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Example 
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Example 
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Example 

n  1) Propagate the fault effect 
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Example 
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Some Considerations   

n  Test is easy 
n  But…. 
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Some problems (the 
complexity) 

2.2 Billion Transistors 
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Some problems (the circuit) 
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Some problems (the circuit) 
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Goals 

n  You must use the appropriate tool 
n  Automatic Test Pattern Generator (ATPG) 
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ATPG Architecture 
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Fault Coverage (FC) = # Detected Faults/#Total Faults  
 
 
 



The test plan 

n  Step 1: 
n  Identify the set of target faults (complete 

fault list). 
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The test plan 

n  Step 1: 
n  Tools –  Fault list generator 

n  (One of the components of the Fault Manager).  
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The test plan (cont’d) 

n  Step 1: 
n  Identify the set of target faults (complete 

fault list). 

n  Step 2: 
n  Identify the minimum set of distinct target 

faults (fault collapsing) 
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The test plan 

n  Step 2: 
n  Tools –  Fault collapser (One of the 

components of the Fault Manager).  
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Fault Manager 
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The test plan (cont’d) 

n  Step 2: 
n  Identify the minimum set of distinct target 

faults (fault collapsing) 

n  Step 3: 
n  Generate, at no charge, an initial set of 

patterns (manually, from design validation, 
randomly, ...) 
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The test plan (cont’d) 

n  Step 3: 
n  Generate, at no charge, an initial set of 

patterns (manually, from design validation, 
randomly, ...) 

n  Step 4: 
n  Update the list of detected faults (fault 

simulation) 
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Step 4 

n  Tools 
n  Fault Simulators: identify the set of faults 

covered by each test pattern. 
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Fault Simulator 
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The test plan (cont’d) 

n  Step 4: 
n  Update the list of detected faults (fault 

simulation) 

n  Step 5: 
n  Generate a set of patterns to cover the 

uncovered faults (TPG) 
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Step 5 

n  Tools  
n  ATPG: Automatic Test Pattern Generator 
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TPG 
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n  They cycle through three sub-phases: 
n  target fault selection 
n  Pattern generation  
n  Covered fault list updating. 
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The test plan (cont’d) 

n  Step 5: 
n  Generate a set of patterns to cover the 

uncovered faults (TPG) 

n  Step 6 (optional): 
n  Testability analysis 

n  Step 7 (optional): 
n  Compact test pattern set. 
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Step 6 
n  Goal  

n  Estimate the effort needed to test the UUT: 
n  Pattern length  
n  Fault coverage  
n  CPU time  
n  ... 
n  Identify hard-to-test areas 

n  Tools  
n  Testability Analyzer  
n  Experience. 
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The test plan (cont’d) 

n  Step 5: 
n  Generate a set of patterns to cover the 

uncovered faults (TPG) 

n  Step 6 (optional): 
n  Testability analysis 

n  Step 7 (optional): 
n  Compact test pattern set. 
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Testability Analyzer 

n  High trade-off between result accuracy 
and CPU time. 

n  A Circuit is testable when you ATPG can 
manage it!!!!! 
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Fault Simulation* 

n  Problem and motivation 
n  Fault simulation algorithms 

n  Serial 
n  Parallel 
n  Deductive 
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*The lecture has been taken from Prof. Agrawal VLSI test course 
(http://www.eng.auburn.edu/~agrawvd/COURSE/E7250_06/
course.html) 



Problem and Motivation 

n  Given 
n  A circuit 
n  A sequence of test vectors 
n  A fault model 

n  Determine 
n  Fault coverage - fraction (or percentage) of 

modeled faults detected by test vectors 
n  Set of undetected faults 

41 



Problem and Motivation 

n  Motivation 
n  Determine test quality and in turn product 

quality 
n  Find undetected fault targets to improve 

tests 
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Fault Simulation Scenario 
n  Circuit model: mixed-level 

n  Mostly logic with some switch-level for high-impedance (Z) and 
bidirectional signals 

n  High-level models (memory, etc.) with pin faults 

n  Signal states: logic 
n  Two (0, 1) or three (0, 1, X) states for purely Boolean logic 

circuits 

n  Four states (0, 1, X, Z) for sequential MOS circuits 

n  Timing: 
n  Zero-delay for combinational and synchronous circuits 

n  Mostly unit-delay for circuits with feedback 
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Fault Simulation Scenario 
(Continued) 
n  Faults: 

n  Mostly single stuck-at faults 
n  Sometimes stuck-open, transition, and path-delay 

faults; analog circuit fault simulators are not yet in 
common use 

n  Equivalence fault collapsing of single stuck-at faults 
n  Fault-dropping -- a fault once detected is dropped 

from consideration as more vectors are simulated; 
fault-dropping may be suppressed for diagnosis 

n  Fault sampling -- a random sample of faults is 
simulated when the circuit is large 
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Fault Simulation Algorithms 

n  Serial 
n  Parallel 
n  Deductive 
n  .... 
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Serial Algorithm 
n  Algorithm: Simulate fault-free circuit and save responses.  

Repeat following steps for each fault in the fault list: 
n  Modify netlist by injecting one fault 
n  Simulate modified netlist, vector by vector, comparing 

responses with saved responses 
n  If response differs, report fault detection and suspend 

simulation of remaining vectors 
n  Advantages: 

n  Easy to implement; needs only a true-value simulator, 
less memory 

n  Most faults, including analog faults, can be simulated 
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Serial Algorithm 
n  Disadvantage: Much repeated computation; 

CPU time prohibitive for VLSI circuits 
n  Alternative: Simulate many faults together 
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Serial Algorithm 
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Serial algorithm 

n  + very simple 
n  - not efficient 

n  Intel I7 is about ~10M gates 
n  20M faults, 1 simulation = 1s 
n  20Ms ~= 231 days 
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Parallel Fault Simulation 
n  Compiled-code method; best with two-states (0,1) 
n  Exploits inherent bit-parallelism of logic operations on 

computer words 
n  Storage: one word per line for two-state simulation 
n  Multi-pass simulation: Each pass simulates w-1 new 

faults, where w is the machine word length 
n  Speed up over serial method ~ w-1 
n  Not suitable for circuits with timing-critical and non-

Boolean logic 
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Parallel Fault Simulation 
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Parallel algorithm 

n  + still very simple 
n  + more efficient than serial 

n  Intel I7 is about ~10M gates 
n  20M faults, 1 simulation = 1s 
n  20Ms ~= 231 days 
n  Using a 64bits machine 
n  231/63 ~= 4 days  
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Deductive Fault Simulation 
n  One-pass simulation 
n  Each line k  contains a list Lk of faults detectable on it  

n  Following true-value simulation of each vector, fault lists 
of all gate output lines are updated using set-theoretic 
rules, signal values, and gate input fault lists 

n  PO fault lists provide detection data 
n  Limitations: 

n  Set-theoretic rules difficult to derive for non-Boolean 
gates 

n  Gate delays are difficult to use 
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Deductive Fault Simulation 
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Deductive algorithm 

n  - complex 
n  ++ more efficient than parallel 

n  Intel I7 is about ~10M gates 
n  20M faults, 1 simulation = 1s 
n  20Ms ~= 1s 

n  - it requires a lot of memory 
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Exercice 
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which faults  are detected by the input “01110”? 



In practice 

n  Use of Synopsys© Tetramax 

TMAX 
Circuit.v 

Technology_library.v 
 

Test_vectors.stil 

FaultCoverage 

Fault List 
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Invoking TetraMax 
n  source /soft/Synopsys/source_config/.config_tetramax_standalone_vI-2013.12 

n  tmax 

You can 
enter 
commands 
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Step1 

n  Read and Compile the circuit description 

read_verilog C35.v –library!
read_verilog exo1.v!
run_build_model!
Run_drc!
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Step 2 

n  Generate the fault list 

set_faults -model stuck!
add_faults -all!
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Step 3 
n  Specify the test vectors to be simulated 

n  We have to use the stil syntax 
n  Look in the example 

Pattern "_pattern_" {!
   W "_default_WFT_";!
   "precondition all Signals": C 
{ "_pi"=0000; "_po"=XX; }!
!
   "pattern 0": Call "capture" { !
      "_pi"=1010; "_po”=LL; }!
}! 61 



Step 3 
n  Import the test vector file 
set_patterns -external example_exo1.stil!
n  Now we can run a simulation 
run_simulation!
n  You will got errors: 
TEST-T> run_simulation !
 Begin good simulation of 1 external 
patterns.!
    0  S2  (exp=0, got=1)!
 Simulation completed: #patterns=1, 
#fail_pats=1(0), #failing_meas=1(0), 
CPU time=0.00!
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Step 3 

n  Tmax has to calculate the gold outputs 
before running the fault simulation 

run_simulation -override_differences!

n  Now you can run the fault simulation 
run_fault_sim!
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