaller counter-example than T ), T is strong. Similarly, we show that T
has no vertex with out-degree or in-degree 1. If not, assume that x is a vertex of T with out-degree 1.
Let y be the only out-neighbour of x. Obviously, any 3-cycle containing x also includes y. Consider
any such cycle xyz. Since T is intercyclic, any 3-cycle not containing x includes either y or z. Hence
{y, z} is a cycle transversal of T , a contradiction. Now, if T has a vertex-cut of size one, say {x}, the
tournament T −x is no more strongly connected, and then, by the initial remark, has one of its initial
or terminal component with size one. Thus, we find a vertex with in- or out-degree 1 in T , which is
not possible. So, T is a 2-strong tournament.

Now, if T contains a transitive subtournament of order 4, say T 〈x1, x2, x3, x4〉 with an arc from
xi to xj for all i < j, then using Menger’s Theorem (see e.g. [3, Theorem 5.4.1]) and the fact that T
is 2-strong, we can find two vertex disjoint paths from {x3, x4} to {x1, x2}. Then, we can add two
arcs to form two disjoint cycles from these paths. Now, if C is a 3-cycle of T , then T − C is acyclic
and thus contains at most three vertices. So, |T | ≤ 6. Assume that |T | = 6. In this case, as T has
no transitive subtournament of order 4, both the out-neighbourhood and in-neighbourhood of any of
its vertices contain at most three vertices (note that any tournament of order 4 includes a transitive
tournament of order 3). Let X and Y be the sets of vertices of out-degree 3 and 2, respectively. Since
|X| + |Y | = 6 and 3|X| + 2|Y | = 15, we have |X| = |Y | = 3. As T is intercyclic, at most one of
|X| and |Y | induces a 3-cycle. By duality, we can assume that |X| is transitive. Let x1, x2, x3 be the
unique Hamiltonian path in X. Obviously, the vertex x3 dominates any vertex in Y and the vertex
x2 dominates two vertices, say, y1 and y2, in Y . For this case, the vertex-set {x2, x3, y1, y2} induces
a transitive subtournament of order 4, a contradiction.
The sole remaining possibility for a counter-example is to have size five, but it is then easy to exhibit
a cycle transversal of size two. �

The main result of this paper is the computation of ft(2). We obtain the following.

Theorem 1.9 Every tournament with no three vertex-disjoint cycles has a cycle transversal of size
four.

Observe that Theorem 1.9 is optimal, in the sense that there exist tournaments with no three
disjoint cycles and no cycle transversal of size three. For instance, the Paley tournament P7 has these
properties. For each prime power q = 3 modulo 4, the Paley tournament Pq with q vertices is the
tournament whose vertices are the elements of the finite field with q elements. There is an arc from
x to y if and only if y − x is a nonzero square in the field. In the case q = 7, the vertex set of
P7 is {0, . . . , 6} and ij is an arc of P7 if j − i = 1, 2 or 4 modulo 7. Once again, it is possible to
obtain an infinite family of strong tournament with the same properties. For this, we add a transitive
tournament T ′ to P7 with the following adjacencies: {0, 1, 2, 3, 4, 5} dominates T ′ which dominates 6.
As at most one 3-cycle can contain a vertex of T ′, it is straightforward to verify that this tournament
contains no three disjoint cycles.

So, a first corollary of Theorem 1.9 is the following.

Corollary 1.10 We have ft(2) = 4.

Let us now show by induction on k that for any k ≥ 2, we have ft(k) ≤ g(k), where g(k) = 3k− 2.
Corollary 1.10 implies that this inequality holds for k = 2. Let k ≥ 3. If a tournament T admits no
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k vertex-disjoint cycles, then, by the induction hypothesis, T has a cycle transversal of size at most
g(k − 1) < g(k). Assume now that T contains k vertex-disjoint 3-cycles C1, . . . , Ck but has no k + 1
such cycles. Then T −∪k−2i=1 Ci admits no three vertex-disjoint cycles and hence, by Theorem 1.9, has
a cycle transversal of size at most 4. This means that T includes a cycle transversal of size at most
3(k − 2) + 4 = 3k − 2 = g(k). So, we obtain a second corollary of Theorem 1.9.

Corollary 1.11 For all k ≥ 2, we have ft(k) ≤ 3k − 2.

Observe that this is best possible for k = 3 also. Indeed, P11 the Paley tournament has no TT5
as a subtournament (no vertex x of P11 can be the first vertex of such a TT5 as the subtournament
induced by N+

P11
(x) on P11 is isomorphic to RT5 the rotational tournament on 5 vertices which does

not contain any TT4 as subtournament). So, a cycle transversal of P11 contains at least seven vertices.

Corollary 1.12 We have ft(3) = 7.

In the next section, we present the proof of Theorem 1.9. It is similar but longer than the one of
Theorem 1.8 : First, we show that the strong connectivity of a counter-example must be large enough,
and then, we have to conclude on some finite cases. We conclude the paper with some remarks and
problems.

2 Proof of Theorem 1.9

As we are looking for a cycle transversal or vertex-disjoint cycles, throughout this section, we will use
the word ’disjoint’ instead of ’vertex-disjoint’.

So, we assume that Theorem 1.9 does not hold and consider a minimum counter-example T to this
statement. Each following subsection establishes a result on the strong connectivity of T , eventually
leading to a contradiction.
The following lemma is a classical corollary of König’s Theorem (see e.g. [3, Theorem 4.11.2]), and
we will use it several times.

Lemma 2.1 Let D be an r-strong digraph and let R, r = |R|, be a minimum vertex-cut of D. There
exist two matchings of size r, one from R to D − R and one from D − R to R. More precisely, if
X is an initial (resp. terminal) non-trivial component of D −R, then there exists a matching of size
min{|X|, r} from R to X (resp. from X to R), and every vertex of R dominates at least one vertex
of X (resp. is dominated by at least one vertex of X). In particular, if X = {x1} is an initial (resp.
terminal) trivial component of D − R, then x1 is dominated by every vertex of R (resp. dominates
every vertex in R).

2.1 T is 2-strong

First, it is easy to see that T has to be strong.

Claim 1 T is strong.

Proof: Assume that T is not strongly connected and denote respectively by T1 and Tf its initial
and terminal components. If T1 or Tf contains only one vertex x, then T − x would be a smaller
counter-example to Theorem 1.9. As every non-trivial component contains a cycle, only T1 and Tf
are non-trivial. Now, if T1 or Tf contains two disjoint cycles, we find three disjoint cycles in T .
Otherwise, by Theorem 1.8, T1 and Tf have cycle transversals of size two, and the union of these two
cycle transversals form a cycle transversal of T of size four, contradiction. �

The two next claims show that T has strong connectivity at least two.

Claim 2 Every vertex x of T satisfies d+T (x) ≥ 2 and d−T (x) ≥ 2.
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Proof: Assume, for instance, that a vertex x of T satisfies d+T (x) = 1 and denote by y its unique
out-neighbour. As T is strong, then y has an out-neighbour z in T , and xyz forms a 3-cycle of T . By
choice of T , T − {x, y, z} does not contain two disjoint cycles, and then by Theorem 1.8, has a cycle
transversal of size two. We add y and z to this transversal and obtain a cycle transversal of T of size
four, as every cycle containing x has to contain y.
The case d−T (x) = 1 is similar. �

Claim 3 T is 2-strong.

Proof: Assume that T is not 2-strong and denote by r a vertex of T such that T −r is not strong.
So, we denote respectively by T1 and Tf the initial and terminal components of T − r. By Claim 2,
T1 and Tf are not trivial, and as every non-trivial component contains a cycle, the other components
of T − r are trivial. We denote by r1 (resp. rf ) an out-neighbour of r in T1 (resp. in-neighbour of
r in Tf ). If none of T1 − r1 and Tf − rf contains a cycle, then {r, r1, rf} is a cycle transversal of
T , contradiction. So, assume that Tf − rf contain a cycle C, then T1 − r1 does not contain a cycle,
otherwise this cycle with C and rr1rf would be three disjoint cycles. So, {r1} is a cycle transversal of
T1. Now, Tf does not contain two disjoint cycles, otherwise adding a cycle of T1 we would find three
disjoint cycles in T , contradiction. By Theorem 1.8, Tf contains a cycle transversal of size two, but
adding r and r1 to this set, we obtain a cycle transversal of size four of T , contradiction. �

2.2 T is 3-strong

Assume that T is not 3-strong and consider a minimum vertex-cut {r, s} of size two (by Claim 3),
that is T − {r, s} is not strong. As T has no set of three disjoint cycles T − {r, s} cannot have three
or more non-trivial components. On the other hand, if T − {r, s} has only trivial components, then
{r, s} is a cycle transversal of T . First, we deal with the case where T − {r, s} has two non-trivial
components.

Claim 4 If T −{r, s} has two non-trivial components T1 and T2, then they are its initial and terminal
components.

Proof: If none of T1 and T2 is an extremal component of T −{r, s}, then denote by x1 (resp. x2)
the vertex of the initial (resp. terminal) component of T − {r, s}. As T1 and T2 both contain a cycle,
x1x2r is a third cycle of T , contradiction. So, assume that T1 is the initial component of T − {r, s},
and that T2 is not its terminal component. We denote by x2 the vertex of the last component of
T − {r, s}. Let {rx, sy} be a 2-matching from {r, s} to T1 (which exists by Lemma 2.1). Then x is a
cycle transversal of T1. Indeed, if there is a cycle C in T1−x, then C, a cycle in T2 and xx2r are three
vertex-disjoint cycles in T . Now, let z be a vertex of T2. We claim that z is a cycle transversal of T2.
Indeed, assume that there exists a cycle C in T2 − z. Suppose first that zr ∈ A(T ). Then C, xzr and
yx2s are three disjoint cycles in T , which is impossible. In turn, if rz ∈ A(T ), then rzx2 is the third
(after C and a cycle of T1) cycle in T , which is impossible, again. Hence, z is a cycle transversal of
T2 and {x, z, r, s} is a cycle transversal of T , contradiction. �

Claim 5 T − {r, s} cannot have two non-trivial components.

Proof: Assume that T − {r, s} has two non-trivial components and note that, by Claim 4, these
must be the initial and terminal non-trivial components of T −{r, s}, respectively denoted by T1 and
Tf . If τ(T1) = 1 and τ(Tf ) = 1 then denote respectively by {t1} and {t2} a cycle transversal of T1 and
Tf and observe that {t1, t2, r, s} forms a cycle transversal of T . So, max{τ(T1), τ(Tf )} ≥ 2. Now, if
τ(T1) ≥ 2 and τ(Tf ) ≥ 2 then denote by x1 an out-neighbour of r in T1 and by x2 an in-neighbour of
r in Tf (which exist by Lemma 2.1). We could find three disjoint cycles in T , rx1x2, a cycle of T1−x1
and a cycle of Tf − x2, a contradiction. So, we can assume (by reversing all arcs of T if necessary)
that τ(T1) = 1 and τ(Tf ) ≥ 2.
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Suppose first that f > 2 and let Ti = {x} be an internal component of T − {r, s}. If rx ∈ A(T ),
then a cycle of T1, rxx2, where x2 is an in-neighbour of r in Tf , and a cycle of Tf − {x2} form three
disjoint cycles of T , contradiction. So, xr ∈ A(T ). Let {ra, sb} be a 2-matching from {r, s} to T1
(which exists by Lemma 2.1). Then rax, sbx2, where x2 is an in-neighbour of s in Tf , and a cycle of
Tf − {x2} form three disjoint cycles of T , contradiction.

So, f = 2 and T1 and T2 are the only strong components of T − {r, s}.
Let C = abc be a 3-cycle of T1. As τ(T1) = 1, the subtournament T ′ := T1 − C of T is acyclic and
furthermore, there is no arc from {r, s} to T ′ otherwise if st′ is such an arc, we consider the cycles C,
st′x2, where x2 is an in-neighbour of s in T2 , and a cycle of T2−x2 to form three disjoint cycles in T ,
contradiction. So, by Lemma 2.1, there is a 2-matching from {r, s} to T1, and then, the ends of this
2-matching belong to C. Thus, by symmetry, we can assume that ra and sb are arcs of T . Now, if
cs ∈ A(T ) then, sbc, rax2 where x2 is an in-neighbour of r in T2 , and a cycle of T2 − x2 would form
three disjoint cycles in T , which cannot be. Thus sc ∈ A(T ), and similarly, we prove in this order
that rb ∈ A(T ), sa ∈ A(T ) and that rc ∈ A(T ).

Now, if T ′ 6= ∅ then, as T1 is strong, there is an arc from C to T ′, say at′ for instance. But, at′s,
rbx2 where x2 is an in-neighbour of r in T2 , and a cycle of T2−x2 would form three disjoint cycles in
T , which cannot be. So T1 = C and {r, s} entirely dominates T1. To conclude, we study the structure
of T2. By Lemma 2.1, there is a 2-matching from T2 to {r, s}. We denote by {dr, es} such a matching,
and remark that {d, e} is a cycle transversal of T2, otherwise, a cycle of T2−{d, e}, dra and esb would
form three disjoint cycles of T . Then, T ′′ = T2 −{d, e} is a transitive subtournament of T . If there is
no 2-matching from T ′′ to {r, s}, then there is a vertex x of T ′′ ∪ {r, s} which is contained in all the
arcs going from T ′′ to {r, s}. In this case, {a, x, d, e} would form a cycle transversal of T . Hence, there
is a 2-matching from T ′′ to {r, s} and we denote it by {d′r, e′s}. As τ(T2) ≥ 2, we have |T2| ≥ 5 (the
unique strong tournament on 4 vertices has a cycle transversal of size one) so T2 contains a vertex x
different from d, e, d′ and e′. As T2 is strong, by Theorem 1.4 there exists a 3-cycle C ′ which contains
x. If V (C ′) ∩ {u, v} = ∅ for some 2-matching {ur, vs} from T2 to {r, s} then, as previously, C ′, aur
and bvs would form three disjoint cycles in T . In particular, C ′ has to intersect all the following
pairs: {d, e}, {d′, e′}, {d, e′} and {d′, e}, and thus V (C ′) = {x, d, d′} or V (C ′) = {x, e, e′}. Without
loss of generality, we can assume that V (C ′) = {x, d, d′}. Now, if er ∈ A(T ), then {er, e′s} would be
a 2-matching from T2 to {r, s} which avoids C ′, what is forbidden. Thus, re ∈ A(T ) and similarly
re′ ∈ A(T ). This implies that rs ∈ A(T ), otherwise, sre, C ′ and C would be three disjoint cycles
in T . Furthermore, we have ds ∈ A(T ), otherwise, C, sdr and a cycle of T2 − d would form three
disjoint cycles in T . Similarly, we have d′s ∈ A(T ). Now, we conclude by considering a 3-cycle C ′′

of T2 − d. As dr ∈ A(T ) and ds ∈ A(T ), {d, e}, {d, e′} and {d, d′} are beginnings of 2-matchings
from T2 to {r, s}, and then C ′′ has to contain e, e′ and d′, implying that V (C ′′) = {e, e′, d′}. Now, if
xr ∈ A(T ), then C ′′ does not intersect the 2-matching {xr, ds} from T2 to {r, s} and we can conclude.
So, rx ∈ A(T ). If xd ∈ A(T ) then rxd, C ′′ and C form three disjoint cycles in T , contradiction,
so C ′ is the 3-cycle dxd′. We have sx ∈ A(T ) as otherwise C ′′ avoids {dr, xs}. This implies that
de, de′ ∈ A(T ) as sxd′ and C are disjoint from {d, e, e′, r} so this set cannot contain a 3-cycle. Suppose
first that C ′′ = e′d′e. Then ex ∈ A(T ) or C, xes, e′d′d are disjoint 3-cycles. But then the 3-cycle
xd′e avoids {dr, e′s}, contradicting the conclusion above. Thus C ′′ = ed′e′ and since {x, d′, e′} avoids
{dr, es} we have xe′ ∈ A(T ) and then xe′s, ed′d and C are disjoint 3-cycles, contradiction. �

So, the last case to establish is when T − {r, s} has only one non-trivial component. Again, we
will see that this case is not possible. To see it, assume that T1 is the only non-trivial component
of T − {r, s}. Then, we depict the situation (see also Figure 1). First, remark that if T1 has a cycle
transversal of size two, then, with r and s we would obtain a cycle transversal of size four for T , which
is impossible. So, by Theorem 1.8, T1 contains two disjoint cycles. Now, if T1 is neither initial nor
terminal, then we denote by x1 (resp. x2) the vertex that forms the (trivial) initial (resp. terminal)
component of T −{r, s} and with two disjoint cycles of T1, x1x2r would form a third disjoint cycle in
T . So, T1 is either the initial component of T−{r, s} or its terminal component. By symmetry, assume
that T1 is the initial component of T − {r, s}. We denote by {x2} the trivial terminal component of
T − {r, s}. We claim that T − {r, s} only contains the vertices of T1 and x2. Indeed, if there is a
vertex t in T − ({r, s} ∪ T1) which is different from x2, assume first that there is an arc from r to t,
then we could form the disjoint cycles rtx2, C and C ′, where C and C ′ are two disjoint cycles of T1.
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So, there is an arc from t to r. By Lemma 2.1, there is a 2-matching {ru, sv} from {r, s} to T1, and as
T1 has no transversal of size two, there is a cycle C in T1−{u, v}. So, we can form the disjoint cycles
C, rut and svx2. Thus T − {r, s} only contains T1 and x2 and we denote by C = abc and C ′ = a′b′c′

two disjoint 3-cycles of T1, and by T ′ the acyclic subtournament of T1 induced by T on T1− (C ∪C ′).
Finally, observe that there is no arc from {r, s} to T ′ otherwise we could form a 3-cycle with this arc
and x2 disjoint from C and C ′.

a

b c b′

C C ′

c′

a′
T ′

r

s

x2T1

Figure 1: The situation in the case where T is 2-strong and T − {r, s} has a unique non-trivial
component. The arcs between two boxes stand for all the arcs between these boxes.

Claim 6 There is no 2-matching from {r, s} to C.

Proof: Assume w.l.o.g. that {ra, sb} is such a 2-matching. Then, sc ∈ A(T ), otherwise, we form
the three disjoint cycles csb, rax2 and C ′. Using the same argument, we prove, in this order, that
rb ∈ A(T ), sa ∈ A(T ) and that rc ∈ A(T ). Finally, with the hypothesis that there is a 2-matching
from {r, s} to C, we prove that {r, s} entirely dominate C. In particular, there is then no arc from
C to T ′, otherwise if at is such an arc, we could form the three disjoint cycles atr, sbx2 and C ′. It
follows that there is no 2-matching from {r, s} to C ′, otherwise, similarly {r, s} and T ′ would entirely
dominate C ′ and the only out-neigbour of C ∪ C ′ would be x2, which contradicts the fact that T is
2-strong.

So, there is no 2-matching from {r, s} to C ′ and hence there is a vertex x which belongs to all the
arcs going from {r, s} to C ′. We have two cases to consider:

1. Case x ∈ {r, s}. Without loss of generality, assume that x = s, which means that there is no arc
from r to C ′. We will use the following properties to conclude the proof of Claim 6 in this case:

-(P1): τ(T1) ≥ 3. Otherwise, a cycle transversal of T1 of size two and r and s would form a
cycle transversal of size four of T .

-(P2): as previously remarked, T ′ dominates C.

-(P3): there is no 3-cycle S of T1 which intersects C on only one vertex and an arc from C to
C ′ disjoint from S. Otherwise, assume that a 3-cycle S of T1 contains only c among {a, b, c},
that a′ /∈ S and that aa′ ∈ A(T ) then, we could find three disjoint cycles in T : S, aa′r and sbx2.

Now, if there is no arc from C to C ′, the only out-neigbour of C would be x2, which contradicts
the fact that T is 2-strong. So, w.l.o.g. assume that aa′ is an arc of T . Using (P1), we know that
T 〈V (T ′)∪{b, c, b′, c′}〉 contains a 3-cycle S. By (P3), S has to contain b and c, and through (P2),
we know that S has to contain b′ or c′. In particular, if S = bcc′ then, we have cc′ ∈ A(T ), and if
S = bcb′ then, by (P3), cb′c′ is not a 3-cycle and we have cc′ ∈ A(T ) also. Now, considering the
arc cc′ and the three vertices a, a′ and b′, we know, through (P3) that ab′ ∈ A(T ). Finally, by
(P1), we know that T 〈V (T ′) ∪ {a, b, a′, b′}〉 contains a 3-cycle S. By (P3) and as cc′ ∈ A(T ), S
has to contain a and b, and by (P2), S has to contain a′ or b′, contradiction because a dominates
both a′ and b′. This concludes the case x ∈ {r, s}.
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2. Case x ∈ C ′. Without loss of generality, we can assume that x = a′, what means that there
is no arc from {r, s} to {b′, c′}. Furthermore, as we are not in the previous case, sa′ ∈ A(T )
and ra′ ∈ A(T ) hold. Now, if T 〈V (T ′) ∪ {c′, b′}〉 contains a 3-cycle S, then S, ra′x2 and C
would form three disjoint cycles in T . So, T 〈V (T ′) ∪ {c′, b′}〉 is an acyclic subtournament of T
dominating {x2, r, s} which does not form a 3-cycle. Thus, T 〈V (T ′) ∪ {c′, b′, x2, r, s}〉 is acyclic
and {a, b, c, a′} is a cycle transversal of T , contradiction.

�

Now, we are in the case where there is no 2-matching from {r, s} to C. By symmetry, we assume
that there is no 2-matching from {r, s} to C ′, and more generally, that there are no two disjoint
3-cycles in T1 with a 2-matching from {r, s} to one of these 3-cycles. Also, as by Lemma 2.1, there is
a 2-matching from {r, s} to T1, and as there is no arc from {r, s} to T ′, we can assume that ra and
sa′ are arcs of T . In this situation we have the following.

Claim 7 The 3-cycle C dominates s which dominates C ′, and symmetrically, the 3-cycle C ′ dominates
r which dominates C.

Proof: We know that ra ∈ A(T ) and sa′ ∈ A(T ) and then, by Claim 6, bs, cs ∈ A(T ) and
b′r, c′r ∈ A(T ).

First, let us see that d+T1
(r) ≥ 2 and d+T1

(s) ≥ 2. If it is not the case, assume for instance that

d+T1
(r) = 1, and then that N+

T1
(r) = {a}. If T1 − a contains two disjoint cycles, then these cycles with

rax2 would form three disjoint cycles in T . So, by Theorem 1.8, T1 − a has a cycle transversal of
size two. We denote this transversal by {u, v} and remark then that {u, v, s, a} would form a cycle
transversal of T , contradiction. So, we have d+T1

(r) ≥ 2 and d+T1
(s) ≥ 2.

Now, assume that sa ∈ A(T ). As there is no 2-matching from {r, s} to C, there is no arc from r
to {b, c}. As d+T1

(r) ≥ 2, ra′ has to be an arc of T , and then, there is no arc from s to {b′, c′}. So,
T ′ ∪ {b, c, b′, c′} dominates {r, s}. Furthermore, T 〈V (T ′) ∪ {b, c, b′, c′}〉 does not contain two disjoint
cycles, otherwise we could form a third one with rax2 for instance. So, by Theorem 1.8 it has a cycle
transversal of size two. If we denote this transversal by {u, v}, then {u, v, a, a′} would form a cycle
transversal of T , contradiction.

Then, this means that C dominates s and similarly that C ′ dominates r. As d+T1
(r) ≥ 2 and,

similarly, d+T1
(s) ≥ 2, r and s have respectively two out-neighbours in C and C ′. So, without loss of

generality, we can assume that rb and sb′ are arcs of T . Moreover, by symmetry, we can also assume
that aa′ is an arc of T . Now, if T 〈V (T ′) ∪ {b, c, c′}〉 contains a 3-cycle S, then S, aa′r and sb′x2
would form three disjoint cycles in T . So, the subtournament T 〈V (T ′) ∪ {b, c, c′}〉 is acyclic. If c′s
is an arc of T , then s is dominated by all vertices of this subtournament and {a, a′, b′, r} would be
a cycle transversal of T , contradiction. So, s dominates C ′. The last point to prove is that rc is an
arc of T . Assume that this is not true and that cr ∈ A(T ). Then, a dominates C ′, otherwise, as
aa′ ∈ A(T ), there exists a 3-cycle containing a and two vertices of C ′, say for instance a′ and b′. In
this case, we could form the disjoint 3-cycles aa′b′, bcr and sc′x2. Now, we pick two vertices u and v
among {a′, b′, c′} and denote by w the third one. Note first that T 〈V (T ′) ∪ {b, c, u, v}〉 is not acyclic
(otherwise, {r, s, a, w} would be a cycle transversal of T ). Let S be a 3-cycle of T 〈V (T ′)∪{b, c, u, v}〉.
If S does not contain u and v (say for instance that u /∈ S), then we could form the three disjoint
cycles S, awr and sux2. Furthermore, if S contains neither b nor c, then we could form the three
disjoint cycles S, bcr and swx2. So, it means that S contains u, v and one of b and c. Since {u, v}
can be any of three pairs of {a′, b′, c′}, this means that two different pairs of {a′, b′, c′} form a 3-cycle
with the same vertex (b or c), which is not possible as a′b′c′ is a 3-cycle. Finally, we conclude that
rc ∈ A(T ) and that r dominates C. �

Now, we can show that T has nine vertices, namely we have the following.

Claim 8 We have T ′ = ∅.

Proof: Assume that T ′ is not empty and then contains a vertex t′. As T1 is a strongly connected
component, there exists a 3-cycle S of T1 which contains t′. If S contains one vertex of C and one
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vertex of C ′, say that a ∈ S and a′ ∈ S, then, we could form the disjoint 3-cycles S, bb′r and sc′x2
if bb′ ∈ A(T ), or S, b′bs and rcx2 otherwise. So, we may assume that S does not contain any vertex
of C ′, for instance, and contains at most two vertices of C. Without loss of generality, assume that
b /∈ S. Then we could form three disjoint 3-cycles S, C ′ and rbx2, a contradiction. �

To conclude, we have to study the arcs between C and C ′. There are three cases where we can
conclude:

-Case 1 : T 〈C ∪ C ′〉 contains a transitive subtournament on four vertices. Then, with x2 we find
a transitive subtournament Ta on five vertices in T and V (T ) − V (Ta) is a cycle transversal of T
containing four vertices, contradiction.

-Case 2 : there are a 3-cycle S of T containing two vertices of C and one vertex of C ′ and an arc
from C to C ′ disjoint from S. For instance, assume that aba′ is a 3-cycle and that cc′ ∈ A(T ). In this
case, we could form the disjoint 3-cycles aba′, cc′r and sb′x2.

-Case 3 : there are a 3-cycle S of T containing two vertices of C ′ and one vertex of C and an arc
from C ′ to C disjoint from S. This case is the symmetrical case of Case 2.

So, we will conclude using these three cases. If every vertex u ∈ {a′, b′, c′} either dominates or is
dominated by C, then we find a transitive subtournament of T 〈C ∪C ′〉 of size four, using two vertices
of C and two vertices of {a′, b′, c′} both dominating C or both being dominated by C. This means
that one vertex of C ′, say a′ for instance, forms a 3-cycle with two vertices of C, say w.l.o.g. a and b.
Avoiding Case 2 implies that c′c ∈ A(T ) and b′c ∈ A(T ). If ac′a′ is a 3-cycle, we are in Case 3 with
the arc b′c, so c′a ∈ A(T ). Finally, for any orientation of the arc between c and a′, the set {a, c, a′, c′}
induces an acyclic subtournament and, hence, we are in Case 1.

2.3 Final cases

Now, we are in the case where T is 3-strong. Using this, we make the following observation which will
be very useful.

Observation 2.2 In T , there are no two sets of vertices X and Y each of size three such that X
dominates Y .

Proof: Assume that there are two such set X and Y . As T is 3-strong, by Menger’s Theorem
(see e.g. [3, Theorem 5.4.1]), there are three disjoint paths P1, P2 and P3 from Y to X. For every
i = 1, 2, 3, we denote the initial and terminal vertices of Pi by ai and bi respectively. By hypothesis,
biai ∈ A(T ) for every i = 1, 2, 3 and so V (Pi) induces a cycle of T . Thus, by Theorem 1.4, we obtain
three disjoint 3-cycles in T , contradiction. �

We can directly derive from Observation 2.2, that T must have at most 10 vertices. Indeed, if T
has at least 11 vertices, let C be a 3-cycle of T and recall that, by Theorem 1.8, τ(T − C) ≤ 2 and
then, as T −C has at least 8 vertices, it contains a TT6. In this acyclic subtournament, the three first
vertices entirely dominate the three last vertices, which contradicts Observation 2.2.
Obviously, any tournament T of order at least 4 contains a transitive subtournament T ′ of order 3.
Hence, if 4 ≤ |T | ≤ 7, then V (T )−V (T ′) is a cycle transversal with size at most 4. Suppose now that
|T | = 8. Then T has a vertex x of out-degree at least 4 and, hence, in its out-neighbourhood, we can
find a copy of TT3. As a consequence, T admits a transitive subtournament T ′ of order 4 and hence,
V (T )− V (T ′) forms a cycle transversal with size 4.Thus we must have 9 ≤ |V (T )| ≤ 10.

First, we deal with the case |V (T )| = 9.

2.3.1 Case |T | = 9

In this case, the vertices of T cannot all have odd out-degree (as |A(T )| is even). So, at least one
vertex, x, has even out-degree and as T is 3-strong, we have d+T (x) = d−T (x) = 4. We respectively
denote N+

T (x) and N−T (x) by X and Y . First, observe that T does not contain a copy T ′ of TT5 as
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otherwise V (T ) − V (T ′) would be a cycle transversal of size four, contradiction. In particular, this
means that neither X nor Y induces an acyclic subtournament of T .

Claim 9 There exists a 4-matching from X to Y .

Proof: If this is not the case, then by König’s theorem, there is a set Q of three vertices that
intersects all the arcs from X to Y . If |Q ∩ X| = 1 and |Q ∩ Y | = 2, then (Y − Q) ∪ {x} has size
three and dominates X−Q which has size three and we can conclude using Observation 2.2. The case
|Q ∩X| = 2 and |Q ∩ Y | = 1 is analogous. So, this means that we have either Q ⊂ X or Q ⊂ Y . By
reversing all arcs if necessary, we may assume that Q ⊂ X, and denote by v1 the vertex of X −Q. By
the choice of Q, Y dominates v1. But now, as T 〈Y 〉 is a tournament on four vertices, it contains Z, a
subtournament on three vertices isomorphic to TT3. Hence, the vertex-set V (Z) ∪ {x, v1} induces a
copy of TT5, implying that τ(T ) ≤ 4, contradiction. �

Now, we fix a labelling X = {v1, v2, v3, v4} and Y = {w1, w2, w3, w4} such that viwi ∈ A(T ) for
all i = 1, 2, 3, 4.

Claim 10 In X, there is no vertex with in-degree 3 in X.

Proof: Suppose w.l.o.g. that d−X(v1) = 3. As X does not induce an acyclic subtournament, it
means that v2, v3 and v4 form a 3-cycle in X, which is w.l.o.g. C = v2v3v4. Since T is 3-strong v1 has
three out-neighbours in Y . If there is a 3-cycle S in Y which does not contain some out-neighbour
w′ of v1, then we could form the three disjoint cycles S, C and v1w

′x. So v1 has out-degree exactly
three in Y and we may assume w.l.o.g. that N+

Y (v1) = {w1, w2, w3}, and that C ′ = w1w2w3 or
C ′ = w3w2w1 is the only 3-cycle of Y , which means that either w4 dominates C ′ or C ′ dominates w4.

First, assume that w4 dominates C ′. As d−T (w4) ≥ 3, we know that C dominates w4. If v2w3 ∈
A(T ), then {v2, w4, v1, w2, w3} induces a TT5 in T , contradiction. So, we have w3v2 ∈ A(T ), and
similarly, as {v3, w4, v1, w3, w1} cannot induce a TT5, we have w1v3 ∈ A(T ). If C ′ = w1w2w3,
then we can form the three disjoint cycles v2w2w3, v4w4x and w1v3v1. So we must have C ′ =
w3w2w1. Now w2v4 ∈ A(T ) as otherwise v2w4w3, w1v3v1, v4w2x are disjoint 3-cycles. For this case
w2v4w4, v2v3w3, v1w1x are disjoint 3-cycles, contradiction.

So w4 is dominated by C ′. We must have v4w2 ∈ A(T ) or we could form the disjoint cycles w2v4v2,
v3w3x and v1w1w4. Similarly v2w3 ∈ A(T ) or we form the disjoint cycles v2v3w3, v4w2x and v1w1w4.
Now we must have w2v3 ∈ A(T ) since otherwise {v2, v3, v1, w2, w3} induce a TT5, no matter what
the orientation of the arc between w2 and w3 is. Finally we obtain a contradiction by observing that
v3v4w2, v2w3x, v1w1w4 are disjoint 3-cycles. �

Claim 11 In X, there is no vertex with out-degree 3 in X.

Proof: On the contrary, assume that d+X(v1) = 3. As X does not induce an acyclic subtournament,
it means that v2, v3 and v4 form a 3-cycle, say w.l.o.g., C = v2v3v4 in X. If there is a 3-cycle S in Y
which does not contain some out-neighbour w′ of v1, then we could form the three disjoint cycles S, C
and v1w

′x. So, without loss of generality, we may assume that C ′ = w1w2w3 or C ′ = w3w2w1 is a 3-
cycle, and that w4v1 ∈ A(T ). Furthermore we also have that W = {w2, w3, w4} induce a copy of TT3.
As T is 3-strong and has 9 vertices there is at most one arc from v1 to {w2, w3}. There is also at least
one, since otherwise the vertex-set W ∪{v1, x} induces a copy of TT5. We may assume (since we have
not fixed the orientation of C ′ yet) that v1w2, w3v1 ∈ A(T ). Suppose first that C ′ = w1w2w3. Then
we conclude in that order that the following arcs are in A(T ): v3w1 ∈ A(T ), or w1v3w3, v2w2x, v4w4v1
are disjoint 3-cycles, v2w3 ∈ A(T ), or w3v2w2, v3w1x, v4w4v1 are disjoint 3-cycles, v3w2 ∈ A(T ), or
w2v3w1, v2w3x, v4w4v1 are disjoint 3-cycles, and v2w1 ∈ A(T ), or w1v2v3, v1w2w3, v4w4x are disjoint
3-cycles. Now {v1, v2, v3, w1, w2} induces a copy of TT5, contradiction. So we must have C ′ = w3w2w1.
Then, we must have v2w1 ∈ A(T ), or w1v2w2, v3w3x, v1v4w4 are disjoint 3-cycles and v3w2 ∈ A(T ) or
v3w3w2, v1v4w4, v2w1x are disjoint 3-cycles. Now w1v3 ∈ A(T ), or {v1, v2, v3, w1, w2} is a TT5. Then
w3v2 ∈ A(T ), or v2w3x, v1v4w4, v3w2w1 are disjoint 3-cycles. Finally we get the contradiction that
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v2w1w3, v1v4w4, v3w2x are disjoint 3-cycles. �

So, now, we can conclude that we cannot have |T | = 9: By symmetry, we assume that there
is no vertex in Y with in or out-degree three inside Y , which means that X and Y both induce
strongly connected subtournaments of T . For instance, we assume that v1v2v3v4 is a 4-cycle and that
v1v3 ∈ A(T ) and v2v4 ∈ A(T ) (all strong tournaments on 4 vertices are isomorphic). If there is a
3-cycle S in Y which does not contain at least one of w2 or w3, say w2 /∈ S for instance, then we form
the cycles S, v2w2x and v1v3v4. This means that the two 3-cycles of T 〈Y 〉 have vertex set {w2, w3, w4}
and {w2, w3, w1}. Now, if there exists an arc uv from {v2, v3} to {w1, w4}, then we can find a 3-cycle
in T 〈X〉 which does not contain u, a 3-cycle in T 〈Y 〉 which does not contain v, and we obtain the
third 3-cycle uvx. Finally, we conclude that {w1, w4} dominates {v2, v3}, but now {w1, w4, x, v2, v3}
induces an acyclic subtournament of T , contradiction.

2.3.2 Case |T | = 10

Let R be a minimal vertex-cut of T . We have |R| ≥ 3 and since every vertex has out-degree at least
|R|, |T | ≥ 2|R| + 1 and we have |R| ≤ 4, so, |R| ∈ {3, 4}. Note that T − R cannot contain two
or more non-trivial components, because in this case, two of such components both contain at least
three vertices and we conclude using Observation 2.2. In particular either the initial or the terminal
component of T − R is trivial. From now on, we assume w.l.o.g. that the last component is trivial,
and we denote it by {x2}. By Lemma 2.1, we know that x2 dominates R. On the other hand, T −R
has at least one non-trivial component, otherwise R is cycle transversal of T with size at most four.
So, we denote by T1 the non-trivial component of T −R.

Claim 12 The initial component of T −R is T1.

Proof: On the contrary, assume that the initial component of T − R is not T1, so it is a trivial
component and denote it by {x1}. Fix a 3-cycle C in T1. By Lemma 2.1, we know that R dominates
x1. First, we deal with the case |R| = 3. In this case, we denote by v and v′ the two vertices of
T − (R ∪ C) different from x1 and x2, and by r, s and t the vertices of R. If there is an arc from
{v, v′} to R, say vr, disjoint from an arc from R to {v, v′}, say sv′, then we form the disjoint cycles
C, x1vr and x2sv

′. It means that either {v, v′} dominates R or R dominates {v, v′}. In the first case,
{v, v′, x2} dominates R and in the second one, R dominates {x1, v, v′}. In both cases, we can conclude
using Observation 2.2.

So, now we look at the case |R| = 4. We denote by v the vertex of T − (R ∪ C) different from
x1 and x2, and by r, s, t and u the vertices of R. If T 〈R ∪ v〉 contains a 3-cycle S, this cycle avoids
some vertex of R, say r, and we could form the disjoint cycles C, S and x1x2r. Otherwise, T 〈R ∪ v〉
is an acyclic subtournament of T . In this case, its initial vertex cannot be v, otherwise v, x2 and the
initial vertex of T 〈R〉 would dominate the three other vertices of R and we could conclude by using
Observation 2.2. Similarly, v is not the terminal vertex of T 〈R ∪ v〉. So, assume that the initial and
terminal vertex of T 〈R ∪ v〉 are respectively r and u. As u must have at least four out-neighbours, u
dominates C, and similarly, C dominates r. Now, if v dominates C, then {x1, v, u} dominates C and
once again, we conclude by using Observation 2.2. Using x2, we also see that C does not dominate
v. This means that there exist a 3-cycle S which contains v and two vertices of C, say, a and b. To
conclude, we can form the three disjoint cycles S, cru and x1x2s. �

Now, we denote by T ′ the acyclic subtournament T − (R∪ V (T1)) (with last vertex x2). We show
that T1 and {x2} are the only components of T −R.

Claim 13 We have T ′ = {x2}.

Proof: On the contrary, assume that there is a vertex x′2 in T ′ different from x2. We have
V (T ′) = {x′2, x2} as otherwise T1 dominates three vertices and we conclude using Observation 2.2.
Observe that since T is |R|-strong, x′2 dominates R except possibly one vertex. We study the different
cases |R| = 3 and |R| = 4. First, assume that |R| = 3, and we have then |T1| = 5. No vertex of
T1 has in-degree 3 in T1, otherwise the in-neighbourhood of such a vertex dominates three vertices,
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using that vertex and x′2 and x2 and we conclude with Observation 2.2. So, every vertex of T1 has
exactly in- and out-degree 2, and, hence, T1 is the unique regular tournament on 5 vertices (it is also
isomorphic to RT5). The diameter of this tournament equals 2 and hence, each of its arcs lies on a
3-cycle. Now, by Lemma 2.1, there is a 3-matching {ra, sb, tc} from R to T1 and we denote by d and
e, with de ∈ A(T ), the two vertices of T1 not involved in this matching. The arc de lies on a 3-cycle of
T1, say dea. On the other hand, x′2 has to dominate one of the two vertices s and t, say, x′2s ∈ A(T ).
Then, we form the disjoint cycles dea, sbx′2 and tcx2, contradiction.

So |R| = 4 and then we have that |T1| = 4. By Lemma 2.1, we know that there is a 4-matching
from R to T1, we denote it by {qa, rb, sc, td} and assume that abcd is a 4-cycle of T1. If there is a
3-cycle involving one vertex of R and two of T1, say qab for instance, disjoint from a 2-matching from
R to T1, say {sc, td}, then we can find three disjoint cycles in T . Indeed, x′2 is the tail of an arc to s
or to t, say that x′2s ∈ A(T ), and we can form the cycles qab, x′2sc and tdx2. So, we have qb ∈ A(T ),
and similarly rc ∈ A(T ), sd ∈ A(T ) and ta ∈ A(T ). Continuing that way, we see that R dominates
T1 and that T − {x2, x′2} is no more strongly connected, contradicting T is 3-strong. �

Now, we focus on the case |R| = 4. In this case, we have |T1| = 5 and we denote by C = abcde a
Hamilton cycle of T1.

Claim 14 If |R| = 4, then R is an acyclic subtournament of T .

Proof: Otherwise, denote by CR = rst a 3-cycle of R and by q its fourth vertex. First, assume
that q forms a 3-cycle with two consecutive vertices of C, say that qab is a 3-cycle. If T 〈b, c, d, e〉
contains a cycle, this cycle, CR and qax2 form three disjoint cycles of T . So T 〈b, c, d, e〉 is an acyclic
subtournament of T and bd, be, ce ∈ A(T ). So, abe is a 3-cycle of T and if qc ∈ A(T ) (resp. qd ∈ A(T ))
we form the three disjoint cycle CR, abe and qcx2 (resp. qdx2). Thus, we have cq ∈ A(T ) and
dq ∈ A(T ). But now, {b, c, d} dominates {q, e, x2} and we conclude using Observation 2.2.
So, we can assume that q does not form any 3-cycle with two consecutive vertices of C, it means that
either C dominates q or q dominates C. As q has at least one out-neighbour in T1 (otherwise R − q
is also a vertex-cut of T ), we have that q dominates T1. To conclude, let S be a 3-cycle of T1 and y a
vertex of T1 − S. We form the three cycles CR, S and qyx2. �

So, using that no vertex-cut of T with size four contains a 3-cycle, we can now conclude the case
|R| = 4.

Claim 15 We have |R| = 3.

Proof: Assume that |R| = 4. By Lemma 2.1, we know that there exists a 4-matching from R to
T1. We are looking for such a matching with a special property involving C. To obtain it, consider the
following procedure on 4-matchings from R to T1 starting from a 4-matching {r1c1, r2c2, r3c3, r4c4},
where c1c2c3c4c5 forms a Hamiltonian cycle of T1: if c5r4 ∈ A(T ) then we stop the procedure,
otherwise, we repeat the procedure on the matching {r4c5, r1c1, r2c2, r3c3}. We start with a 4-matching
M from R to T1 and the Hamiltonian cycle C and we apply recursively the procedure. If we stop at
some step, then we are done, otherwise there is a loop in the procedure and after some number of
steps the procedure is back to the initial matching M . In this case, it is easy to see that R dominates
T1 and that T − x2 is no more strongly connected, contradicting T is 3-strong.
So, without loss of generality, we can assume that {qa, rb, sc, td} forms a 4-matching from R to T1 and
that et ∈ A(T ). If we can find a 3-cycle S of T which contains one vertex of {q, r, s} and two vertices
of {a, b, c} and which is disjoint from an arc uv with u ∈ {q, r, s} and v ∈ {a, b, c}, then we can form
the three cycles S, det and uvx2. Using this argument, we can see that rc ∈ A(T ) (otherwise rbc is
a 3-cycle disjoint from qa). If ca ∈ A(T ), then using the above argument, we successively see that
sa and qb are arcs of T and finally that qc, ra and sb are also arcs of T . Then, {q, r, s} dominates
{a, b, c} and we conclude with Observation 2.2. So, we have ac ∈ A(T ) and as above we also see that
qc ∈ A(T ) must hold. Now, using that T is 4-strong (by the assumption that |R| = 4), we know that
the out-neighbourhood of c is exactly R′ = {x2, e, d, t}, which then forms a minimum vertex-cut of T .
But, R′ contains the cycle det which contradicts Claim 14. �
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From now on, we assume that |R| = 3, and then that |T1| = 6. We denote by C = abcdef a
Hamiltonian cycle of T1. Using a similar procedure as in the previous proof, as R does not dominate
T1 (otherwise T −x2 is no more strongly connected, contradicting T is 3-strong) we can see that there
exists M = {rr1, ss1, tt1} a 3-matching from R to T1 such that r2 the out-neighbour of r1 on C is
different from s1 and t1 and dominates r. So we assume that r1 = a and r2 = b. This means that rab
is 3-cycle.

We study the possible positions of s1 and t1. We will intensively use the fact that if there exists
a 3-cycle S in T 〈{c, d, e, f, s, t}〉 disjoint from an arc uv with u ∈ {s, t} and v ∈ {c, d, e, f} then we
obtain the three disjoint cycles rab, S and uvx2.

Case s1 = c, t1 = d. We denote this case by [∆ 1 2] to mean that the 3-cycle rab is directly
followed on C by the end of one arc of the 3-matching M which is also directly followed on C by
the end of the last arc of M . If et ∈ A(T ), then we use the 3-cycle tde and the arc sc to conclude.
So, we have te ∈ A(T ) and similarly, tf ∈ A(T ). Now, if s is contained in a 3-cycle S with two
vertices of {c, d, e, f}, then there exists an arc from t to {d, e, f}−V (S) and we find the desired three
disjoint cycles. This means that s dominates {c, d, e, f}. To conclude, if there exists a 3-cycle S on
{c, d, e, f} then the vertex of {c, d, e, f} not belonging to S is dominated by s and we also conclude.
So, T 〈{c, d, e, f}〉 is an acyclic subtournament of T and we have that {s, t, c} dominates {d, e, f}.
Thus, we conclude this case using the Observation 2.2.

Case s1 = c, t1 = e. We denote this case by [∆ 1 . 2] to mean that there is a vertex along C
between the ends of the two last arcs of the matching M from R to C. As we assume that we are
not in the previous case, we have that dt ∈ A(T ). To avoid having a 3-cycle with one vertex in {s, t}
and two in {c, d, e, f} disjoint from an arc from {s, t} to {c, d, e, f}, we see in this order that we have
sd ∈ A(T ), tf ∈ A(T ), se ∈ A(T ) and ct ∈ A(T ). Now, as every vertex of {c, d, e, f} is dominated by s
or by t, we know that T 〈{c, d, e, f}〉 is acyclic, and then we have ce ∈ A(T ), cf ∈ A(T ) and df ∈ A(T ).
So, we have sf ∈ A(T ), otherwise we could form the 3-cycle scf disjoint from the arc te. If st ∈ A(T ),
then T 〈{s, c, d, t, e, f}〉 is acyclic and we conclude using Observation 2.2. Then, we have ts ∈ A(T )
and thus bf ∈ A(T ), otherwise we obtain the disjoint 3-cycles bcf , rax2 and tsd. This means that fab
is a 3-cycle of T and if there is an arc from r to c, d or e, then we form a 3-cycle with this arc and x2
and complete a family of three disjoint cycles with one of tsd or tsc. Finally, cr ∈ A(T ), dr ∈ A(T )
and er ∈ A(T ) and {c, d, e} dominates {r, f, x2}. We conclude with Observation 2.2.

Case s1 = c, t1 = f . Following our notation, we denote this case by [∆ 1 . . 2]. We assume that we
are not in one of the previous cases and then that dt ∈ A(T ) and et ∈ A(T ). As, tf ∈ A(T ), neither
scd nor sde is a 3-cycle of T , and we have sd ∈ A(T ) and se ∈ A(T ). Now, every vertex of {c, d, e, f}
is dominated by s or t, so we know that T 〈{c, d, e, f}〉 is acyclic, and then we have ce ∈ A(T ),
cf ∈ A(T ) and df ∈ A(T ). To conclude, observe that if tc ∈ A(T ), then tcd, sex2, rab are disjoint
3-cycles so, we have ct ∈ A(T ) and as {c, d, e} dominates {f, t, x2}, we conclude using Observation 2.2.

Case s1 = d, t1 = e. This case is denoted by [∆ . 1 2]. As we assume that we are not in one of the
previous cases, we have in particular that cs ∈ A(T ) and ct ∈ A(T ). If ft ∈ A(T ), then we form the
cycles eft, sdx2 and rab. So, we have tf ∈ A(T ). As sd ∈ A(T ) and rab is a 3-cycle, similarly, neither
cte nor ctf is a 3-cycle of T , and we have ce ∈ A(T ) and cf ∈ A(T ). Now, c has in-degree at least 3
and so ac, rc ∈ A(T ). If tb ∈ A(T ), then the 3-cycle tbc and the arcs sd and ra form a configuration
[∆ 1 . . 2] that we settled before. So, we have bt ∈ A(T ). Similarly, if ta ∈ A(T ), then tab, rc and
sd are in position [∆ 1 2]. So, we have at ∈ A(T ). Now we see, in that order, that se ∈ A(T ) or
sde, tfa, rcx2 are disjoint 3-cycles; rd ∈ A(T ) or rcd, tfa, sex2 are disjoint 3-cycles; bs ∈ A(T ) or
sbc, tfa, rdx2 are disjoint 3-cycles; and sa ∈ A(T ) or Observation 2.2 applied to {a, b, c} and {s, t, x2}
gives the desired contradiction. Now sab, rc, te is of type [∆ 1 . 2] which we have already handled.

Case s1 = d, t1 = f . This case is denoted by [∆ . 1 . 2]. As we assume that we are not in one
of the previous cases, we have in particular that cs ∈ A(T ), ct ∈ A(T ) and et ∈ A(T ). If es ∈ A(T ),
then we form the cycles sde, tfx2 and rab. So, we have se ∈ A(T ) and then dt ∈ A(T ) otherwise rab,
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td and se are in position [∆ . 1 2] treated before. Finally, as se ∈ A(T ) and rab is a 3-cycle, neither
fdt nor fct is a 3-cycle of T , and we have df ∈ A(T ) and cf ∈ A(T ). But now, the set of vertices
{c, d, e} dominates the set {f, t, x2} and we conclude using Observation 2.2.

Case s1 = e, t1 = f . This case is the last one and is denoted by [∆ . . 1 2]. Assuming that we
are not in a previous case, we know that dt, ds, ct and cs are arcs of T . Now, if tb ∈ A(T ), then bct,
se and ra are in position [∆ . 1 . 2] which was done before. So, we have bt ∈ A(T ) and if bs ∈ A(T ),
then {b, c, d} would dominate {s, t, x2} and we could conclude with Observation 2.2. Thus, we have
sb ∈ A(T ) and sbc, tf and ra are in position [∆ . . 1 2]. So, repeating the arguments, we will conclude
that tcd, ra and sb are in position [∆ . . 1 2], contradiction because we have seen that ct ∈ A(T ).

3 Concluding remarks

In this paper, we were interested in tournaments with few disjoint cycles. Though it seems quite hard
to compute the number of disjoint cycles in tournaments, some sufficient conditions are known to say
that this number is large.

Using the straightforward generalization of Observation 2.2 is easy to see (and was remarked in
[6]) that every k-strong tournament with at least 5k − 3 vertices has k-disjoint 3-cycles: Let p be the
maximum number of disjoint 3-cycles. If p ≤ k− 1, then removing the vertices of p such cycles yields
a transitive tournament of order at least 5k − 3− 3(k − 1) = 2k and hence, there are two vertex-sets
X and Y of size k such that X dominates Y . However, the fact that T is k-strong taken together
with Observation 2.2 implies that T contains k vertex-disjoint 3-cycles including all the vertices of X
and Y , which contradicts the original assumption p ≤ k − 1.

Another situation possibly leading to the existence of k disjoint cycles is the case when the minimum
degree of the digraph is large enough. Indeed, Bermond and Thomassen [5] conjectured that every
digraph with minimum out-degree at least 2k − 1 has k vertex-disjoint cycles. Let us mention that
recently, with Thomassé, we proved that this conjecture holds for tournaments [2].

Finally, it is NP-complete to decide whether a given digraph has k disjoint cycles (k is part of the
input) [3, Theorem 13.3.2]. We conjecture that this holds even for tournaments. Recall that finding
a minimum cycle transversal is NP-complete by Theorem 1.3.

Conjecture 3.1 It is NP-hard to find the maximum number of disjoint cycles in a given tournament.
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