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Abstract

We prove that every tournament 7' with no three disjoint cycles contains a set X of at most
four vertices such that T'— X is acyclic.
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1 Introduction

In this paper, we are interested in computing the size of a minimal cycle transversal in tournaments.
First, we precise notations. The notation not given below can be found in [3].

We denote the vertex set and arc set of a digraph D by V(D) and A(D), respectively and write
D = (V,A) where V = V(D) and A = A(D). If xy is an arc of D we say that  dominates y and
that y is dominated by z. Extending this to disjoint subsets of vertices X,Y C V(D), we say that
X dominates Y when x dominates y for every choice of z € X and y € Y. For a digraph D = (V, A)
the out-neighbourhood N} (z) (resp. in-neighbourhood N, (z)) of a vertex x € V is the set of
vertices y in V — z such that zy (resp. yz) is an arc of A. The out-degree of z, denoted by dj;(z) is
the cardinality of N (z), and the in-degree of z, denoted by d, () is the cardinality of N (x). For
X C V, we shall also write d (z) to denote the number of vertices in X that are dominated by z.

In the present paper, paths and cycles are always assumed to be directed unless other qualified.
A Ek-cycle is a cycle of length k. For convenience we will use the shorthand notation zyz to mean
a 3-cycle on vertices x,y,z and arcs zy,yz,zzx. A digraph D is acyclic if it does not contain any
cycle. An (s,t)-path in a digraph D is a directed path from the vertex s to the vertex ¢t. A digraph
D = (V, A) is strongly connected (or just strong) if there exists an (z,y)-path and a (y, z)-path
in D for every choice of distinct vertices z,y of D, and D is k-strong if D — X is strong for every
subset X C V of size at most k — 1. A subset Y C V of a digraph D is a vertex-cut of D if D —Y is
not strong. A strong component (or when there is no confusion a component) of a digraph D is a
maximal set of vertices X such that D(X) is strong. If a digraph is not strong then we can order its
strong components Dy, Ds, ..., D, in such a way that there is no arc from a vertex in D; to a vertex
in D; when ¢ < j (or equivalently, the digraph induced on the components D; is acyclic). A strong
component with no arcs entering (resp. leaving) is called an initial (resp. terminal) component of
D. Moreover, a strong component is trivial if it contains a unique vertex.

For a subset X of V(D) we denote by D(X) the subdigraph induced by the vertices in X. The
underlying graph of a digraph D, denoted UG(D), is obtained from D by suppressing the orientation
of each arc and deleting multiple edges. In a digraph D, if X and Y are two disjoint subsets of vertices
of D or subdigraphs of D, we say that there is a k-matching from X to Y if the arcs from X to
Y contain a matching (in UG(D)) of size at least k. A tournament is an orientation of a complete
graph (and so, does not contain any 2-cycle). We denote by T'T} the unique acyclic tournament on k
vertices. This is also called the transitive tournament on k vertices.
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A cycle transversal X of a digraph D is a set of vertices of D which intersects all the cycles of
D, or equivalently, such that D — X is acyclic. We denote by 7(D) the size of a minimum cardinality
cycle transversal of D. A digraph D is intercyclic if D does not have a pair of vertex-disjoint cycles.
The problem of deciding whether a digraph is intercyclic is highly nontrivial for general digraphs.
McCuaig [8] found a very complex polynomial algorithm for testing whether a given input digraph is
intercyclic and he also proved the following.

Theorem 1.1 [8] If a digraph D is intercyclic then 7(D) < 3 and this is best possible.

This result was generalized some years later by Reed, Robertson, Seymour and Thomas [10] who
positively answered to an old-standing conjecture from Younger and proved the following.

Theorem 1.2 [10] For every natural number k there exists a natural number f(k) such that every
digraph D which has no set of k + 1 vertex-disjoint cycles satisfies (D) < f(k).

In this paper we are focusing on tournaments, and give bounds on the parameter 7 for this class
of digraphs. First, remark that this parameter is hard to compute, even for tournaments.

Theorem 1.3 [/] It is NP-hard to find a minimum cycle transversal in a tournament.

A natural lower bound on the size of a minimum cardinality cycle transversal is the maximum
number of vertex-disjoint cycles. So, as in the statement of Theorem 1.2, for tournaments we define
the following.

fi(k) = min{p : every tournament with no k+1 vertex-disjoint cycles has a cycle transversal of size p}

The following special case of Moon’s theorem allows us to restrict our interest to vertex-disjoint
3-cycles when we consider tournaments without many vertex-disjoint cycles.

Theorem 1.4 [9] Every vertex of a strong tournament T is contained in a 3-cycle. In particular, T
has k disjoint cycles if and only if it has k disjoint 3-cycles.

Thus if a tournament T has no set of k + 1 disjoint cycles, then, by Theorem 1.4, T' has at most
k disjoint 3-cycles and the vertex set of these has size at most 3k and forms a cycle transversal of T.
Thus, we obtain an easy bound on f;.

Corollary 1.5 We have f(k) < 3k.

A lower bound on f; has been known for a long time. Indeed, Erdds and Moser ([7] or see Alon [1]
for a short probabilistic proof) show that for every n there exists a tournament on n vertices containing
no transitive subtournament on more than 2 log, n+1 vertices. So, such a tournament on 3k+2 vertices
has no k + 1 vertex-disjoint 3-cycles and no cycle transversal with less than 3k — 2log,(3k + 2) + 1
vertices. We then obtain the following.

Theorem 1.6 [7] For k > 2, we have fi(k) > 3k — 2log, k — 3.

So, the gap between the lower and the upper bound on f; is not large. Our intuition is that it is
possible to be as far as desired from the upper bound of 3k.

Conjecture 1.7 For every p > 1, there exists a value ky, such that for all k > k,, every tournament
without k + 1 disjoint cycles has a cycle transversal of size 3k — p.

The main purpose of the paper is to compute the value of f;(k) for small values of k, and then
give some evidence for Conjecture 1.7. For k = 1, by Theorem 1.1, we know that f;(1) < 3, but it is
possible to sharpen this bound.

Theorem 1.8 FEwvery intercyclic tournament T has a cycle transversal of size 2. In particular, we
have fy(1) = 2.



Proof: The rotational tournament on five vertices RTs has vertex set {1,2,3,4,5}, and ij €
A(RTs) if 5 —i = 1 or 2 modulo 5. This tournament is intercyclic and has no cycle transversal of
size one, so f;(1) > 2. It is also possible to give an infinite family of strong tournaments at which
this bound is attained. For instance, consider a transitive tournament 7" and add four vertices, z1,
29 and z3 which form a 3-cycle and y. The remaining arcs are given by: {z1, 22,23} dominates y
and is dominated by 77 and y dominates T”. It is straightforward to prove that the the tournament
obtained in result is intercyclic and has no cycle transversal of size one.

To prove the reverse inequality, consider a minimal counter-example 7', i.e. an intercyclic tourna-
ment with no cycle transversal of size two. First, if 7" is a subtournament of T" which is not strong, T"
has at most one non trivial strong component, otherwise we could find two disjoint cycles in 7" and
then in T. In particular, as T has no vertex with out-degree or in-degree 0 (otherwise, if = is such a
vertex, then T — x forms a smaller counter-example than T'), T is strong. Similarly, we show that T
has no vertex with out-degree or in-degree 1. If not, assume that x is a vertex of T' with out-degree 1.
Let y be the only out-neighbour of z. Obviously, any 3-cycle containing z also includes y. Consider
any such cycle zyz. Since T is intercyclic, any 3-cycle not containing x includes either y or z. Hence
{y, z} is a cycle transversal of T, a contradiction. Now, if T has a vertex-cut of size one, say {z}, the
tournament 7' — x is no more strongly connected, and then, by the initial remark, has one of its initial
or terminal component with size one. Thus, we find a vertex with in- or out-degree 1 in 7', which is
not possible. So, T is a 2-strong tournament.

Now, if T' contains a transitive subtournament of order 4, say T'(x1, x2, x3,z4) with an arc from
x; to x; for all « < j, then using Menger’s Theorem (see e.g. [3, Theorem 5.4.1]) and the fact that T’
is 2-strong, we can find two vertex disjoint paths from {z5,24} to {z1,22}. Then, we can add two
arcs to form two disjoint cycles from these paths. Now, if C' is a 3-cycle of T, then T'— C' is acyclic
and thus contains at most three vertices. So, |T'| < 6. Assume that |T'| = 6. In this case, as T has
no transitive subtournament of order 4, both the out-neighbourhood and in-neighbourhood of any of
its vertices contain at most three vertices (note that any tournament of order 4 includes a transitive
tournament of order 3). Let X and Y be the sets of vertices of out-degree 3 and 2, respectively. Since
|X|+ Y] = 6 and 3|X| + 2|Y| = 15, we have | X| = |Y| = 3. As T is intercyclic, at most one of
|X| and Y| induces a 3-cycle. By duality, we can assume that |X| is transitive. Let 1,22, 23 be the
unique Hamiltonian path in X. Obviously, the vertex x3 dominates any vertex in Y and the vertex
xo dominates two vertices, say, y1 and ys, in Y. For this case, the vertex-set {z2,x3,91,y2} induces
a transitive subtournament of order 4, a contradiction.

The sole remaining possibility for a counter-example is to have size five, but it is then easy to exhibit
a cycle transversal of size two. o

The main result of this paper is the computation of f;(2). We obtain the following.

Theorem 1.9 FEvery tournament with no three vertex-disjoint cycles has a cycle transversal of size
four.

Observe that Theorem 1.9 is optimal, in the sense that there exist tournaments with no three
disjoint cycles and no cycle transversal of size three. For instance, the Paley tournament P; has these
properties. For each prime power ¢ = 3 modulo 4, the Paley tournament P, with ¢ vertices is the
tournament whose vertices are the elements of the finite field with ¢ elements. There is an arc from
x to y if and only if y —  is a nonzero square in the field. In the case ¢ = 7, the vertex set of
P; is {0,...,6} and ij is an arc of P; if j —4 = 1,2 or 4 modulo 7. Once again, it is possible to
obtain an infinite family of strong tournament with the same properties. For this, we add a transitive
tournament 7" to P; with the following adjacencies: {0,1,2,3,4,5} dominates 7" which dominates 6.
As at most one 3-cycle can contain a vertex of T’, it is straightforward to verify that this tournament
contains no three disjoint cycles.

So, a first corollary of Theorem 1.9 is the following.

Corollary 1.10 We have fi(2) = 4.

Let us now show by induction on k that for any k > 2, we have fi(k) < g(k), where g(k) = 3k — 2.
Corollary 1.10 implies that this inequality holds for £k = 2. Let k > 3. If a tournament 7" admits no



k vertex-disjoint cycles, then, by the induction hypothesis, T has a cycle transversal of size at most
g(k — 1) < g(k). Assume now that T contains k vertex-disjoint 3-cycles C1,...,Cy but has no k + 1
such cycles. Then T' — Uf;f C; admits no three vertex-disjoint cycles and hence, by Theorem 1.9, has
a cycle transversal of size at most 4. This means that T includes a cycle transversal of size at most
3(k—2)+4=3k—2=g(k). So, we obtain a second corollary of Theorem 1.9.

Corollary 1.11 For all k > 2, we have fi(k) < 3k — 2.

Observe that this is best possible for £ = 3 also. Indeed, P;; the Paley tournament has no TT}5
as a subtournament (no vertex x of Pj; can be the first vertex of such a TT5 as the subtournament
induced by N;u (z) on Py; is isomorphic to RT5 the rotational tournament on 5 vertices which does
not contain any 7'Ty as subtournament). So, a cycle transversal of Pj; contains at least seven vertices.

Corollary 1.12 We have f(3) = 7.

In the next section, we present the proof of Theorem 1.9. It is similar but longer than the one of
Theorem 1.8 : First, we show that the strong connectivity of a counter-example must be large enough,
and then, we have to conclude on some finite cases. We conclude the paper with some remarks and
problems.

2 Proof of Theorem 1.9

As we are looking for a cycle transversal or vertex-disjoint cycles, throughout this section, we will use
the word ’disjoint’ instead of ’vertex-disjoint’.

So, we assume that Theorem 1.9 does not hold and consider a minimum counter-example T to this
statement. Each following subsection establishes a result on the strong connectivity of T', eventually
leading to a contradiction.

The following lemma is a classical corollary of Kénig’s Theorem (see e.g. [3, Theorem 4.11.2]), and
we will use it several times.

Lemma 2.1 Let D be an r-strong digraph and let R, r = |R|, be a minimum vertex-cut of D. There
exist two matchings of size v, one from R to D — R and one from D — R to R. More precisely, if
X is an initial (resp. terminal) non-trivial component of D — R, then there exists a matching of size
min{|X|,r} from R to X (resp. from X to R), and every vertex of R dominates at least one vertex
of X (resp. is dominated by at least one vertex of X ). In particular, if X = {x1} is an initial (resp.
terminal) trivial component of D — R, then 1 is dominated by every vertex of R (resp. dominates
every vertex in R).

2.1 T is 2-strong
First, it is easy to see that T' has to be strong.

Claim 1 T is strong.

Proof: Assume that 7" is not strongly connected and denote respectively by 77 and T its initial
and terminal components. If 77 or 7% contains only one vertex x, then T'— x would be a smaller
counter-example to Theorem 1.9. As every non-trivial component contains a cycle, only 77 and T
are non-trivial. Now, if Ty or Tt contains two disjoint cycles, we find three disjoint cycles in 7.
Otherwise, by Theorem 1.8, 11 and Ty have cycle transversals of size two, and the union of these two
cycle transversals form a cycle transversal of T of size four, contradiction. o

The two next claims show that T" has strong connectivity at least two.

Claim 2 Every vertez x of T satisfies dt(z) > 2 and dy(x) > 2.



Proof: Assume, for instance, that a vertex x of T satisfies d.(x) = 1 and denote by y its unique
out-neighbour. As T is strong, then y has an out-neighbour z in 7', and zyz forms a 3-cycle of T'. By
choice of T, T — {x,y, z} does not contain two disjoint cycles, and then by Theorem 1.8, has a cycle
transversal of size two. We add y and z to this transversal and obtain a cycle transversal of T of size
four, as every cycle containing x has to contain y.

The case d7(x) = 1 is similar. S

Claim 3 T is 2-strong.

Proof: Assume that T is not 2-strong and denote by r a vertex of T" such that T'— r is not strong.
So, we denote respectively by 77 and T the initial and terminal components of 7' — r. By Claim 2,
Ty and Ty are not trivial, and as every non-trivial component contains a cycle, the other components
of T'— r are trivial. We denote by 71 (resp. rf) an out-neighbour of r in T} (resp. in-neighbour of
rin Ty). If none of 77 — ry and Ty — 7y contains a cycle, then {r,71,7,} is a cycle transversal of
T, contradiction. So, assume that Ty — r; contain a cycle C, then T7 — r; does not contain a cycle,
otherwise this cycle with C' and rr17y would be three disjoint cycles. So, {r1} is a cycle transversal of
T;. Now, Ty does not contain two disjoint cycles, otherwise adding a cycle of T; we would find three
disjoint cycles in 7', contradiction. By Theorem 1.8, T} contains a cycle transversal of size two, but
adding r and r; to this set, we obtain a cycle transversal of size four of T, contradiction. o

2.2 T is 3-strong

Assume that T is not 3-strong and consider a minimum vertex-cut {r, s} of size two (by Claim 3),
that is T — {r, s} is not strong. As T has no set of three disjoint cycles T'— {r, s} cannot have three
or more non-trivial components. On the other hand, if T'— {r, s} has only trivial components, then
{r,s} is a cycle transversal of T. First, we deal with the case where T — {r, s} has two non-trivial
components.

Claim 4 If T —{r, s} has two non-trivial components Ty and Ty, then they are its initial and terminal
components.

Proof: If none of T7 and T5 is an extremal component of T'— {r, s}, then denote by z1 (resp. z2)
the vertex of the initial (resp. terminal) component of T — {r, s}. As T7 and T5 both contain a cycle,
x1297 18 a third cycle of T, contradiction. So, assume that T is the initial component of T — {r, s},
and that T5 is not its terminal component. We denote by xo the vertex of the last component of
T — {r,s}. Let {rz, sy} be a 2-matching from {r, s} to T (which exists by Lemma 2.1). Then z is a
cycle transversal of T;. Indeed, if there is a cycle C' in T1 — z, then C, a cycle in T, and xzxor are three
vertex-disjoint cycles in T. Now, let z be a vertex of To. We claim that z is a cycle transversal of T5.
Indeed, assume that there exists a cycle C' in T» — z. Suppose first that zr € A(T). Then C, xzr and
yzos are three disjoint cycles in T', which is impossible. In turn, if rz € A(T), then rzxs is the third
(after C' and a cycle of T1) cycle in T, which is impossible, again. Hence, z is a cycle transversal of
Ty and {z, z,7, s} is a cycle transversal of T, contradiction. o

Claim 5 T — {r, s} cannot have two non-trivial components.

Proof: Assume that T'— {r, s} has two non-trivial components and note that, by Claim 4, these
must be the initial and terminal non-trivial components of T'— {r, s}, respectively denoted by T} and
Ty. If 7(T1) = 1 and 7(T¢) = 1 then denote respectively by {¢;} and {t2} a cycle transversal of T} and
Ty and observe that {t1,t2,7, s} forms a cycle transversal of T. So, max{r(T4),7(Ty)} > 2. Now, if
7(Th) > 2 and 7(T) > 2 then denote by z1 an out-neighbour of r in 77 and by x5 an in-neighbour of
rin Ty (which exist by Lemma 2.1). We could find three disjoint cycles in T', rz12, a cycle of Th —zq
and a cycle of Ty — x5, a contradiction. So, we can assume (by reversing all arcs of T' if necessary)
that 7(71) =1 and 7(Tf) > 2.



Suppose first that f > 2 and let T; = {z} be an internal component of T — {r, s}. If rz € A(T),
then a cycle of T1, rzxe, where x5 is an in-neighbour of r in T, and a cycle of Ty — {z2} form three
disjoint cycles of T', contradiction. So, xzr € A(T). Let {ra,sb} be a 2-matching from {r,s} to Ty
(which exists by Lemma 2.1). Then rax, sbxa, where x5 is an in-neighbour of s in T, and a cycle of
Ty — {x2} form three disjoint cycles of T', contradiction.

So, f =2 and T} and T5 are the only strong components of T' — {r, s}.

Let C = abc be a 3-cycle of Ty. As 7(T1) = 1, the subtournament 7" := T} — C of T is acyclic and
furthermore, there is no arc from {r, s} to T’ otherwise if st’ is such an arc, we consider the cycles C,
st'zo, where x5 is an in-neighbour of s in T3 , and a cycle of Th — x5 to form three disjoint cycles in T,
contradiction. So, by Lemma 2.1, there is a 2-matching from {r, s} to Ty, and then, the ends of this
2-matching belong to C'. Thus, by symmetry, we can assume that ra and sb are arcs of T. Now, if
cs € A(T) then, sbc, raxs where x5 is an in-neighbour of r in T5 , and a cycle of Ty — 25 would form
three disjoint cycles in T', which cannot be. Thus sc¢ € A(T), and similarly, we prove in this order
that b € A(T), sa € A(T) and that rc € A(T).

Now, if T # () then, as T} is strong, there is an arc from C to T”, say at’ for instance. But, at’s,
rbxro where x5 is an in-neighbour of r in 75 , and a cycle of T — x5 would form three disjoint cycles in
T, which cannot be. So T} = C and {r, s} entirely dominates T7. To conclude, we study the structure
of T5. By Lemma 2.1, there is a 2-matching from T5 to {r, s}. We denote by {dr, es} such a matching,
and remark that {d, e} is a cycle transversal of Ty, otherwise, a cycle of Ty — {d, e}, dra and esb would
form three disjoint cycles of T. Then, T” = T, — {d, e} is a transitive subtournament of T'. If there is
no 2-matching from 7" to {r, s}, then there is a vertex = of T” U {r, s} which is contained in all the
arcs going from 7" to {r, s}. In this case, {a, z, d, e} would form a cycle transversal of T. Hence, there
is a 2-matching from T” to {r, s} and we denote it by {d'r,e's}. As 7(T) > 2, we have |Tz| > 5 (the
unique strong tournament on 4 vertices has a cycle transversal of size one) so Ty contains a vertex
different from d, e, d’ and €’. As T5 is strong, by Theorem 1.4 there exists a 3-cycle C’ which contains
x. U V(C") N {u,v} = 0 for some 2-matching {ur,vs} from T5 to {r,s} then, as previously, C’, aur
and bvs would form three disjoint cycles in T. In particular, C’ has to intersect all the following
pairs: {d,e}, {d',e'}, {d,e’} and {d',e}, and thus V(C’) = {x,d,d'} or V(C") = {z,e,e’'}. Without
loss of generality, we can assume that V(C’) = {x,d,d’'}. Now, if er € A(T), then {er,e's} would be
a 2-matching from 75 to {r, s} which avoids C’, what is forbidden. Thus, re € A(T) and similarly
re/ € A(T). This implies that rs € A(T), otherwise, sre, C' and C' would be three disjoint cycles
in T. Furthermore, we have ds € A(T), otherwise, C, sdr and a cycle of To — d would form three
disjoint cycles in T'. Similarly, we have d's € A(T'). Now, we conclude by considering a 3-cycle C"”
of T, —d. Asdr € A(T) and ds € A(T), {d,e}, {d,e'} and {d,d'} are beginnings of 2-matchings
from T5 to {r, s}, and then C” has to contain e, €’ and d’, implying that V(C") = {e,e¢’,d'}. Now, if
ar € A(T), then C” does not intersect the 2-matching {zr, ds} from T» to {r, s} and we can conclude.
So, re € A(T). If zd € A(T) then razd, C” and C form three disjoint cycles in T, contradiction,
so C' is the 3-cycle dzd’. We have sz € A(T) as otherwise C” avoids {dr,zs}. This implies that
de,de’ € A(T) as sxzd' and C are disjoint from {d, e, €/, r} so this set cannot contain a 3-cycle. Suppose
first that C”" = e/d’e. Then ex € A(T) or C, zes, ¢'d’'d are disjoint 3-cycles. But then the 3-cycle
xzd'e avoids {dr,€'s}, contradicting the conclusion above. Thus C”" = ed'e’ and since {x,d’, e’} avoids
{dr,es} we have xe’ € A(T) and then ze's, ed’'d and C are disjoint 3-cycles, contradiction. o

So, the last case to establish is when T' — {r, s} has only one non-trivial component. Again, we
will see that this case is not possible. To see it, assume that T is the only non-trivial component
of T — {r,s}. Then, we depict the situation (see also Figure 1). First, remark that if 77 has a cycle
transversal of size two, then, with r and s we would obtain a cycle transversal of size four for T', which
is impossible. So, by Theorem 1.8, T} contains two disjoint cycles. Now, if 77 is neither initial nor
terminal, then we denote by x; (resp. x2) the vertex that forms the (trivial) initial (resp. terminal)
component of T — {r, s} and with two disjoint cycles of T}, 2127 would form a third disjoint cycle in
T. So, Tj is either the initial component of T'—{r, s} or its terminal component. By symmetry, assume
that 77 is the initial component of T'— {r, s}. We denote by {z2} the trivial terminal component of
T — {r,s}. We claim that T — {r, s} only contains the vertices of 71 and x2. Indeed, if there is a
vertex t in T — ({r, s} UTy) which is different from zo, assume first that there is an arc from r to ¢,
then we could form the disjoint cycles rtxo, C and C’, where C' and C” are two disjoint cycles of T7.



So, there is an arc from ¢ to r. By Lemma 2.1, there is a 2-matching {ru, sv} from {r, s} to Ty, and as
T} has no transversal of size two, there is a cycle C' in T; — {u,v}. So, we can form the disjoint cycles
C, rut and svzy. Thus T — {r, s} only contains T} and x5 and we denote by C' = abc and C' = a'b'c
two disjoint 3-cycles of T, and by T’ the acyclic subtournament of 77 induced by T on T} — (CUC").
Finally, observe that there is no arc from {r, s} to T' otherwise we could form a 3-cycle with this arc
and x5 disjoint from C and C'.

Ty

Figure 1: The situation in the case where T is 2-strong and T — {r, s} has a unique non-trivial
component. The arcs between two boxes stand for all the arcs between these boxes.

Claim 6 There is no 2-matching from {r,s} to C.

Proof: Assume w.l.o.g. that {ra, sb} is such a 2-matching. Then, sc € A(T), otherwise, we form
the three disjoint cycles c¢sb, raxo and C’. Using the same argument, we prove, in this order, that
rb € A(T), sa € A(T) and that rc € A(T). Finally, with the hypothesis that there is a 2-matching
from {r, s} to C, we prove that {r, s} entirely dominate C'. In particular, there is then no arc from
C to T’, otherwise if at is such an arc, we could form the three disjoint cycles atr, sbxy and C’. It
follows that there is no 2-matching from {r, s} to C’, otherwise, similarly {r, s} and T" would entirely
dominate C’ and the only out-neighour of C'U C” would be xs, which contradicts the fact that T is
2-strong.

So, there is no 2-matching from {r, s} to C’ and hence there is a vertex 2 which belongs to all the
arcs going from {r, s} to C’. We have two cases to consider:

1. Case z € {r, s}. Without loss of generality, assume that = s, which means that there is no arc
from r to C’. We will use the following properties to conclude the proof of Claim 6 in this case:

-(P1): 7(T1) > 3. Otherwise, a cycle transversal of T} of size two and r and s would form a
cycle transversal of size four of T

-(P2): as previously remarked, 77 dominates C.

-(P3): there is no 3-cycle S of T} which intersects C' on only one vertex and an arc from C to
C’ disjoint from S. Otherwise, assume that a 3-cycle S of Ty contains only ¢ among {a,b,c},
that o’ ¢ S and that aa’ € A(T) then, we could find three disjoint cycles in T: S, aa’r and sbxs.

Now, if there is no arc from C to C’, the only out-neigbour of C' would be xs, which contradicts
the fact that T is 2-strong. So, w.l.o.g. assume that aa’ is an arc of T'. Using (P; ), we know that
T(V(T")U{b,c,b, '}) contains a 3-cycle S. By (P3), S has to contain b and ¢, and through (Ps),
we know that S has to contain b’ or ¢. In particular, if S = bec’ then, we have c¢’ € A(T'), and if
S = beb’ then, by (P3), cb'c’ is not a 3-cycle and we have c¢¢’ € A(T) also. Now, considering the
arc cc¢’ and the three vertices a, a’ and ¥, we know, through (P3) that ab’ € A(T). Finally, by
(P1), we know that T(V(T") U {a,b,a’,b'}) contains a 3-cycle S. By (Ps3) and as c¢’ € A(T), S
has to contain a and b, and by (Pz), S has to contain a’ or ¥, contradiction because a dominates
both a’ and b’. This concludes the case x € {r, s}.



2. Case ¢ € C’. Without loss of generality, we can assume that x = a/, what means that there
is no arc from {r, s} to {¥’,c¢'}. Furthermore, as we are not in the previous case, sa’ € A(T)
and ra’ € A(T) hold. Now, if T(V(T") U {c/,b'}) contains a 3-cycle S, then S, ra’ze and C
would form three disjoint cycles in 7. So, T(V(T") U {c,b'}) is an acyclic subtournament of 7'
dominating {z2,r, s} which does not form a 3-cycle. Thus, T(V(T") U {c/, ¥, x2, 1, s}) is acyclic
and {a,b,c,a’} is a cycle transversal of T, contradiction.

Now, we are in the case where there is no 2-matching from {r, s} to C. By symmetry, we assume
that there is no 2-matching from {r,s} to C’, and more generally, that there are no two disjoint
3-cycles in T} with a 2-matching from {r, s} to one of these 3-cycles. Also, as by Lemma 2.1, there is
a 2-matching from {r, s} to 71, and as there is no arc from {r, s} to 7", we can assume that ra and
sa’ are arcs of T. In this situation we have the following.

Claim 7 The 3-cycle C dominates s which dominates C’, and symmetrically, the 3-cycle C' dominates
r which dominates C.

Proof: We know that ra € A(T) and sa’ € A(T) and then, by Claim 6, bs,cs € A(T) and
b'r,cdr e A(T).

First, let us see that dJTr1 (r) > 2 and d;l (s) > 2. If it is not the case, assume for instance that
d;l (r) =1, and then that N;:l (r) = {a}. If Ty — a contains two disjoint cycles, then these cycles with
raxy would form three disjoint cycles in T. So, by Theorem 1.8, 71 — a has a cycle transversal of
size two. We denote this transversal by {u,v} and remark then that {u,v,s,a} would form a cycle
transversal of T', contradiction. So, we have dj, (r) > 2 and d, (s) > 2.

Now, assume that sa € A(T'). As there is no 2-matching from {r, s} to C, there is no arc from r
to {b,c}. As d;l (r) > 2, ra’ has to be an arc of T, and then, there is no arc from s to {b',c'}. So,
T U{b,c,b,c'} dominates {r,s}. Furthermore, T(V(T") U {b,c,b’,c'}) does not contain two disjoint
cycles, otherwise we could form a third one with raxs for instance. So, by Theorem 1.8 it has a cycle
transversal of size two. If we denote this transversal by {u,v}, then {u,v,a,a’} would form a cycle
transversal of T, contradiction.

Then, this means that C' dominates s and similarly that ¢’ dominates r. As d}'l (r) > 2 and,
similarly, d;l(s) > 2, r and s have respectively two out-neighbours in C' and C’. So, without loss of
generality, we can assume that rb and sb’ are arcs of T. Moreover, by symmetry, we can also assume
that aa’ is an arc of T. Now, if T(V(T") U {b,c,c'}) contains a 3-cycle S, then S, aa’r and sb'xs
would form three disjoint cycles in T'. So, the subtournament T(V(T") U {b,¢,c'}) is acyclic. If ¢’s
is an arc of T, then s is dominated by all vertices of this subtournament and {a,a’,t’,r} would be
a cycle transversal of T, contradiction. So, s dominates C’. The last point to prove is that rc is an
arc of T. Assume that this is not true and that ¢r € A(T). Then, a dominates C’, otherwise, as
aa’ € A(T), there exists a 3-cycle containing a and two vertices of C’, say for instance a’ and b'. In
this case, we could form the disjoint 3-cycles aa’t’, ber and sc’za. Now, we pick two vertices v and v
among {a’,V’, ¢’} and denote by w the third one. Note first that T'(V(T") U {b, ¢, u,v}) is not acyclic
(otherwise, {r, s, a, w} would be a cycle transversal of T'). Let S be a 3-cycle of T{(V (T")U{b, ¢, u,v}).
If S does not contain u and v (say for instance that u ¢ S), then we could form the three disjoint
cycles S, awr and suxs. Furthermore, if S contains neither b nor ¢, then we could form the three
disjoint cycles S, ber and swza. So, it means that S contains u, v and one of b and ¢. Since {u,v}
can be any of three pairs of {a’, b, ¢}, this means that two different pairs of {a’,V’, ¢’} form a 3-cycle
with the same vertex (b or ¢), which is not possible as a’b'¢’ is a 3-cycle. Finally, we conclude that
rc € A(T) and that r dominates C. ©

Now, we can show that 7" has nine vertices, namely we have the following.
Claim 8 We have T" = 0.

Proof: Assume that 7" is not empty and then contains a vertex t’. As Ty is a strongly connected
component, there exists a 3-cycle S of T; which contains ¢'. If S contains one vertex of C' and one



vertex of C’, say that a € S and a’ € S, then, we could form the disjoint 3-cycles S, bb'r and sc’z-
if bb' € A(T), or S, b'bs and rcxy otherwise. So, we may assume that S does not contain any vertex
of ', for instance, and contains at most two vertices of C. Without loss of generality, assume that
b ¢ S. Then we could form three disjoint 3-cycles S, C’ and rbxs, a contradiction. o

To conclude, we have to study the arcs between C' and C’. There are three cases where we can
conclude:

-Case 1: T(C UC") contains a transitive subtournament on four vertices. Then, with x5 we find
a transitive subtournament T, on five vertices in T and V(T) — V(T,) is a cycle transversal of T'
containing four vertices, contradiction.

-Case 2: there are a 3-cycle S of T containing two vertices of C' and one vertex of C’ and an arc
from C to C' disjoint from S. For instance, assume that aba’ is a 3-cycle and that ¢¢’ € A(T). In this
case, we could form the disjoint 3-cycles aba’, cc’'r and sb'z,.

-Case 3: there are a 3-cycle S of T containing two vertices of C’ and one vertex of C' and an arc
from C’ to C disjoint from S. This case is the symmetrical case of Case 2.

So, we will conclude using these three cases. If every vertex u € {a’,b’, ¢’} either dominates or is
dominated by C, then we find a transitive subtournament of 7(C' UC") of size four, using two vertices
of C' and two vertices of {a’,V’, ¢} both dominating C' or both being dominated by C. This means
that one vertex of C’, say a’ for instance, forms a 3-cycle with two vertices of C, say w.l.o.g. a and b.
Avoiding Case 2 implies that ¢'c € A(T) and bV/'c € A(T). If ac’d’ is a 3-cycle, we are in Case & with
the arc b'c, so ¢’'a € A(T). Finally, for any orientation of the arc between ¢ and o, the set {a,c,a’,c'}
induces an acyclic subtournament and, hence, we are in Case 1.

2.3 Final cases

Now, we are in the case where T is 3-strong. Using this, we make the following observation which will
be very useful.

Observation 2.2 In T, there are no two sets of vertices X and Y each of size three such that X
dominates Y.

Proof: Assume that there are two such set X and Y. As T is 3-strong, by Menger’s Theorem
(see e.g. [3, Theorem 5.4.1]), there are three disjoint paths Py, P» and Ps from Y to X. For every
i =1,2,3, we denote the initial and terminal vertices of P; by a; and b; respectively. By hypothesis,
bia; € A(T) for every i = 1,2,3 and so V(P;) induces a cycle of T. Thus, by Theorem 1.4, we obtain
three disjoint 3-cycles in T, contradiction. o

We can directly derive from Observation 2.2, that T" must have at most 10 vertices. Indeed, if T'

has at least 11 vertices, let C' be a 3-cycle of T' and recall that, by Theorem 1.8, 7(T — C) < 2 and
then, as T'— C has at least 8 vertices, it contains a TTy. In this acyclic subtournament, the three first
vertices entirely dominate the three last vertices, which contradicts Observation 2.2.
Obviously, any tournament T' of order at least 4 contains a transitive subtournament 7" of order 3.
Hence, if 4 < |T| < 7, then V(T') — V(I") is a cycle transversal with size at most 4. Suppose now that
|T'| = 8. Then T has a vertex x of out-degree at least 4 and, hence, in its out-neighbourhood, we can
find a copy of T7T3. As a consequence, T admits a transitive subtournament 7" of order 4 and hence,
V(T) — V(T") forms a cycle transversal with size 4.Thus we must have 9 < |V(T)| < 10.

First, we deal with the case |V(T)| = 9.

2.3.1 Case [T|=9

In this case, the vertices of T' cannot all have odd out-degree (as |A(T)| is even). So, at least one
vertex, x, has even out-degree and as T is 3-strong, we have df.(z) = dr(z) = 4. We respectively
denote N (z) and N (x) by X and Y. First, observe that T does not contain a copy 7" of TT5 as



otherwise V(T') — V(T') would be a cycle transversal of size four, contradiction. In particular, this
means that neither X nor Y induces an acyclic subtournament of 7.

Claim 9 There exists a 4-matching from X to Y.

Proof: If this is not the case, then by Konig’s theorem, there is a set () of three vertices that
intersects all the arcs from X to Y. If QN X| =1 and |QNY| = 2, then (Y — Q) U {x} has size
three and dominates X — ) which has size three and we can conclude using Observation 2.2. The case
QN X|=2and |@NY|=1is analogous. So, this means that we have either Q@ C X or Q C Y. By
reversing all arcs if necessary, we may assume that () C X, and denote by v; the vertex of X — Q. By
the choice of @, Y dominates v;. But now, as T(Y) is a tournament on four vertices, it contains Z, a
subtournament on three vertices isomorphic to TT5. Hence, the vertex-set V(Z) U {z,v;} induces a
copy of T'Ts, implying that 7(T') < 4, contradiction. o

Now, we fix a labelling X = {vy,v9,v3,v4} and Y = {wy, wa, w3, ws} such that v;w; € A(T) for
all i =1,2,3,4.

Claim 10 In X, there is no vertex with in-degree 3 in X.

Proof: Suppose w.lo.g. that dy(v1) = 3. As X does not induce an acyclic subtournament, it
means that vy, v3 and vy form a 3-cycle in X, which is w.l.o.g. C' = vv3vy. Since T' is 3-strong vy has
three out-neighbours in Y. If there is a 3-cycle S in Y which does not contain some out-neighbour
w’ of vy, then we could form the three disjoint cycles S, C' and vyw’z. So v; has out-degree exactly
three in Y and we may assume w.l.o.g. that N{'E(vl) = {wy,ws,ws}, and that ¢’ = wywaws or
C" = wzwowy is the only 3-cycle of Y, which means that either wy; dominates C’ or C’ dominates wy.

First, assume that ws dominates C'. As dj(ws4) > 3, we know that C' dominates wys. If vows €
A(T), then {vg, w4, vy, ws, w3} induces a TT5 in T, contradiction. So, we have wzve € A(T), and
similarly, as {vs,wq, v, ws, w1} cannot induce a TTs, we have wivg € A(T). If C' = wiwaws,
then we can form the three disjoint cycles vowsws, viwsr and wivsvy. So we must have C' =
wzwowr. Now wevy € A(T) as otherwise vawyws, wivzvy, vawex are disjoint 3-cycles. For this case
Wol4 Wy, VoV3W3, V1w X are disjoint 3-cycles, contradiction.

So wy is dominated by C’. We must have vqws € A(T) or we could form the disjoint cycles wav4va,
vawsx and viwiwys. Similarly vews € A(T) or we form the disjoint cycles vavsws, vawsx and viwwy.
Now we must have wovs € A(T) since otherwise {vq,vs,v1,ws, w3} induce a TTs, no matter what
the orientation of the arc between ws and ws is. Finally we obtain a contradiction by observing that
V3V4Wa, Vow3x, V1wiwy are disjoint 3-cycles. o

Claim 11 In X, there is no vertex with out-degree 3 in X.

Proof: On the contrary, assume that d§ (v1) = 3. As X does not induce an acyclic subtournament,
it means that vs, vs and vy form a 3-cycle, say w.l.o.g., C' = vyvzvy in X. If there is a 3-cycle S in Y
which does not contain some out-neighbour w’ of vy, then we could form the three disjoint cycles S, C
and vyw'z. So, without loss of generality, we may assume that C' = wywows or C' = wawsw; is a 3-
cycle, and that wyv; € A(T). Furthermore we also have that W = {ws, w3, wy} induce a copy of TT5.
As T is 3-strong and has 9 vertices there is at most one arc from v; to {ws,w3}. There is also at least
one, since otherwise the vertex-set W U {vy, 2} induces a copy of TT5. We may assume (since we have
not fixed the orientation of C’ yet) that viws, wzvy € A(T). Suppose first that ¢’ = wywows. Then
we conclude in that order that the following arcs are in A(T): vsw; € A(T'), or wivsws, VaWaT, V4W4V1
are disjoint 3-cycles, vows € A(T), or w3vsws, v3wyx,v4wavy are disjoint 3-cycles, vsws € A(T), or
WaV3W1, VoWsx, Vaw4vy are disjoint 3-cycles, and vow; € A(T), or wivev3, v1Waws, Vywax are disjoint
3-cycles. Now {v1, ve, v3, w1, wy} induces a copy of T'Ts, contradiction. So we must have C’ = wswaw; .
Then, we must have vow; € A(T), or wyvewa, v3wsx, v1v4wy are disjoint 3-cycles and vswe € A(T) or
V3W3Wa, V1V4Wy, Vow z are disjoint 3-cycles. Now wyvz € A(T), or {vy,va, v3, w1, wa} is a TT5. Then
wsve € A(T), or vawsx, v1v4wye, v3wew; are disjoint 3-cycles. Finally we get the contradiction that
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VoW W3, V1V4Wy, V3waox are disjoint 3-cycles. o

So, now, we can conclude that we cannot have |T| = 9: By symmetry, we assume that there
is no vertex in Y with in or out-degree three inside Y, which means that X and Y both induce
strongly connected subtournaments of T'. For instance, we assume that v;vov3v4 is a 4-cycle and that
vivg € A(T) and vavy € A(T) (all strong tournaments on 4 vertices are isomorphic). If there is a
3-cycle S in Y which does not contain at least one of wq or ws, say we ¢ S for instance, then we form
the cycles S, vowsz and v1v3v4. This means that the two 3-cycles of T(Y') have vertex set {wa, w3, w4}
and {wa, ws, w1 }. Now, if there exists an arc uv from {vs,vs3} to {wy, w4}, then we can find a 3-cycle
in T(X) which does not contain u, a 3-cycle in T(Y’) which does not contain v, and we obtain the
third 3-cycle uvz. Finally, we conclude that {w;,ws} dominates {vs, vs}, but now {ws,wy, z,ve,vs}
induces an acyclic subtournament of 7', contradiction.

2.3.2 Case [T| =10

Let R be a minimal vertex-cut of T. We have |R| > 3 and since every vertex has out-degree at least
|R|, |T| > 2|R| + 1 and we have |R| < 4, so, |R| € {3,4}. Note that T — R cannot contain two
or more non-trivial components, because in this case, two of such components both contain at least
three vertices and we conclude using Observation 2.2. In particular either the initial or the terminal
component of T'— R is trivial. From now on, we assume w.l.o.g. that the last component is trivial,
and we denote it by {z2}. By Lemma 2.1, we know that x5 dominates R. On the other hand, T — R
has at least one non-trivial component, otherwise R is cycle transversal of T' with size at most four.
So, we denote by T} the non-trivial component of T — R.

Claim 12 The initial component of T — R is T;.

Proof: On the contrary, assume that the initial component of 7' — R is not 77, so it is a trivial
component and denote it by {x1}. Fix a 3-cycle C in Ty. By Lemma 2.1, we know that R dominates
x1. First, we deal with the case |R| = 3. In this case, we denote by v and v’ the two vertices of
T — (RU C) different from 1 and z2, and by r, s and t the vertices of R. If there is an arc from
{v,v'} to R, say vr, disjoint from an arc from R to {v,v'}, say sv’, then we form the disjoint cycles
C, z1vr and zosv’. It means that either {v,v’'} dominates R or R dominates {v,v'}. In the first case,
{v,v', 22} dominates R and in the second one, R dominates {x1,v,v'}. In both cases, we can conclude
using Observation 2.2.

So, now we look at the case |R| = 4. We denote by v the vertex of T'— (R U C) different from
x1 and x9, and by 7, s, t and u the vertices of R. If T{R U v) contains a 3-cycle S, this cycle avoids
some vertex of R, say r, and we could form the disjoint cycles C, S and zixor. Otherwise, T(R U v)
is an acyclic subtournament of 7T'. In this case, its initial vertex cannot be v, otherwise v, x2 and the
initial vertex of T'(R) would dominate the three other vertices of R and we could conclude by using
Observation 2.2. Similarly, v is not the terminal vertex of T(R Uwv). So, assume that the initial and
terminal vertex of T(R U v) are respectively 7 and u. As u must have at least four out-neighbours, u
dominates C, and similarly, C' dominates r. Now, if v dominates C, then {x1,v,u} dominates C' and
once again, we conclude by using Observation 2.2. Using x2, we also see that C' does not dominate
v. This means that there exist a 3-cycle S which contains v and two vertices of C, say, a and b. To
conclude, we can form the three disjoint cycles S, cru and zizss. o

Now, we denote by 7" the acyclic subtournament T'— (RUV (T1)) (with last vertex z3). We show
that Ty and {x2} are the only components of T'— R.

Claim 13 We have T" = {x2}.

Proof: On the contrary, assume that there is a vertex af in 7" different from x2. We have
V(T') = {x},z2} as otherwise T; dominates three vertices and we conclude using Observation 2.2.
Observe that since T is |R|-strong, x), dominates R except possibly one vertex. We study the different
cases |R| = 3 and |R| = 4. First, assume that |R| = 3, and we have then |T1| = 5. No vertex of
T1 has in-degree 3 in T3, otherwise the in-neighbourhood of such a vertex dominates three vertices,
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using that vertex and z4 and z, and we conclude with Observation 2.2. So, every vertex of 77 has
exactly in- and out-degree 2, and, hence, T} is the unique regular tournament on 5 vertices (it is also
isomorphic to RT5). The diameter of this tournament equals 2 and hence, each of its arcs lies on a
3-cycle. Now, by Lemma 2.1, there is a 3-matching {ra, sb, tc} from R to T} and we denote by d and
e, with de € A(T), the two vertices of T not involved in this matching. The arc de lies on a 3-cycle of
Ty, say dea. On the other hand, x4 has to dominate one of the two vertices s and t, say, ahs € A(T).
Then, we form the disjoint cycles dea, sbxfy and tcxq, contradiction.

So |R| = 4 and then we have that |T}| = 4. By Lemma 2.1, we know that there is a 4-matching
from R to Ty, we denote it by {qa,rb, sc,td} and assume that abed is a 4-cycle of Ty. If there is a
3-cycle involving one vertex of R and two of 17, say gab for instance, disjoint from a 2-matching from
R to Ty, say {sc,td}, then we can find three disjoint cycles in T'. Indeed, z} is the tail of an arc to s
or to t, say that zbs € A(T), and we can form the cycles gab, x4sc and tdxs. So, we have gb € A(T),
and similarly rc € A(T'), sd € A(T) and ta € A(T). Continuing that way, we see that R dominates
T, and that T — {x2,z}} is no more strongly connected, contradicting 7" is 3-strong. o

Now, we focus on the case |R| = 4. In this case, we have |T}| = 5 and we denote by C' = abede a
Hamilton cycle of T7.

Claim 14 If |R| = 4, then R is an acyclic subtournament of T.

Proof: Otherwise, denote by Cr = rst a 3-cycle of R and by ¢ its fourth vertex. First, assume
that ¢ forms a 3-cycle with two consecutive vertices of C, say that gab is a 3-cycle. If T(b,c,d,e)
contains a cycle, this cycle, Cg and gaxs form three disjoint cycles of T'. So T'(b, ¢, d, e) is an acyclic
subtournament of T" and bd, be, ce € A(T). So, abe is a 3-cycle of T and if gc € A(T) (resp. qd € A(T))
we form the three disjoint cycle Cg, abe and gcxy (resp. gdxs). Thus, we have ¢q € A(T) and
dq € A(T). But now, {b,c,d} dominates {q,e,z2} and we conclude using Observation 2.2.

So, we can assume that ¢ does not form any 3-cycle with two consecutive vertices of C, it means that
either C' dominates ¢ or ¢ dominates C'. As ¢ has at least one out-neighbour in 77 (otherwise R — ¢
is also a vertex-cut of T'), we have that ¢ dominates T7. To conclude, let S be a 3-cycle of T} and y a
vertex of T3 — S. We form the three cycles Cr, S and qyx,. o

So, using that no vertex-cut of T with size four contains a 3-cycle, we can now conclude the case
|R| = 4.

Claim 15 We have |R| = 3.

Proof: Assume that |R| = 4. By Lemma 2.1, we know that there exists a 4-matching from R to
T1. We are looking for such a matching with a special property involving C'. To obtain it, consider the
following procedure on 4-matchings from R to T} starting from a 4-matching {ricy, raca, 7363, 74C4 },
where c¢jcacgeqcs forms a Hamiltonian cycle of Ty: if csry € A(T) then we stop the procedure,
otherwise, we repeat the procedure on the matching {rycs, r1c1, rac2, r3¢3}. We start with a 4-matching
M from R to T7 and the Hamiltonian cycle C' and we apply recursively the procedure. If we stop at
some step, then we are done, otherwise there is a loop in the procedure and after some number of
steps the procedure is back to the initial matching M. In this case, it is easy to see that R dominates
Ty and that T' — x5 is no more strongly connected, contradicting T is 3-strong.

So, without loss of generality, we can assume that {qa, rb, sc, td} forms a 4-matching from R to T} and
that et € A(T). If we can find a 3-cycle S of T which contains one vertex of {q,r, s} and two vertices
of {a,b,c} and which is disjoint from an arc wv with u € {¢,r, s} and v € {a,b, ¢}, then we can form
the three cycles S, det and wvze. Using this argument, we can see that rc € A(T) (otherwise rbe is
a 3-cycle disjoint from qa). If ca € A(T), then using the above argument, we successively see that
sa and ¢b are arcs of T' and finally that ge, ra and sb are also arcs of T. Then, {q,r, s} dominates
{a,b,c} and we conclude with Observation 2.2. So, we have ac € A(T) and as above we also see that
gc € A(T) must hold. Now, using that T is 4-strong (by the assumption that |R| = 4), we know that
the out-neighbourhood of ¢ is exactly R’ = {z2,€e,d, ¢}, which then forms a minimum vertex-cut of 7.
But, R’ contains the cycle det which contradicts Claim 14. o
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From now on, we assume that |R| = 3, and then that |T}| = 6. We denote by C = abcdef a
Hamiltonian cycle of T7. Using a similar procedure as in the previous proof, as R does not dominate
Ty (otherwise T'— x5 is no more strongly connected, contradicting 7" is 3-strong) we can see that there
exists M = {rry, ss1,tt1} a 3-matching from R to T; such that ro the out-neighbour of r1 on C' is
different from s; and ¢; and dominates r. So we assume that r; = a and r9 = b. This means that rab
is 3-cycle.

We study the possible positions of s; and ¢;. We will intensively use the fact that if there exists
a 3-cycle S in T{{c,d, e, f,s,t}) disjoint from an arc uwv with u € {s,t} and v € {¢,d,e, f} then we
obtain the three disjoint cycles rab, S and uvzxs.

Case s1 = ¢, t1 = d. We denote this case by [A 1 2] to mean that the 3-cycle rab is directly
followed on C by the end of one arc of the 3-matching M which is also directly followed on C' by
the end of the last arc of M. If et € A(T'), then we use the 3-cycle tde and the arc sc to conclude.
So, we have te € A(T) and similarly, tf € A(T). Now, if s is contained in a 3-cycle S with two
vertices of {¢,d, e, f}, then there exists an arc from ¢ to {d,e, f} — V(S) and we find the desired three
disjoint cycles. This means that s dominates {c,d, e, f}. To conclude, if there exists a 3-cycle S on
{c,d,e, f} then the vertex of {c,d, e, f} not belonging to S is dominated by s and we also conclude.
So, T'({c,d,e, f}) is an acyclic subtournament of 7" and we have that {s,¢,¢} dominates {d,e, f}.
Thus, we conclude this case using the Observation 2.2.

Case s1 = ¢, t1 = e. We denote this case by [A 1 . 2] to mean that there is a vertex along C
between the ends of the two last arcs of the matching M from R to C. As we assume that we are
not in the previous case, we have that dt € A(T). To avoid having a 3-cycle with one vertex in {s,t}
and two in {c,d, e, f} disjoint from an arc from {s, ¢} to {c,d, e, f}, we see in this order that we have
sde A(T), tf € A(T), se € A(T) and ct € A(T'). Now, as every vertex of {c, d, e, f} is dominated by s
or by t, we know that T'({c, d, e, f}) is acyclic, and then we have ce € A(T), cf € A(T) and df € A(T).
So, we have sf € A(T), otherwise we could form the 3-cycle scf disjoint from the arc te. If st € A(T),
then T{{s,c,d,t, e, f}) is acyclic and we conclude using Observation 2.2. Then, we have ts € A(T)
and thus bf € A(T), otherwise we obtain the disjoint 3-cycles bef, raxs and tsd. This means that fab
is a 3-cycle of T and if there is an arc from r to ¢, d or e, then we form a 3-cycle with this arc and x5
and complete a family of three disjoint cycles with one of tsd or tsc. Finally, er € A(T), dr € A(T)
and er € A(T) and {c,d, e} dominates {r, f,z2}. We conclude with Observation 2.2.

Case s1 = ¢, t; = f. Following our notation, we denote this case by [A 1 .. 2]. We assume that we
are not in one of the previous cases and then that dt € A(T') and et € A(T'). As, tf € A(T), neither
sed nor sde is a 3-cycle of T, and we have sd € A(T') and se € A(T). Now, every vertex of {c,d,e, f}
is dominated by s or t, so we know that T({c,d,e, f}) is acyclic, and then we have ce € A(T),
cf € A(T) and df € A(T). To conclude, observe that if tc € A(T), then ted, sexs, rab are disjoint
3-cycles so, we have ¢t € A(T) and as {c,d, e} dominates {f,t, z2}, we conclude using Observation 2.2.

Case s1 = d, t; = e. This case is denoted by [A . 1 2]. As we assume that we are not in one of the
previous cases, we have in particular that cs € A(T) and ct € A(T). If ft € A(T), then we form the
cycles eft, sdxy and rab. So, we have tf € A(T). As sd € A(T) and rab is a 3-cycle, similarly, neither
cte nor ctf is a 3-cycle of T, and we have ce € A(T) and ¢f € A(T). Now, ¢ has in-degree at least 3
and so ac,rc € A(T). If tb € A(T), then the 3-cycle thc and the arcs sd and ra form a configuration
[A1.. 2] that we settled before. So, we have bt € A(T). Similarly, if ta € A(T), then tab, rc and
sd are in position [A 1 2]. So, we have at € A(T). Now we see, in that order, that se € A(T) or
sde,tfa,rcxy are disjoint 3-cycles; rd € A(T) or red,tfa, sexs are disjoint 3-cycles; bs € A(T) or
sbe,tfa, rdrs are disjoint 3-cycles; and sa € A(T) or Observation 2.2 applied to {a,b,c} and {s,t,z2}
gives the desired contradiction. Now sab, rc, te is of type [A 1. 2] which we have already handled.

Case s1 = d, t; = f. This case is denoted by [A . 1. 2]. As we assume that we are not in one

of the previous cases, we have in particular that cs € A(T), ct € A(T) and et € A(T). If es € A(T),
then we form the cycles sde, tfry and rab. So, we have se € A(T) and then dt € A(T) otherwise rab,
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td and se are in position [A . 1 2] treated before. Finally, as se € A(T) and rab is a 3-cycle, neither
fdt nor fct is a 3-cycle of T, and we have df € A(T) and c¢f € A(T). But now, the set of vertices
{¢,d, e} dominates the set {f,¢,x2} and we conclude using Observation 2.2.

Case s1 = e, t; = f. This case is the last one and is denoted by [A . . 1 2]. Assuming that we
are not in a previous case, we know that dt, ds, ¢t and cs are arcs of T. Now, if tb € A(T'), then bet,
se and ra are in position [A . 1 . 2] which was done before. So, we have bt € A(T) and if bs € A(T),
then {b, c,d} would dominate {s,¢,z2} and we could conclude with Observation 2.2. Thus, we have
sb € A(T) and sbe, tf and ra are in position [A .. 1 2]. So, repeating the arguments, we will conclude
that tcd, ra and sb are in position [A . . 1 2], contradiction because we have seen that ct € A(T).

3 Concluding remarks

In this paper, we were interested in tournaments with few disjoint cycles. Though it seems quite hard
to compute the number of disjoint cycles in tournaments, some sufficient conditions are known to say
that this number is large.

Using the straightforward generalization of Observation 2.2 is easy to see (and was remarked in
[6]) that every k-strong tournament with at least 5k — 3 vertices has k-disjoint 3-cycles: Let p be the
maximum number of disjoint 3-cycles. If p < k — 1, then removing the vertices of p such cycles yields
a transitive tournament of order at least 5k — 3 — 3(k — 1) = 2k and hence, there are two vertex-sets
X and Y of size k such that X dominates Y. However, the fact that T is k-strong taken together
with Observation 2.2 implies that T contains k vertex-disjoint 3-cycles including all the vertices of X
and Y, which contradicts the original assumption p < k — 1.

Another situation possibly leading to the existence of k disjoint cycles is the case when the minimum
degree of the digraph is large enough. Indeed, Bermond and Thomassen [5] conjectured that every
digraph with minimum out-degree at least 2k — 1 has k vertex-disjoint cycles. Let us mention that
recently, with Thomassé, we proved that this conjecture holds for tournaments [2].

Finally, it is NP-complete to decide whether a given digraph has k disjoint cycles (k is part of the
input) [3, Theorem 13.3.2]. We conjecture that this holds even for tournaments. Recall that finding
a minimum cycle transversal is NP-complete by Theorem 1.3.

Conjecture 3.1 [t is NP-hard to find the maximum number of disjoint cycles in a given tournament.
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