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April 23, 20133

Abstract4

We consider the problem of deciding whether a given network with integer capacities has two5

feasible flows x and y with prescribed balance vectors such that the arcs that carry flow in x are6

arc-disjoint from the arcs that carry flow in y. This generalizes a number of well-studied problems7

such as the existence of arc-disjoint out-branchings B+
s , B+

t where the roots s, t may be the same8

vertex, existence of arc-disjoint spanning subdigraphs D1, D2 with prescribed degree sequences9

in a digraph (e.g. arc-disjoint cycle factors), the weak-2-linkage problem, the number partitioning10

problem etc. Hence the problem is NP-complete in general. We show that the problem remains11

hard even for very restricted cases such as two arc-disjoint (s, t)-flows each of value 2 in a network12

with capacities 1 and 2 on the arcs. On the positive side, we prove that the above problem is13

polynomially solvable if the network is acyclic and the arc capacities as well as the desired flow14

values are bounded. Our algorithm for this case generalizes the algorithm (by Perl and Shiloach15

[14] for k = 2 and Fortune Hopcroft and Wyllie [11] for k ≥ 3) for the k-linkage problem in acyclic16

digraphs. Besides, the problem is polynomial in general digraphs if all capacities are one and the17

two flows have the same balance for all vertices in N , but remains NP-complete if the network18

contains at least one arc with capacity 2 (and the others have capacity 1). Finally, we also show19

that the following properties are NP-complete to decide on digraphs: the existence of a spanning20

connected eulerian subdigraph, the existence of a cycle factor in which all cycles have even length21

and finally the existence of a cycle factor in which all cycles have odd length.22

Keywords: arc-disjoint flows, linkages, spanning connected Eulerian digraph, even cycle factor, odd23

cycle factor, acyclic digraph.24

25

26

1 Introduction27

Notation not given below is consistent with [3]. We denote the vertex set and arc set of a digraph28

D by V (D) and A(D), respectively and write D = (V,A) where V = V (D) and A = A(D). The29

digraphs may have parallel arcs but no loops. Paths and cycles are always directed unless otherwise30

specified. We will use the notation [k] for the set of integers {1, 2, . . . , k}.31

An (s, t)-path in a digraph D is a directed path from the vertex s to the vertex t. The underlying32

graph of a digraph D, denoted UG(D), is obtained from D by suppressing the orientation of each33

arc and deleting multiple edges. A digraph D is connected if UG(D) is a connected graph. When34

xy is an arc of D we say that x dominates y. For a digraph D = (V,A) the out-degree, d+D(x)35

(resp. the in-degree, d−D(x)) of a vertex x ∈ V is the number of vertices y in V such that xy (resp.36

yx) is an arc of A. When X ⊆ V shall also write d+X(v) to denote the number vertices in X that are37

dominated by v. A digraph D = (V,A) is Eulerian if d+(v) = d−(v) for all v ∈ V .38

An out-branching rooted at s in a digraph D is a spanning tree in UG(D) such that every vertex39

v 6= s has exactly one arc entering. Equivalently, s has a directed path to every other vertex using40
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only arcs of the tree. We use the notation B+
s to denote an out-branching rooted at s.1

By a spanning subdigraph of a digraph D = (V,A) (also called a factor) we mean a subdigraph2

H = (V,A′) with the same vertex set as D such that every vertex is incident to at least one arc from3

A′, that is, UG(H) has no isolated vertices.In particular, a cycle factor of D is a disjoint union of4

cycles that cover all vertices of D.5

A network N = (V,A, u) is a digraph D = (V,A) equipped with a capacity function u : A→R06

on its arcs. A flow in N is any non-negative function x : A→R0 which satisfies that xij ≤ uij for7

every ij ∈ A, where xij , uij denote, respectively, the flow value on ij and the capacity of ij. The8

balance-vector of a flow x, denoted bx is the function on V which to each vertex i ∈ V associates9

the value bx(i) =
∑

ij∈A xij −
∑

pi∈A xpi. If N = (V,A, u, b), that is, there is also a balance-vector10

specified for N , then a flow x is feasible in N if it satisfies bx(v) = b(v) for all v ∈ V . One of the11

main theorems of flow theory states that it is possible to decide in polynomial time whether or not12

there exists a feasible flow for a given network N = (V,A, u, b) (see e.g. [3, Section 4.8]).13

A path flow along the path P (resp. cycle flow along the cycle C) in a network N is a flow x which14

has xij = k for every arc on P (resp. C) for some positive value k and xij = 0 for all arcs not on P15

(resp. C). The following folklore result (see e.g. [1, Section 3.5] or [3, Section 4.3.1]) is very useful16

when working with flows.17

Theorem 1.1 (Flow decomposition theorem) Every flow x in a network N on n vertices and m18

arcs is the arc-sum of at most n+m path and cycle flows. Furthermore, the paths flows can be taken19

along paths P1, . . . , Pq such that Pi starts in a vertex si with bx(si) > 0 and ends in a vertex ti with20

bx(ti) < 0 for i ∈ [q]. In particular, if bx ≡ 0 there are no paths and x is the arc-sum of at most m21

cycle flows. Given the flow x a decomposition as above can be found in time O(nm).22

An (s, t)-flow is a flow x whose balance-vector is zero for all v 6∈ {s, t} and 0 ≤ bx(s) = −bx(t).23

The number bx(s) is called the value of x. By the flow decomposition theorem, for every (s, t)-flow24

x, there exists an (s, t)-flow x′ (possibly x′ = x) such that bx′(s) = bx(s) and x′ is the arc sum of at25

most n+m path flows along (s, t) paths.A branching flow from s in a network N is a flow x in N26

with balance vector bx(v) = −1 for v 6= s and bx(s) = n− 1, where n denotes the number of vertices27

in N .28

Two flows x, y in a network N are disjoint, respectively, arc-disjoint if xij · yi′j′ = 0 whenever29

{i, j} ∩ {i′, j′} 6= ∅ respectively, whenever ij = i′j′.30

31

The concept of flows in networks constitutes a very useful modelling tool and a large number of32

important problems can be formulated as (minimum cost) flow problems and hence solved in poly-33

nomial time. For a wast collection of results on flows see [1] (see also [3] for some other applications34

of flows to digraph problems). There are, however, a number of natural optimization problems that35

cannot be solved in polynomial time using the standard flow machinery, even though, the problems36

have a ’flow flavour’ in that they deal with paths and cycles in digraphs. One such example is the37

weak-k-linkage problem, where we are given vertices s1, s2, . . . , sk, t1, t2, . . . , tk and wish to decide the38

existence of k arc-disjoint paths P1, . . . , Pk such that Pi is an (si, ti)-path for i ∈ [k]. A classical39

result by Fortune, Hopcroft and Wyllie [11] asserts that the weak-k-linkage problem is NP-complete40

for all k ≥ 2. Another example not solved by the flow theory is given by the problem of finding three41

(s, t)-paths in a digraph D = (V,A) so that the first two may share arcs from a prescribed subset A′42

of A, but the third cannot share any arc with the other two.43

44

In this paper, to obtain a more general framework including both the classical flow problems and45

also the problems mentioned above, we consider the question of deciding whether a given network with46

integer capacities has two feasible flows x and y with prescribed balance vectors such that the arcs47

that carry flow in x are (arc-)disjoint from the arcs that carry flow in y. This generalizes a number48

of well-studied problems such as the existence of arc-disjoint out-branchings B+
s , B+

t where the roots49

s, t may be the same vertex, existence of arc-disjoint spanning subdigraphs D1, D2 with prescribed50

degree sequences in a digraph (e.g. arc-disjoint cycle factors), the weak-2-linkage problem, the number51

partitioning problem etc.52

In all these generalizations, the values of the capacity function play an important role. For instance, to53

model the the existence of arc-disjoint out-branchings, we need to use a branching flow on a network54
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with a constant capacity function (identically equal to n− 1, where n is the number of vertices of the1

considered network). As a direct corollary of Edmond’s branching theorem [9], we obtain in Section 32

a polynomial algorithm to decide if a network with capacity function identically equal to n−1 admits3

k arc-disjoint branching flows from a given vertex s. However, if we restrain the capacity function4

to take values in {1, 2}, we show that the problem becomes NP-complete. In Section 4, we further5

investigate the role of the capacity function in the status of the studied problems. In particular, if6

the capacity function is identically equal to 1, then we can decide in polynomial time if a networks7

contains two arc-disjoint flows with a same balance vector. We even generalize this result to k arc-8

disjoint flows, always with the same balance vector. Once again, we show that a slight modification9

in the capacity function (e.g. fixing one arc with capacity 2 and giving all the others capacity 1) leads10

to an NP-complete problem.11

12

Another positive result in this context is given in Section 5. The arc-disjoint flow problem is13

polynomially solvable if the network is acyclic and the arc capacities as well as the desired flow values14

are bounded. Our algorithm for this case generalizes the algorithm (by Perl and Shiloach [14] for15

k = 2 and Fortune Hopcroft and Wyllie [11] for k ≥ 3) for the k-linkage problem in acyclic digraphs.16

Finally, in order to provide tools for polynomial reductions in our NP-completeness proofs, we study17

some questions concerning spanning Eulerian subdigraphs of a given digraph, which are also worthy of18

interest by themselves. For instance, in Section 2, we prove that deciding the existence of a spanning19

connected Eulerian subdigraph is an NP-complete problem. In Section 6, we also address the problems20

of the existence of a cycle factor in which all cycles have even length, respectively odd, in a given21

digraph, and show that these problems are NP-complete.22

2 Eulerian subdigraphs and Eulerian factors23

We start with a complexity result which is of independent interest (the corresponding result for24

undirected graphs was shown in [15]) and which will be used in the following section.25

It is a classical application of flows to decide in polynomial time if digraph has a spanning (i.e. every26

vertex has non-zero degree) Eulerian subdigraph. For sake of completeness we briefly indicate the27

proof.28

Theorem 2.1 (Classical) There exists a polynomial time algorithm to decide if a digraph has span-29

ning Eulerian subdigraph.30

Proof: Starting from a digraph D = (V,A), we construct the network N = (V ′, A′, u) as follows.31

The set V ′ contains vertices s and t and for each vertex v of V , we add to V ′ two vertices v1 and v2.32

For each vertex in v we create the arcs sv1, v2v1 and v2t in A′ and for each arc uv of D we add to A′33

the arc u1v2. Finally, every arc gets capacity 1 in N except the arcs of type v2v1 which have infinite34

capacity (or say capacity n, where n = |V |). Now, it is easy to check that D has a spanning Eulerian35

subdigraph if, and only if, N has an (s, t)-flow of value n. �36

37

However, if we ask for a connected spanning Eulerian subdigraph, the problem becomes NP-38

complete.39

Theorem 2.2 It is NP-complete to decide whether a digraph D = (V,A) contains a spanning Eulerian40

subdigraph which is connected1.41

Proof: We will describe a polynomial reduction from 3-SAT to the problem of deciding whether42

a given digraph contains a spanning Eulerian subdigraph. For an integer i, let W [ui, vi, p, q] be the43

digraph (the variable gadget) with vertex set {ui, vi, yi,1, yi,2, . . . , yi,p, zi,1, zi,2, . . . zi,q} and arc set44

equal to the union of the arcs of the two (u, v)-paths uiyi,1yi,2 . . . yi,pvi, uizi,1zi,2 . . . zi,qvi.45

Let F be an instance of 3-SAT with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. We may46

assume that each variable x occurs at least once either in the negated form or non-negated in F . The47

ordering of the clauses C1, C2, . . . , Cm induces an ordering of the occurrences of a variable x and its48

1Following Catlin’s [8] notion for undirected graphs, we call such a digraph supereulerian
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s t

Figure 1: An illustration of the digraph DF when F = (x1 + x̄2 + x3)(x1 + x2 + x̄3)(x̄1 + x2 + x̄3).
The black vertices are the vertices ui, vi of the variable gadgets.

negation x̄ in these. With each variable xi we associate a copy of W [ui, vi, pi, qi] where xi occurs pi1

times and x̄i occurs qi times in the clauses of F . Identify the end vertices of these digraphs by setting2

vi = ui+1 for i = 1, 2, . . . , n− 1. Let s = u1 and t = vn. Let D′ be the digraph obtained in this way2.3

For each i ∈ [m] we associate the clause Ci with three of the vertices Vi = {ai,1, ai,2, ai,3} from4

the graph D′ above as follows: assume Ci contains variables xj , xk, xl (negated or not). If xj is not5

negated in Ci and this is the r’th copy of xj (in the order of the clauses that use xj), then we identify6

ai,1 with yj,r and if Ci contains x̄j and this is the k’th occurrence of x̄j , then we identify ai,1 with zj,k.7

We make similar identifications for ai,2, ai,3. Thus D′ contains all the vertices {aj,i|j ∈ [m], i ∈ [3]}.8

Claim 1 D′ contains an (s, t)-path P which contains at least one vertex from Vj = {aj,1, aj,2, aj,3}9

for each j ∈ [m] if and only if F is satisfiable.10

Proof of Claim 1: Suppose P is an (s, t)-path which contains at least one vertex from Vj for each11

j ∈ [m]. By construction, for each variable xi, P traverses either the subpath uiyi,1yi,2 . . . yi,pi
vi or12

the subpath uizi,1zi,2 . . . zi,qivi of the corresponding gadget. Now define a truth assignment by setting13

xi true precisely when the first traversal occurs for i. This is a satisfying truth assignment for F since14

for any clause Cj at least one literal is contained in P and hence becomes true by the assignment15

(the literals traversed become true and those not traversed become false). Conversely, given a truth16

assignment for F we can form P by routing it through all the true literals in the chain of variable17

gadgets. �18

19

Now let DF be obtained from D′ by adding 3 new vertices {a′i,1, a′i,2, a′i,3} and the arcs of the20

6-cycle ai,1a
′
i,1ai,2a

′
i,2ai,3a

′
i,3ai,1 for each i ∈ [m] and finally adding the arc ts, see Figure 1. Let H be21

a spanning Eulerian subdigraph of DF . Since a′i,j has in- and out-degree one for every i ∈ [m] and22

2This part of the construction has been used several times before in NP-completeness proofs, see e.g. [4, 5, 6].
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j ∈ [3], H has to contain all the 6-cycles ai,1a
′
i,1ai,2a

′
i,2ai,3a

′
i,3ai,1 for i ∈ [m]. Moreover, since s has1

in-degree one in DF , H must contain the arc ts and hence also a directed (s, t)-path. As the union2

of the m 6-cycles ai,1a
′
i,1ai,2a

′
i,2ai,3a

′
i,3ai,1 forms an Eulerian subdigraph of DF , H has to contain a3

directed (s, t)-path P which is a subdigraph of D′. Furthermore, if H is connected, P has to contain at4

least one vertex from every Vi in order to connect all the 6-cycles. Thus, by Claim 1, F is satisfiable.5

Conversely, by Claim 1, if F is satisfiable we obtain the desired spanning Eulerian subdigraph H by6

taking an (s, t)-path P which contains at least one vertex from Vi, i ∈ [m] and the adding the m7

6-cycles as above. �8

9

Using similar arguments, we can also prove the following.10

Theorem 2.3 It is NP-complete to decide whether a digraph D = (V,A) contains a spanning Eulerian11

subdigraph D′ such that every connected component of D′ has an even number of vertices.12

Proof: In the proof above, we replace each 6-cycle corresponding to a clause by a directed 9-cycle13

ai,1bi,1a
′
i,1ai,2bi,2a

′
i,2ai,3bi,3a

′
i,3ai,1, where all the 3m vertices bi,j are distinct. If the total number of14

vertices of DF is odd (i.e. n + m is even), we subdivide once the arc st to obtain an even number15

of vertices. Now it is easy to check that the new digraph has a spanning Eulerian factor all of whose16

components are even if and only if it has a connected spanning Eulerian digraph. �17

18

Finally we state the following observation which will be used in the next section.19

Lemma 2.4 Every connected Eulerian digraph H = (V,A) with |V | = 2k even has a vertex partition20

V = S ∪ T , with |S| = |T | = k and a collection of |V | arc-disjoint paths P1, . . . , Pk, Q1, . . . , Qk such21

that P1, . . . , Pk start in distinct vertices of S and end in distinct vertices of T and Q1, . . . , Qk start in22

distinct vertices of T and end in distinct vertices of S.23

Proof: The following linear time algorithm constructs the desired partition and the paths: Find a24

closed Eulerian walk W of H in linear time. Let T = ∅ and S = ∅ and let i = 1, j = 0. Start at an25

arbitrary vertex v; add v to S and let P1 be the path formed by the arc from v to its successor w in26

W . Increase i to 2. Let j = 1, add w to T and let Q1 = W [w,w′] and add w′ to S, where w′ is the first27

vertex of W that has not been seen so far. Increase j to 2. In the general step: after having added a28

new vertex z to S (resp. T ), we continue along W to the first new vertex z′ and let the next path Pi29

(resp. Qj) be any (z, z′)-path contained in W [z, z′] and increase i (resp. j) by one. This process will30

eventually stop when we reach v for the last time (having traversed all of W ) and now we let Qk be31

any path contained in W [z, v] where z is the last vertex added to T . �32

33

3 Arc-disjoint branching flows34

In this section, we consider flows along branchings. Clearly a digraph D has an out-branching from35

s if and only if it has an (s, v)-path for all v ∈ V . Recall that a branching flow from s in a network36

N is a flow x in N with balance vector bx(v) = −1 for v 6= s and bx(s) = n− 1, where n denotes the37

number of vertices in N . We have the following straight equivalence.38

Lemma 3.1 A digraph D = (V,A) has an out-branching B+
s rooted at s if and only if the network339

N = (V,A, u ≡ |V | − 1) has a branching flow from s.40

Proof: By the flow decomposition theorem and the remark above, a digraph D = (V,A) has an41

out-branching B+
s if and only if the network we obtain by letting all capacities equal to n − 1 has a42

branching flow from s. �43

44

3That is, the capacity of each arc ij is |V | − 1

5



Note that when we consider branching flows below, we are only interested in the acyclic part of1

such a flow, that is, the collection of paths from the root to all other vertices that we obtain by flow2

decomposition (we leave out flow along cycles since that does not contribute to the balance of the flow).3

4

Edmonds [9] characterized digraphs with k arc-disjoint branchings from a prescribed root.5

Theorem 3.2 (Edmonds’ branching theorem) A digraph D = (V,A) has k arc-disjoint branch-6

ings all rooted at s if and only if D has k arc-disjoint (s, v)-paths for every v ∈ V − s.7

By Edmonds’ branching theorem and the algorithmic proof of the theorem due to Lovász [13] (see8

also [3, Section 9.3]), we have the following characterization of networks with all capacities equal to9

n− 1 that have k arc-disjoint branching flows:10

Theorem 3.3 A network N = (V,A, u ≡ |V | − 1) has k arc-disjoint branching flows x1, x2, . . . , xk,11

all from s, if and only if there are k arc-disjoint (s, v)-paths in N for every v ∈ V − s. Furthermore,12

there is a polynomial algorithm for constructing such flows x1, x2, . . . , xk when they exist. �13

14

A branching flow x may have flow equal to r ≤ n − 1 on some arc, corresponding to that arc15

belonging to r of the paths whose union forms the branching flow x. This means that if we keep only16

the arcs used by x and one arc fails (is deleted) then s may be unable to reach as many as r vertices17

in the chosen solution. In particular, if r = n − 1, one arc failure can disconnect s from all other18

vertices in the chosen branching. Thus, from a practical point of view (say, in an application where19

branchings are used to route information), it could be interesting to consider branching flows where20

the maximum flow value in an arc is as small as possible. Clearly a unit capacity network has two21

arc-disjoint branching flows from a given root s if and only if s has at least two arcs to every other22

vertex. So the first interesting case is arc-disjoint branching flows in networks with maximum capacity23

2. Figure 2 shows a typical structure of the acyclic part of a branching flow when uij ≤ 2 for every24

arc ij in N . Notice that the subdigraph corresponding to the arcs that carry flow contains a number25

of out-branchings from s, all of which satisfy that s has out-degree at least n−1
2 .26

2

1

1

11

1

2

2

2 1

1

1

2

2

1

1 1

1

1

s

Figure 2: A branching flow from s in a network with capacities 1 and 2.

However, despite the simple structure of branching flows, we obtain the following result concerning27

arc-disjoint branching flows in networks with maximum capacity 2,28

Theorem 3.4 It is NP-complete to decide whether a network N = (V,A, u), where uij ∈ {1, 2} for29

all ij ∈ A, has two arc-disjoint branching flows from s30
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Proof: We will give a polynomial reduction from the problem of deciding whether a digraph D1

contains an Eulerian factor with all components even to the problem above. Then the result will2

follow from Theorem 2.3. Given a digraph D = (V,A) with an even number of vertices, we form the3

network N by adding one new vertex s and all possible arcs from s to V . These arcs get capacity 24

and all other arcs (those in A) get capacity 1. Suppose N has two arc-disjoint branching flows x, y5

from s. As these flows send a total of 2|V | units out of s, all arcs out of s are filled by either x or y6

(but not both). Since x, y are branching flows, each vertex receiving flow 2 from s in either flow must7

send one unit to some other vertex. This implies that x and y induce a partition V = X ∪ Y of V ,8

into sets of the same size (implying that |V | = 2k is even) where X (resp. Y ) is the set of vertices9

receiving flow 2 from s in x (resp. y). By the remark above on vertices that receive 2 units of flow and10

the flow decomposition theorem, x can be decomposed into k arc-disjoint paths P1, . . . , Pk all of which11

start in distinct vertices of X and end in distinct vertices of Y . Similarly y can be decomposed into k12

arc-disjoint paths Q1, . . . , Qk all of which start in distinct vertices of Y and end in distinct vertices of13

X. Since x and y are arc-disjoint, the digraph H formed by the union of P1, . . . , Pk and Q1, . . . , Qk14

is Eulerian. Furthermore, every connected component C of H is even, since (X,Y ) is a partition of15

V and |V (C) ∩X| = |V (C) ∩ Y | because every vertex in X (resp. Y ) is the terminal vertex of some16

Qi (resp. Pj).17

Conversely suppose D contains an Eulerian factor H ′ all of whose components H ′1, . . . ,Hp are18

even. By Lemma 2.4 we can find a partition of each connected component Hr of H into two sets19

Xr, Yr of the same size kr and paths Pr,1, . . . , Pr,kr , all of which start in distinct vertices of Xr and20

end in distinct vertices of Yr as well as paths Qr,1, . . . , Qr,kr all of which start in distinct vertices of21

Yr and end in distinct vertices of Xr. Now we can obtain the desired flows x, y by letting x (resp. y)22

saturate the arcs from s to X1 ∪ . . . ∪Xp (resp. Y1 ∪ . . . ∪ Yp) and send flow one on all of the paths23

P1,1, . . . , P1,k1
, . . . , Pp,1, . . . , Pp,kp

(resp. Q1,1, . . . , Q1,k1
, . . . , Qp,1, . . . , Qp,kp

). �24

25

4 Flows in unit and almost unit capacity networks26

Even in unit capacity networks deciding the existence of arc-disjoint flows x and y is difficult because27

the weak-2-linkage problem is a special case.28

Theorem 4.1 It is NP-complete to decide whether a unit capacity network contains arc-disjoint flows29

x and y with prescribed balance vector for each.30

Proof: We reduce the weak 2-linkage problem to this problem. This follows from the easy observation31

that a digraph D = (V,A) contains arc-disjoint (s1, t1)− and (s2, t2)-paths if and only if the unit32

capacity network N = (V,A, u ≡ 1) obtained by adding capacity 1 to every arc of D contains arc-33

disjoint flows x and y where x is an (s1, t1)-flow of value 1 and y is an (s2, t2)-flow of value 1. Thus34

the claim follows from the NP-completeness of the weak-2-linkage problem [11]. �35

36

Next we consider the case when the two flows must have the same balance at every vertex and37

show that this problem is tractable in unit capacity networks, whereas it becomes NP-complete if we38

allow arcs with capacity 1 and 2.39

We need the following lemma, which is generalized by Lemma 4.4, but of the proof given here is more40

natural in some sense.41

Lemma 4.2 The edge set of every Eulerian bipartite graph G = (V,E) can be split into two sets42

E1, E2 such that dEi(v) = d(v)/2 for all v ∈ V . Furthermore, this partition can be computed in43

polynomial time.44

Proof: Since G is Eulerian and bipartite we can decompose E into cycles of even length. Now45

taking every second edge on each of those cycles in E1 and the others in E2, we obtain the desired46

partition. As the decomposition of E into cycles can be computed in polynomial time (greedily for47

instance), we obtain the claimed partition in polynomial time also. �48

49
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Theorem 4.3 Let N = (V,A, u ≡ 1, b) be a unit capacity network with a prescribed balance vector1

b such that4 b 6≡ 0. There exist arc-disjoint flows x and y in N both with balance vector b (that is,2

bx ≡ by ≡ b) if and only if N has a feasible flow z with balance vector bz ≡ 2b. Hence one can decide3

the existence of x and y in polynomial time.4

Proof: One implication is clear so assume N has a feasible flow z with balance vector 2b. Let5

P1, . . . , P2k, C1, . . . , Cr be a decomposition of z into an even number, 2k of path flows and r ≥ 0 cycle6

flows each of value 1. Let V1 = {v ∈ V : b(v) > 0} and V2 = {v ∈ V : b(v) < 0}. Each Pi starts in a7

vertex of V1 and terminates in a vertex of V2. Define the bipartite graph B = (V1, V2, E) where each8

path Pi corresponds to an edge in B between its end vertices. Since 2b(v) is even for every v ∈ V , B9

is Eulerian and now we can apply Lemma 4.2 to partition P1, . . . , P2k into two sets of k paths such10

that the union of each of these sets gives a flow with balance b in N . As P1, . . . , P2k are arc-disjoint11

the theorem follows. �12

13

It is possible to generalize this result to the problem of finding k arc-disjoint flows in a network14

with unit capacities. First, we generalize the Lemma 4.2.15

Lemma 4.4 Let k be an integer and G = (V,E) a bipartite graph in which the degree of every vertex is16

a multiple of k for every vertex x. Then E can be split into sets E1, . . . , Ek such that dEi(v) = d(v)/k17

for all v ∈ V and all i ∈ {1, . . . , k}. This partition can be computed in polynomial time.18

Proof: We construct an auxiliary bipartite graph D′ obtained from D by splitting every vertex19

into vertices of degree k. More precisely, for every vertex v of G, with d(v) = kp for some integer20

p, we create p copies of v: v1, . . . , vp. Now, for every edge vw ∈ E(G), we add an edge between a21

copy vi of v and a copy wj of w with the constraint that every vertex in G′ must have degree at most22

k. At the end of the construction, every vertex of G′ has degree exactly k. Now, G′ is a k regular23

bipartite graph and it is possible to partition E(G′) into k sets E′1, . . . , E
′
k, each of them forming a24

matching on G′ (see [7, Theorem 17.2]). Finally, for each set i, we define Ei as the set of edges of25

E(G) corresponding to edges of E′i. If, for a vertex v of G, we have created p copies in G′, then, v26

will have degree p in each set Ei. �27

28

Now, using Lemma 4.4, the generalization of Theorem 4.3 is straightforward, and we obtain the29

following.30

Theorem 4.5 Let k be an integer and N = (V,A, u ≡ 1, b) be a unit capacity network with a prescribed31

balance vector b such that b 6≡ 0. There exist k arc-disjoint flows in N all with balance vector b if and32

only if N has a feasible flow z with balance vector bz ≡ kb. Hence one can decide the existence of33

these flows in polynomial time. �34

35

We now return to the case of two arc-disjoint flows with the same balance vector, and study what36

happens if we slightly change the condition of unit capacities. Surprisingly, as soon as we allow just37

one arc to have capacity 2, the problem becomes NP-complete.38

Theorem 4.6 It is NP-complete to decide whether a network N = (V,A, u, b) with arc capacities 139

and 2 and at least one arc with capacity 2 has two arc-disjoint flows with balance vector b.40

Proof: We show how to reduce the weak 2-linkage problem to the problem above in polynomial41

time. Given an instance [D = (V,A), s1, s2, t1, t2] of the weak 2-linkage problem (that is, we wish to42

decide whether D has arc-disjoint (s1, t1) and (s2, t2)-paths) we construct the network N as follows:43

first add new vertices s, s′, s′′, s3 and t, t′, t′′, t3 and the arcs st′′, ss1, s′s2, s′s3, s′′s3, s′′t, t1t, t2t
′,44

t3t
′, t3t

′′ and s3t3 (see Figure 3).45

In N , every arc has capacity 1, except s3t3 which has capacity 2. We fix also the balance vector46

b(s) = b(s′) = b(s′′) = 1, b(t) = b(t′) = b(t′′) = −1 and every other vertex x of N satisfies b(x) = 0.47

4If b ≡ 0 then just take x and y to be zero flows.
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Figure 3: The reduction from the weak 2-linkage problem in the proof of Theorem 4.6 (the non-zero
balance values are indicated and all the arcs have capacity 1, except the bold arc s3t3).

The construction is clearly polynomial in the size of D and we will see that D has arc-disjoint (s1, t1)1

and (s2, t2)-paths if and only if N has two arc-disjoint flows with balance vector b. First, assume2

that D contains two arc-disjoint (s1, t1) and (s2, t2)-paths P1 and P2. Then we define the flow x3

saturating by 1 unit of flow the arcs of P1 and the arcs ss1 and t1t. To complete the flow x, we4

fix x(s′s3) = x(s′′s3) = x(t3t
′) = x(t3t

′′) = 1 and x(s3t3) = 2. The other arcs receive value 0 for5

x. The flow y saturates by 1 unit of flow the arcs of P2 and the arcs s′s2 and t2t
′. We fix also6

y(s′′t) = y(st′′) = 1 and y(e) = 0 for every other arcs e. Then, we check that the two flows x and y7

are arc-disjoint and have balance vector b.8

Conversely, assume that N admits two arc-disjoint flows x and y with balance vector b. As there are9

only two arcs of capacity 1 going out of s, x has to saturate one of the two and y the other, so we10

may assume that x(ss1) = 1. Then, we have y(st′′) = 1 and x(t3t
′′) = 1. As there are only two arcs11

of capacity 1 entering in t′, we have x(t3t
′) = 1 or y(t3t

′) = 1. In this later case, the arc s3t3 would12

carry 1 unit of both x and y, which is not possible as x and y are arc-disjoint. So, we have y(t2t
′) = 113

and x(t3t
′) = 1, and then, x(s3t3) = 2, x(s′′s3) = x(s′s3) = 1 and finally y(s′′t) = y(s′s2) = 1 and14

x(t1t) = 1. So, in the copy of D, we have 1 unit of flow x arriving at s1 and leaving at t1 and 1 unit15

of flow y arriving at s2 and leaving at t2. As these two flows are arc-disjoint, it means that we have16

arc-disjoint (s1, t1) and (s2, t2) paths in D. �17

18

To conclude this section, we focus on the problem of computing arc-disjoint (s, t)-flows with the19

same initial (s) and terminal (t) vertices. If we look for flows of value 1, then we just have to compute20

the maximum number of arc-disjoint paths from s to t, and use one path for each flow. For flows of21

value 2, things become more complicated. If the network N only contains arcs with capacity 1, then,22

by Theorem 4.5, there exists k arc-disjoint (s, t)-flows of value 2 in N if, and only if, there exists 2k23

arc-disjoint paths from s to t (using two paths to carry one flow). If we relax a little bit the condition24

on the capacities and allow one arc e of capacity 2 in N , then, we can still decide if there exists k25

arc-disjoint (s, t)-flows in N or not. Indeed, we replace e by two parallel arcs of capacity 1 and, as26

previously, compute the maximum number of arc-disjoint (s, t)-paths in the new network N ′. If this27

number is less than 2k, the desired flows do not exist. If it is larger than 2k the flows exist even if28

we delete one copy of e. So we may assume that the maximum number of (s, t)-paths in N ′. If two29

of these paths use the two parallel arcs corresponding to e, then we use these two paths to carry the30

same flow. And we construct the other flows by taking arbitrarily two paths to carry one flow.31

Finally, in this context, if we allow two arcs to have capacity 2, then the problem is no more tractable,32

as stated by the following theorem.33

Theorem 4.7 It is NP-complete to decide whether a network N with arc capacities 1 and 2 and at34

least two arcs with capacity 2 has two arc-disjoint (s, t)-flows of value 2 for prescribed vertices s, t of35

9



N .1

Proof: We show how to reduce the weak 2-linkage problem to the problem above in polynomial2

time. Given an instance [D = (V,A), s1, s2, t1, t2] of the weak 2-linkage problem (that is, we wish to de-3

cide whether D has arc-disjoint (s1, t1) and (s2, t2)-paths) we construct the network N as follows: first4

add new vertices s, s′1, s
′
2, t, t

′
1, t
′
2, s2,a, s2,b, t2,a, t2,b and the set A′ of arcs: A′ = {ss′1, s′1s1, t1t′1, t′1t, s′1t′1,5

ss2,a, ss2,b, s2,as
′
2, s2,bs

′
2, s
′
2s2, t2t

′
2, t
′
2t2,a, t

′
2t2,b, t2,at, t2,bt, s

′
2t
′
2}. The arcs ss′1 and t′1t get capacity 26

and all the other arcs get capacity 1 (see Figure 4). Clearly the construction is polynomial in the size7

of [D = (V,A), s1, s2, t1, t2].8

s1

s2
s′2

t2,a

2

s′1

s2,a

s2,b

t1

t2

-2

t2,b

s t

t′2

t′1

Instance of the

weak 2-linkage problem

Figure 4: The reduction from the weak 2-linkage problem in the proof of Theorem 4.7 (the non-zero
balance values are indicated, in s and t, and all the arcs have capacity 1, except the bold arcs ss′1 and
t′1t).

Assume that D has a pair of arc-disjoint (s1, t1), (s2, t2)-paths P1, P2. Then we can obtain two arc-9

disjoint (s, t)-flows x, y in N by letting x saturate all arcs in the paths ss′1s1∪P1∪ t1t′1t and ss′1t
′
1t (so,10

ss′1 and t′1t carry 2 units of flow), and y saturate all arcs of the arc-disjoint paths ss2,as
′
2s2∪P2∪t2t′2t2,at11

and ss2,bs
′
2t
′
2t2,bt. Thus, we obtain two arc-disjoint (s, t)-flows of value 2.12

Conversely assume x and y are arc-disjoint (s, t)-flows of value 2 inN . Clearly, by flow preservation,13

together x and y saturate all the arcs in A′. As, x and y are arc-disjoint, one of them, say x, saturates14

ss′1. Then, x saturates also s′1t
′
1, s′1s1, t′1t and t1t

′
1. It means that there exists an (s1, t1)-path in D15

which carries 1 unit of the flow x. Similarly, y has to saturate the remaining arcs of A′ and also a16

(s2, t2)-path in D proving that [D = (V,A), s1, s2, t1, t2] is a ’yes’-instance. �17

18

Remark that in the above reduction, we fixed exactly two arcs with capacity 2, but if we want to19

have more, we can put capacity 2 on any subset of the arcs of D. Indeed, we asked for two arc-disjoint20

flows of value 1 in D and capacities greater than 1 on the arcs does not change the problem.21

The proof above also shows that it is NP-complete to decide the existence of two arc-disjoint22

(s, t)-flows x, y where x has value 2 and y has value 1. In particular (the set B below corresponds to23

arcs of capacity 2, ss′1 and t′1t) the following holds.24

Theorem 4.8 It is NP-complete to decide whether a given digraph D = (V,A) contains three (s, t)-25

paths P1, P2, P3 so that P3 is arc-disjoint from both P1 and P2 and P1, P2 may share arcs only from a26

specified set B ⊆ A with |B| ≥ 2. �27

28

5 (Arc-)disjoint (s, t)-flows in acyclic digraphs29

We now turn our attention to acyclic digraphs. Motivated by the fact that the weak-k-linkage prob-30

lem is polynomially solvable for fixed k in acyclic digraphs [11], we expect that we may find more31

polynomial instances for (arc-)disjoint flow problems when the networks in question are acyclic. We32

first observe that if we do not bound the values of the flows we still get NP-complete problems.33

Theorem 5.1 It is NP-complete to decide, for a given acyclic network N = (V,A, u) and a natural34

number k, whether N has two arc-disjoint (s, t)-flows both of value k.35
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Proof: We reduce the classical NP-complete number partition problem [12, page 223] to our problem.1

The number partition problem is a follows: given a set S = {a1, a2, . . . , ap} of integers such that2 ∑
i∈[p] ai = 2K for some integer K; Does there exists J ⊂ {1, 2, . . . , p} such that

∑
j∈J aj = K?3

Given an instance of this problem we form the network N by taking the union p paths svit, i ∈ [p]4

where svi and vit both have capacity ai for i ∈ [p]. Clearly N has arc-disjoint (s, t)-flows x, y, each of5

value K if and only if there exists a subset J such that
∑

j∈J aj = K so the claim follows. �6

7

Now, we focus on the case when k is fixed, and first, when k = 2. The following algorithm8

generalizes the algorithm for the 2-linkage problem by Perl and Shiloach [14].9

Theorem 5.2 There exists a polynomial algorithm for deciding whether an acyclic network N =10

(V,A, u) with uij ∈ {1, 2} for all ij ∈ A has vertex disjoint flows x1 and x2 such that xi is an11

(si, ti)-flow of value 2 for i = 1, 2, where s1, s2, t1, t2 are distinct prescribed vertices of V .12

Proof: Given an instance [N = (V,A, u), s1, s2, t1, t2] of the flow problem above, we first modify13

N so that d−(si) = d+(tj) = 0 for i, j ∈ [2]. As we are looking for vertex disjoint flows this will not14

change the problem. Now form a new digraph DN whose vertex set is the set of all 4-tuples of vertices15

u, v, p, q of V such that {u, v} ∩ {w, z} = ∅ (but u = v or w = z is possible). The pair u, v (and w, z)16

are called cousins and the positions (1,2) (3,4) in the vector corresponding to a vertex of DN are17

called cousin coordinates.18

We say that a vertex p of a 4-tuple X is minimal (in X) if p cannot be reached in N from any19

other vertex q distinct from p in X. Remark that every 4-tuple contains at least one minimal vertex20

as N is acyclic. The arcs of DN are defined as follows :21

Let X = (p1, p2, q1, q2) be a vertex of DN22

• If p1 is minimal in X and p1p
′
1 is an arc of N such that p′1 6∈ {q1, q2} then we add the arc23

(p1, p2, q1, q2)→(p′1, p2, q1, q2) to A(DN ). If p1 = p2 and the capacity of p1p
′
1 is 2, then we also24

add the arc (p1, p2, q1, q2)→(p′1, p
′
1, q1, q2) to A(DN ).25

• If p2 is minimal in X and p2p
′
2 is an arc of N such that p′2 6∈ {q1, q2} then we add the arc26

(p1, p2, q1, q2)→(p1, p
′
2, q1, q2) to A(DN ).27

• If q1 is minimal in X and q1q
′
1 is an arc of N such that q′1 6∈ {p1, p2} then we add the arc28

(p1, p2, q1, q2)→(p1, p2, q
′
1, q2) to A(DN ). If q1 = q2 and the capacity of q1q

′
1 is 2, then we also29

add the arc (p1, p2, q1, q2)→(p1, p1, q
′
1, q
′
1) to A(DN ).30

• If q2 is minimal in X and q2q
′
2 is an arc of N such that q′2 6∈ {p1, p2} then we add the arc31

(p1, p2, q1, q2)→(p1, p2, q1, q
′
2) to A(DN ).32

By the flow decomposition theorem, N has the desired flows x1, x2 if and only if N contains paths33

P1, P2, Q1, Q2 where Pi is an (s1, t1)-path i = 1, 2 and Qj is an (s2, t2)-path j = 1, 2 such that Pi and34

Qj are vertex disjoint for i, j ∈ {1, 2}.35

We claim that N has these paths if and only if there is a directed path from (s1, s1, s2, s2) to36

(t1, t1, t2, t2) in DN . Suppose first that P1, P2, Q1, Q2 are paths such Pi and Qj are vertex disjoint37

i, j ∈ {1, 2} and such that x1 is the union of flows of value 1 on P1, P2 and x2 is the union of flows38

of value 1 on Q1, Q2. Let O be an acyclic ordering5 of N . Clearly P1, P2, Q1, Q2 move consistently39

with O. Hence we can find a path from (s1, s1, s2, s2) to (t1, t1, t2, t2) in DN by processing the40

arcs of P1, P2, Q1, Q2 one by one, always modifying (by following the corresponding arc from one41

of P1, P2, Q1, Q2 ) a coordinate of the current 4-tuple whose current vertex is not one of t1, t2 and42

which has the lowest number in O. Observe that such a vertex is minimal in the corresponding 4-43

tuple. See Figure 5 for an example. The solution in the figure corresponds for instance to the path44

(s1, s1, s2, s2)(c, s1, s2, s2)(c, a, s2, s2)(c, c, s2, s2)(c, c, b, b)(c, c, e, e)(d, d, e, e)(t1, d, e, e)45

(t1, h, e, e)(t1, h, e, f)(t1, h, g, f)(t1, h, g, i)(t1, h, i, i)(t1, t1, i, i)(t1, t1, t2, t2) in DN . Here we have fol-46

lowed the acyclic ordering of the vertices from left to right.47

5An acyclic ordering of a digraph D = (V,A) is an enumeration v1, v2, . . . , vn of its vertices such that every arc
in A is of the form vivj where i < j.

11



s1

a

s2

b

c

2

2

2
e

g

f

h

i 2
t2

t1

d

Figure 5: A feasible solution to the flow problem where x (resp. y) follows the full (resp. dotted) arcs.

Suppose now that there is a directed path P from (s1, s1, s2, s2) to (t1, t1, t2, t2) in DN . We claim1

that we can extract the desired paths P1, P2, Q1, Q2 as above from P . We do this simply by following2

the arcs of P and extending P1, P2, Q1 or Q2 in each step depending on which coordinate was changed3

(it is possible that two cousin coordinates changed at the same time in which case P1, P2 or Q1, Q24

share the corresponding arc of N ). Clearly this gives two (s1, t1)-paths P1, P2 and two (s2, t2)-paths5

Q1, Q2 so that an arc is used by both of P1, P2 (resp. Q1, Q2) only if it has capacity 2. It remains6

to show that Pi, Qj are vertex disjoint. Suppose this is not the case and that some vertex v belongs7

to both Pi and Qj . Without loss of generality, when we extract Pi and Qj from P we add v to Pi8

first. This means that there is some legal 4-tuple containing v in the coordinate corresponding to9

Pi and some other vertex w which can reach v in N in the coordinate corresponding to Qj . Now10

every vertex on Qj [w, v] can reach v in N so, according the rules for arcs in DN , P cannot change the11

coordinate corresponding to Pi until it has processed all the arcs corresponding to the arcs of Qj [w, v],12

but at that time we would reach a tuple containing the same vertex v in two non-cousin coordinates,13

contradicting the definition of V (DN )6. �14

15

Just as Fortune Hopcroft and Wyllie could extend Perl and Shiloach’s algorithm to an algorithm16

for k-linkage in acyclic digraphs any fixed integer k, it is not difficult to modify our proof above to17

show the following.18

Corollary 5.3 For every fixed integer k there exists a polynomial algorithm for deciding whether an19

acyclic network N = (V,A, u) with uij ∈ {1, 2} for all ij ∈ A has vertex disjoint flows x1, x2, . . . , xk20

such that xi is an (si, ti)-flow of value 2 for i ∈ [k], where s1, . . . , sk, t1 . . . , tk are distinct vertices of21

V .22

Similarly, we can mimic higher capacities as long as they are bounded above by some integer U . We23

do this by allowing up to min{h, U} cousin-coordinates (where h is the number of cousin coordinates24

in the corresponding set of cousins) to change at the same time provided that these vertices are equal25

in the current tuple. Similarly, in the proof above, we did not really use that we were looking for the26

same number of (si, ti)-paths for i = 1, 2. Hence the following is the most general statement that still27

can be shown using analogous arguments to those above.28

Corollary 5.4 For every fixed collection of integers k, α1, α2, . . . , αk, U there exists a polynomial al-29

gorithm for deciding whether an acyclic network N = (V,A, u) with uij ∈ {1, 2, . . . U} for all ij ∈ A30

has vertex disjoint flows x1, x2, . . . , xk such that xi is an (si, ti)-flow of value αi for i ∈ [k], where31

s1, . . . , sk, t1 . . . , tk are distinct vertices of V .32

The following shows that the algorithm of Theorem 5.1 can be translated to an algorithm for arc-33

disjoint rather than vertex-disjoint flows. Similarly, each of the corollaries above have an arc-disjoint34

analogue which we leave to the interested reader.35

6This part of the proof is identical to the classical argument by Perl and Shiloach and Fortune, Hopcroft and Wyllie.
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Theorem 5.5 There exists a polynomial algorithm for deciding whether an acyclic network N =1

(V,A, u) with uij ∈ {1, 2} for all ij ∈ A has arc-disjoint flows x1 and x2 such that xi is an (si, ti)-flow2

of value 2 for i = 1, 2, where possibly s1 = s2 or t1 = t2. In particular, we can check in polynomial time3

whether an acyclic network N = (V,A, u) with uij ∈ {1, 2} for all ij ∈ A has arc-disjoint (s, t)-flows4

x, y of value 2 each.5

Proof: Given N = (V,A, u) we construct the network N ′ as follows: Replace each vertex v ∈ V6

by d−(v) vertices Iv = {v−1 , . . . , v
−
d−(v)} and d+(v) vertices Ov = {v+1 , . . . , v

+
d−(v)} and also fix an7

ordering of the in- and out-neighbours around each vertex. For each arc vw of N , if w is the ith8

out-neighbour of v and v the jth in-neighbour of w, then add the arc v+i w
−
j to N ′ with capacity the9

one of vw. Finally, for every vertex v, add all possible arcs from Iv to Ov and set the capacities of10

these arcs as follows: If p is the ith in-neighbour of v and q is the jth out-neighbour of v then the11

arc v−i v
+
j gets capacity the minimum of the capacities of the arc from v′s ith in-neighbour to v and12

the capacity of the arc from v to its jth out-neighbour. Now it is easy to check that N ′ has vertex13

disjoint flows x′1 and x′2 such that x′i is an (si, ti)-flow of value 2 for i = 1, 2 if and only if N has14

arc-disjoint flows x1 and x2 such that xi is an (si, ti)-flow of value 2 for i = 1, 2. It is also easy to15

handle the case where s1 = s2 or t1 = t2 by adding a copy of such a vertex to N ′. �16

17

The following results, which we state only for disjoint flows of value 2, hold for all the other variants18

discussed above also. The proofs of these use the standard methods for flows with cost function, see [3,19

Section 4.10]). We leave the easy proofs to the reader (arcs with 2 units of flow get twice the cost of20

the original arc).21

Theorem 5.6 There exists a polynomial algorithm for finding, in an acyclic network N = (V,A, u, c)22

with uij ∈ {1, 2} for all ij ∈ A and cost function c : A→R on the arcs, a pair vertex disjoint flows x123

and x2 such that xi is an (si, ti)-flow of value 2 for i = 1, 2, where s1, s2, t1, t2 are distinct vertices of24

V and the total cost of these flows is minimum among all such solutions (the value will be ∞ if there25

is no such pair of flows).26

Theorem 5.7 There exists a polynomial algorithm for finding in an acyclic network N = (V,A, u, c)27

with uij ∈ {1, 2} for all ij ∈ A and cost c : A→R a pair vertex disjoint flows x1 and x2 such that xi28

is an (si, ti)-flow of value 2 for i = 1, 2, where s1, s2, t1, t2 are distinct vertices of V and the total cost29

of arcs used by these flows is minimum among all such flows (the value will be ∞ if there is no such30

pair of flows).31

6 Cycle factors with all cycles odd or all cycles even32

We saw in Theorem 2.3 that deciding whether a digraph has a spanning Eulerian subdigraph in which33

all connected components are even is an NP-complete problem. A cycle factor is a special kind of34

spanning Eulerian subdigraph and hence it is natural to ask about the complexity of deciding whether35

a digraph has a cycle factor all of whose cycles are even. A cycle factor C of a digraph is even (resp.36

odd) if all the cycles of C have even (resp. odd) length. The even cycle factor problem (resp. the odd37

cycle factor problem) consists in deciding whether or not a given digraph contain an even (resp. odd)38

cycle factor.39

Lemma 6.1 It is NP-complete to decide whether or not a digraph has an even cycle factor (resp. an40

odd cycle factor). This also holds for digraphs without 2-cycles (oriented graphs).41

Proof: First we reduce the 2-linkage problem to the even cycle factor problem in polynomial time.42

Given an instance [D = (V,A), s1, s2, t1, t2] of the 2-linkage problem (that is, we want to decide whether43

D contains vertex-disjoint (s1, t1)- and (s2, t2)-paths), we first modify it so that d−(si) = d+(tj) = 044

for i, j ∈ [2]. This does not change the problem. Now we construct the digraph D′ as follows: first45

replace each vertex v of D different from s1, s2, t1 and t2 by two vertices v− and v+ and each arc46

uv, with u and v different from s1, s2, t1 and t2, by an arc u+v−. We replace also each arc xv (resp.47

vx) with x ∈ {s1, s2, t1, t2} by an arc xv− (resp. v+x). Now, for every vertex v ∈ V \ {s1, s2, t1, t2},48

13



v−

av bv

v+

cvdv

Figure 6: The gadget Hv.

between v− and v+,we add a copy of the gadget Hv, defined in Figure 6. Finally, we add the two1

vertices u1 and u2 and the arcs t1u1, t2u2, u1s2 and u2s1. Let us see that D has vertex-disjoint (s1, t1)2

and (s2, t2)-paths if and only if D′ has an even cycle factor. First, suppose that D′ has an even cycle3

factor C and let C be the cycle of C which contains s1. To enter in s1, the cycle C has to contain the4

path t2u2s1. Observe that when C enters a gadget Hv through the vertex v−, then C has to contain5

the path v−avcvdvbvv
+ and then to go out of Hv at v+. So after visiting s1 C covers some gadgets Hv6

and eventually goes to t1 or t2. If C goes directly to t2, then we have totally described C, but it cannot7

be, because in this case C would have odd length (as each Hv contains an even number of vertices). So,8

C has to go through t1, implying that it contains the subpath t1u1s2, then covers some other gadgets9

Hv and finally ends in t2. This implies that, back in D, the cycle C corresponds to vertex-disjoint10

(s1, t1) and (s2, t2)-paths. Conversely, if D contain two vertex-disjoint (s1, t1) and (s2, t2)-paths P111

and P2, then we form an even cycle C in D′ by replacing each vertex v 6∈ {s1, s2, t1, t2} on each path12

by the path v−avcvdvbvv
+ of the corresponding gadget Hv, and the paths t2u2s1 and t1u1s2 to close13

C. Finally, for all v /∈ V (P1) ∪ V (P2) we add the cycle v−avbvv
+cvdv to obtain an even cycle factor14

in D′. This concludes the proof of equivalence between the instance [D = (V,A), s1, s2, t1, t2] of the15

2-linkage problem and the instance D′ of the even cycle factor problem.16

Remark that if we want a smaller reduction, for each vertex v, we can use a 2-cycle on v+, v− instead17

of the gadget Hv, but it forces the cycle factor to contain digons.18

We can also reduce the 2-linkage problem to the odd cycle factor problem in polynomial time. The19

reduction is quite similar. Given an instance D of the 2-linkage problem (for which we may assume20

that d−(si) = d+(tj) = 0 for i, j ∈ [2]) we construct the digraph D′′ which is the same as D′ previously21

built, except that we uncross the paths t1u1s2 and t2u2s1. Namely, we remove the arcs u1s2 and u2s122

from D′ and add the arcs u1s1 and u2s2 to form D′′. Now, we argue that D has vertex-disjoint (s1, t1)23

and (s2, t2)-paths if and only if D′′ has an odd cycle factor. If D′′ has an odd cycle factor C, let C24

be the cycle of C containing s1. By the above arguments, C starts in s1, traverses some gadgets Hv25

and goes to t1 or t2. If C goes to t2, it has to contain the subpaths t2u2s2 traverse other gadgets Hv26

and then end by the subpath t1u1s1 but then C would have even length. So, C goes directly to t127

and end in the subpath t1u1s1. Hence back in D, C corresponds to an (s1, t1)-path. Similarly, the28

cycle of C containing s2 corresponds to an (s2, t2)-path in D, and D has vertex-disjoint (s1, t1) and29

(s2, t2)-paths. Conversely, if D contains two vertex-disjoint (s1, t1) and (s2, t2)-paths P1 and P2, we30

form two disjoint odd cycles in D′′ as we did above and add, for each v /∈ V (P1) ∪ V (P2) the cycles31

v−avdv and v+cvbv to obtain an odd cycle factor in D′′. �32

33
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7 Concluding remarks1

There are many more questions to study which are related to the questions which we dealt with in2

the paper. Some of these are basic questions about flows in networks. The following problem is easy3

to solve for k = 1 using a modification of Dijkstra’s algorithm to find a maximum capacity (s, t)-path4

(this idea was already used in the classical paper by Edmonds and Karp [10]). Already for k = 2 the5

problem becomes NP-complete.6

Theorem 7.1 [2] For every fixed natural number k ≥ 2 it is NP-hard to find, for a given network N7

with source s and sink t, the maximum value of an (s, t)-flow which can be decomposed into at most8

k paths in N .9

The following seems closely related. Again we can decide in polynomial time whether p = 1.10

Problem 7.2 What is the complexity of the following problem: Given network N with source s and11

sink t which has an (s, t)-flow of value k; find the minimum natural number p so that N has an12

(s, t)-flow of value k which can be decomposed (via flow decomposition) into p (s, t)-paths and some13

cycles?14

We can also ask for the complexity of finding a decomposition of a prescribed flow into as few15

paths (and some cycles) as possible.16

Problem 7.3 Is there a polynomial algorithm for finding, in a given network N and a given (s, t)-17

flow x of value k in N , a decomposition of x into (s, t)-paths and cycles which uses the minimum18

possible number of (s, t)-paths?19

Problem 7.4 Determine the minimum function f(n) so that there is a polynomial algorithm for20

deciding the existence of two arc-disjoint branching flows in a network N = (V,A, u) where |V | = n21

and uij ∈ [f(n)] for all arcs ij ∈ A.22

By the results in Section 3 we have 2 < f(n) ≤ n− 1.23

24

Our method in the proof of Theorem 5.2 can neither be extended to two disjoint flows of arbitrary25

high values nor to arbitrarily many disjoint flows of value 2 (because this would mean that the tuples26

could have size O(|V |)). In particular the following problem which fits in the framework7 is open.27

Problem 7.5 Is there a polynomial algorithm for deciding whether a digraph D has three arc-disjoint28

cycle factors F1,F2,F3 such that F1,F3 and F2,F3 are arc-disjoint and F1,F2 share at most k arcs?29

For k = 0 this can be solved by checking, via a maxflow algorithm, whether D contains a spanning30

3-regular digraph.31
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