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In this paper, an efficient algorithm to simultaneously implement array
alignment and data�computation distribution is introduced and evaluated. We
revisit previous work of J. Li and M. Chen (in ``Frontiers 90: The Third Sym-
posium on the Frontiers of Massively Parallel Computation,'' pp. 424�433,
College Park MD, Oct. 1990; and J. Parallel Distrib. Comput. 13 (1991),
213�221), and we show that their alignment step should not be conducted
without preserving the potential parallelism. In other words, the optimal
alignment may well sequentialize computations, whatever the distribution
afterward. We provide an efficient algorithm that handles alignment and
data�computation distribution simultaneously. The good news is that several
important instances of the whole alignment �distribution problem have poly-
nomial complexity, while alignment itself is NP-complete (Li and Chen,
1990). � 2001 Academic Press
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1. INTRODUCTION

Compile-time techniques for mapping arrays and computations onto distributed
memory machines have focused a large research effort recently, as illustrated by the
survey paper of Ayguade� et al. [5]. Several methods and tools have been presented
since the reference papers of Li and Chen [13, 14], who studied the problem of
aligning arrays so as to minimize communications. Because Li and Chen have
shown the alignment problem to be NP-complete (in the number of data arrays
and statements within the loop nest), heuristics or costly (exponential) algorithms,
such as Integer Linear Programming, have been introduced. We briefly survey the
related literature in Section 2.
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In this paper we revisit previous work of Li and Chen [13, 14], and we show
that their alignment step should not be conducted without preserving the potential
parallelism. In other words, the optimal alignment may well sequentialize computa-
tions, whatever the distribution afterward. We provide an efficient algorithm that
handles alignment and data�computation distribution simultaneously. The good
news is that several important instances of the whole alignment�distribution
problem have polynomial complexity, while alignment itself is NP-complete [13].

We take as input a loop nest, possibly nonperfect, where parallelism has been
made explicit, e.g., after applying the Allen and Kennedy parallelization algorithm
[2]. We construct a new graph, the alignment�distribution graph, which replaces Li
and Chen's component affinity graph. Using this graph, we are able to determine
which parallel loop(s) and which array dimension(s) should be distributed to the
processors so as to preserve parallelism while minimizing communications. Our
alignment�distribution graph is weighted, and the weights represent estimates of the
communication costs: it is a very flexible approach, and we are able to take advan-
tage of recent results on modeling such communication costs accurately [3, 4, 7,
11]. Because the choice of the distributed loops provides kind of a ``reference''
pattern, the alignment step is conducted according to this choice, and the complexity
to finding the optimal solution reduces to a fast (polynomial) path algorithm on
the alignment�distribution graph. This is a very nice result for the practical
applicability of our approach (again, previous techniques aimed at solving a
NP-complete problem).

The paper is organized as follows: we start with a motivating example in
Section 2. We use the example to summarize the approach of Li and Chen [13, 14]
and to point out its limitations. We briefly review the existing literature in
Section 3. We describe our new algorithm, and we state complexity results, in
Section 4. We give some final remarks in Section 5.

2. MOTIVATION

We use a simple example to explain why aligning arrays and distributing parallel
loops should be dealt with simultaneously.

Example 1

for i=2 to n do
for �� j=i+1 to n do

S1 : a(i, j)=b(i, j)+a(i&1, j)
S2 : b( j, i)=a( j, j)+1

end for ��
end for

To check that the second loop on j is indeed parallel, we can use a dependence
analysis tool like Tiny [18]. Using such a tool, we check that there is only one flow
dependence of level 1 from S1 to itself, which is due to a. The reduced dependence
graph for Example 1 is depicted in Fig. 1.
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FIG. 1. The reduced dependence graph (using dependence levels) for Example 1.

First we review Li and Chen's approach [13, 14] through Example 1. Then we
explain why their technique may kill the potential parallelism.

2.1. Li and Chen's Component Affinity Graph

We represent in Fig. 2 the component affinity graph (CAG) that Li and Chen [13,
14] would derive for Example 1. We informally explain how the CAG is built using
the example. The CAG contains two columns of two nodes, because they are two
arrays a and b (hence two columns) of dimension 2 each (hence two nodes in each
column). Node a1 represents the first dimension of array a, and so on. There is an
edge between two nodes, i.e., between two dimensions of different arrays, if, roughly
speaking, the subscripts of these dimensions are the same up to a translation by a
constant, and if these arrays appear on both sides of the same assignment. The
CAG is undirected. Self-references are not taken into account. In our example, there
is an edge between nodes a1 and b1 because of statement S1 : the same subscript i
appears in the first dimension of a and b. In general, when the same subscript, up
to a translation by a constant, appears in dimension ix of array x and in dimension
iy of array y, these two dimensions are said to have an affinity relationship, and we
draw an edge between the corresponding nodes. Similarly, due to S1 again, there is
an edge between b2 and a2. Because self-references are not taken into account, the
occurrence of a(i&1, j) on the right-hand side has no impact on the graph. The
intuitive idea is that edges imply an alignment preference between the correspond-
ing arrays. The term alignment may well be understood here as an HPF ALIGN
directive [10] onto a virtual template. Aligning arrays according to the edges will
reduce, or even suppress (as in statement S1), the possible communications induced
by the distribution of the arrays onto parallel processors.

Statement S2 introduces some complication, because the same index j appears in
the first dimension of a on the left-hand side, and in both dimensions of b on the
right-hand side. The two edges (a1, b1) and (a1, b2) are said to be competing.

The CAG is weighted: edges are valued according to the strength of preference.
A competing edge has weight =, a value much smaller than 1. The weight of an edge
between nodes indexed by a spatial variable (a subscript of a parallel loop, like j
in Example 1) is 1. Finally, the weight of an edge between nodes indexed by a tem-
poral variable (a subscript of a sequential loop, like i in Example 1) is �. We are
led to the graph of Fig. 2. If there are several edges between two nodes, we only
keep one, whose weight is the sum of all edge weights between the two nodes.

Li and Chen [13, 14] state the alignment problem as follows: partition the nodes
of all columns into disjoint subsets that represent aligned dimensions. The rule of
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FIG. 2. The component affinity graph for Example 1.

the game is that no two nodes of the same column are in the same subset. The
objective is to minimize the sum of the edge weights between subsets. Unfor-
tunately, the problem is NP-complete in the size of the CAG (Li and Chen use a
reduction from MAX-CUT [6]). To compute a satisfactory alignment, Li and
Chen use a greedy heuristic based upon bipartite matching [14]. For Example 1,
their heuristic leads to the optimal (minimal-weight) solution, namely aligning al
with b1 and a2 with b2. In other words arrays a and b are directly superimposed
onto the same template.

2.2. Distributing Parallel Loops

The previous alignment, however, causes all the potential parallelism to be lost
when it comes to distributing array elements onto processors! To see why, consider
the following two possible data distributions onto a unidimensional processor grid:

Distributing the first dimension. This means that rows of arrays a and b are
distributed to processors: elements a(i, j) and b(i, j), for 1� j�n, are stored in
(virtual) processor Pi . If we obey ``the owner-computes'' rule, this causes statement
S1 to be executed sequentially: given a value of the first loop index i, all iterations
of the second loop index j are computed by the same processor Pi .

Distributing the second dimension. Quite similarly, distributing columns of a and
b to processors will lead statement S2 to be executed sequentially.

To summarize, the best alignment, as computed by Li and Chen, turns out to kill
the parallelism. We claim that the alignment step should be conducted while having
parallelism in mind: distributing parallel loops to processors is the true priority.
A good alignment can reduce or suppress communications, but what if it leads to
gather all parallel computations onto the same processor, as in our example?

We informally explain our approach using Example 1. See Section 4 for a com-
plete description of our algorithm. Assume we target a one-dimensional processor
grid. The highest priority is to distribute parallel computations, i.e., instances of the
parallel loop j, on processors. In the example there is not much freedom: we dis-
tribute columns of a and rows of b to processors: processor Pj receives a(i, j) and
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FIG. 3. The alignment�distribution graph for Example 1.

b( j, i) for all 1�i�n. Owing to this distribution, for each instance of the external
loop i, we distribute the parallel computations of loop j to processors. There
remains some communications: for each instance i of the external loop, because of
statement S1 , the ith row of b must be scattered from processor Pi to all processors,
but parallelism has been preserved. Our approach does lead to this solution, based
upon an alignment�distribution graph that privileges parallel loops. The alignment-
distribution graph for Example 1 is represented in Fig. 3. It is built as follows: there
are 4 array dimension nodes, one per array and per dimension, as in Li and Chen's
CAG, plus an additional loop node for the parallel j loop. There is an edge between
the loop node and an array dimension node if distributing both of them onto the
processors induces communications. Edge weight corresponds to (estimated) com-
munication costs. In Fig.3, ``Ga'' stands for ``gather,'' and ``Sc'' for ``Scatter.''

The detailed construction of the graph as well as our solution to the problem are
described in Section 4. We conclude our study of Example 1 with a few important
remarks:

Remark 1: ``The owner-computes'' rule. There is no major reason to obey ``the
owner-computes'' rule. The true objective is to distribute the parallel computations
S1 (i, j) and S2 (i, j) to processor Pj , for 1�i�n. To this purpose, we might dis-
tribute columns of a and b to processors, which corresponds to Li and Chen's align-
ment, but we would insist that S2 (i, j) is executed by processor Pj , at the price of
a communication after the computation, to store the written value b( j, i) into the
memory of processor Pi . For each value of i, statement S2 would then induce a
gather operation (Pi owns a( j, j), writes into b( j, i), and sends it to Pi).

Remark 2: Computations versus communications. Example 1 is a toy example
and should be considered as such. In this example, our solution may not be
significantly better than a solution that sequentializes the parallel loop, because of
the cost of the communications. Still, we can easily modify the example! Also, we
can take benefit of the many papers in the literature to derive the best physical dis-
tribution, i.e., deciding whether rows of a and columns of b will be distributed in
a pure cyclic, pure block, or block�cyclic fashion over p physical processors, where
p is likely to be much smaller than n, the array size. In fact, our approach is quite
flexible and can benefit from any precise modeling of the computation and com-
munication costs: our alignment�distribution graph is vertex-weighted and edge-
weighted, and the more precise the weights, the more accurate the solution. See the
literature survey in Section 3.
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FIG. 4. The reduced dependence graphs (using dependence levels) for Example 2.

Remark 3: Loop parallelization algorithms and redistribution. An experienced
programmer may have decided to apply loop distribution [19, p. 323]2 on
Example 1 before considering alignment and distribution. Such a transformation is
perfectly legal and leads to the following loop nest:

Distributing loops
for i=2 to n do

for �� j=i+1 to n do
S1: a(i, j)=b(i, j)+a(i&1, j)

end for ��
end for
for �� i=2 to n do

for �� j=i+1 to n do
S2: b( j, i)=a( j, j)+1

end for ��
end for

We could then perform the alignment step separately on the two nests, and even-
tually redistribute some data array (say b in between. If the modified loop nest
(having distributed the loop) is given as input to our alignment�distribution graph,
and if the redistribution of one array (say b) is optimal, our algorithm will find it.
However, given the original loop nest of Example 1, we do not deal with any loop
transformation.

Consider the following modification of Example 1:

Example 2

for i=2 to n do
for �� j=i+1 to n do

for k=2 to n do
S1 : a(i, j, k)=b(i, j, k)+b(i+1, i, k&1)+a(i&1, j, k)
S2 : b( j, i, k)=a(i, j, k)+a(i, i+1, k)

end for
end for ��

end for
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FIG. 5. The component affinity graph for Example 2.

The reduced dependence graph is shown in Fig. 4: loop distribution is no longer
valid. We represent Li and Chen's CAG in Fig. 5: solid arrows correspond to state-
ment S1 , and dashed arrows to S2 . Again, the optimal solution for the CAG is to
superimpose arrays a and b, i.e., align each dimension of a with the same dimension
of b. Again, this would lead to a sequential execution, whatever the distribution
chosen. However, as before, our alignment�distribution graph, represented in
Fig. 6, gives priority to the parallel loop j and distributes the first dimension of a
and the second dimension of b to processors.

To summarize, our approach starts from a ``parallelized '' loop nest, i.e., a loop nest
for which dependence analysis and loop parallelization have already been carried
out. The most popular tools for these two steps are dependence levels [1, 2] and
the Allen�Kennedy algorithm [2]. Given a parallelized loop nest, we determine
which parallel loops should be distributed to processors, and the best alignment
and distribution of arrays to minimize communications. This is done through the
alignment�distribution graph.

Our main contribution is for a single-loop nest, possibly nonperfectly nested.
When there are several consecutive loop nests, or an iterative loop surrounding

FIG. 6. The alignment�distribution graph for Example 2.
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several loop nests, we use the approach of Lee [11], which we briefly summarize
in Section 4.3 when dealing with multiple nests.

3. RELATED WORK

There are numerous papers on the alignment and distribution problem. We refer
the reader to the survey [5] and the references therein. In this section, we sum-
marize a few selected papers. In addition to Li and Chen's alignment method [13,
14] (already described in Section 2.1), we describe four papers by Tandri and
Abdelrahman [17], Kelly and Pugh [9], and Ayguade� et al. [3, 4] whose goal is
similar to ours. Next we present results by Gupta and Banerjee [7] and Li and
Chen [12] on identifying structured communications and estimating their weight.

Our algorithm also uses the dynamic programming algorithm of Lee [11] when
dealing with several loop nests. Indeed, redistributing some arrays between two
consecutive nests may well prove more efficient. We describe Lee's technique in
Section 4.3.

3.1. Tandri and Abdelrahman

Given a loop nest, Tandri and Abdelrahman [17] construct an undirected graph
where each node represents either a parallel loop or an array dimension. There is
an edge between a loop node and an array node if the dimension considered is
indexed by the loop variable.

Attributes are assigned to the nodes: *, Cyclic or CyclicRCyclic for loop nodes,
to favor load balancing, and *, Block or BlockCyclic for array node, to favor local
access. For example, if X is referred to as X(a V i+b V j) where j (outer) is parallel
and i (inner) is sequential, then the attribute will be BlockCyclic.

There is a conflict when an edge connects two nodes whose attributes are dif-
ferent. To solve such a conflict, we replace the attributes by an intermediary. Thus,
Cyclic and Block resolve to BlockCyclic.

Once all conflicts are solved, we must assign dimensions of the processor
geometry to the nodes. The algorithm is a greedy one. We consider first the outer
loop. We assign to them and to the array nodes connected to them a dimension of
processors. We pursue then with the other nodes. A distribution scheme is then
found.

Tandri and Abdelrahman's method is somewhat crude, in that communication
costs are not taken into account precisely. Also, their selection of the best array
dimension to be distributed is not clear. Still, they give priority to distributing
parallel loops, and next they align the array dimensions onto those loops: we
believe this is the right way to go, and we use a similar (but refined) scheme in our
algorithm.

3.2. Ayguade� et al.

Ayguade� et al. [3, 4] consider programs composed of several consecutive perfect
loop nests L1L2 } } } Ln . All arrays are assumed to have the same dimension d. They
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describe their method for 1D and 2D grids, but we only deal with 1D grids in this
short survey. We start with the construction of a graph called the communication�
parallelism graph. Nodes are organized in columns. Each column represents an
array in a nest an it contains d nodes.

There are two types of edges. Data movement edges show possible alignment
alternatives between the dimensions of two arrays in a nest Li . The assigned weight
reflects the data movement cost to be paid if these two dimensions are aligned and
distributed. We add other data movement edges to show possible realignment in a
sequence of nests. If the array A in Li is used in Lj , then d_d edges connect each
node of array A in Li to each node of A in Lj . If the edge connects the same dimen-
sion, its weight is null; otherwise its weight is the cost of a realignment.

Parallelism hyperedges show possible parallelization strategies for the loops in
Li . An hyperedge connects the nodes corresponding to the array dimensions that
must be distributed to parallelize the loop according to the owner-computes rule.
Its weight is the time that is saved when the loop is parallelized.

We must find a path in the CPG that includes exactly one node of each column
so that the sum of weights of the edges minus the sum of weights of the hyperedges
that connect nodes in the chosen path is minimized. This problem is formulated as
a linear 0-1 programming problem. The variables are YPQ (i, j), which corresponds
to the edge between the ith dimension of P and the jth dimension of Q, and Zk

which corresponds to the kth hyperedge.
The constraints are the following:

v � j YPQ (i, j)=� j YQR (i, j) for all i, P, Q, R

v � i � j YPQ (i, j)=1 for all P, Q

v If Zk connects the nodes XP1 (i1), ..., XPh (ih) which are connected by the
edges YP1Q1 , ..., YP hQh , we need � j YP lQl (il , j)�Zk for all l # [1. .h].

The approach of Ayguade� et al. [3, 4] is interesting because of their precise
estimation of edge weights. Also they can handle redistribution between consecutive
nests. However, the requirement that all nests are perfect and that all arrays have
the same dimension is very restrictive. In addition, the integer linear programming
solution may prove too expensive in practice.

3.3. Kelly and Pugh

The title of Kelly and Pugh's paper [9] is ``Minimizing Communication While
Preserving Parallelism.'' This title exactly corresponds to our goal! However Kelly
and Pugh consider a framework quite different from ours: they study all the
possible transformations (loop permutations) of the program to determine which
one induces the maximum of parallelism and the best mapping of the computations.

To determine valid loop permutations, Kelly and Pugh use a dependence analysis
more sophisticated than the dependence levels. The direct dependences are com-
puted by the Omega software and the indirect dependences are computed by
transitive closure.
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For each legal permutation, they determine the parallelism level that is allowed
and they estimate the number of required synchronizations (they use a
sophisticated model that allows pipelining to be taken into account). Finally, for
each statement pair, they compute the number of data written in the first statement
and read in the second one, using value-based flow dependence analysis.

To summarize, in the case where a precise dependence analysis is possible (e.g.,
when all dependences are affine), Kelly and Pugh's method is quite powerful.
However, it cannot be applied to general loop nests where only limited information
(such as dependence levels) is available.

3.4. Communication Patterns

Li and Chen [12] present interesting results on communication routines. They
consider already parallelized programs with sequential and parallel loops. They
assume that each array element can be assigned only once, that left-hand side sub-
scripts are index variables, and that arrays are aligned to have a common index
domain within each loop nest. We have a distribution scheme over a template and
we want to recognize communication routines.

Each assignment a(_1 , ..., _n)= } } } b($1 , ..., $n) } } } may generate communications.
If the tuples differ in only one corresponding pair of elements, the communication
is either spread or a reduce or a copy or a shift or a multispread. The routine can
be found with a pattern matching on these elements.

If the tuples are strongly different, we try by pattern matching on the tuples
to recognize one of these routines: one-all-broadcast, all-one-reduce, single-send-
receive, uniform-shift, or affine-transform. When a pattern cannot be matched with
a routine, we decompose it into subpatterns. Indeed, a pattern over an n-dimen-
sional index domain can be thought of as a composition of n simple patterns. For
example, send a(c(i, j), j&3) to (i, j) can be decomposed into two simple com-
munications: send a(c(i, j), j&3) to (i, j&3), which is a multispread, and then
send (the data) from (i, j&3) to (i, j), which is a shift.

Gupta and Banerjee [7] improve Li and Chen's alignment method to estimate
communication costs. Their method is based on pattern matching, applied upon the
different assignments that could generate communications in the program. Their
communication primitives are transfer, onetomanymulticast, manytomanymulticast,
scatter, gather, shift, and reduction.

They allow operations on the structure of the program to decrease the com-
munications costs by founding a better placement of communication. For instance
they use loop distribution over two components to enable any communication
placed between those components to be aggregated with respect to that loop. They
try to permute loops when there is a parallel loop outside a loop in which com-
munication takes place. To control the size of communication buffers required, they
propose to strip-mine the loops.

Sometimes, the compiler may generate more communication than necessary, for
example, when there are conditionals. Information about the frequency of execution
of statements can help the compiler decide between carrying out potentially extra
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communication and using a large number of messages. Since the primitives corre-
sponding to different terms implement the data movement in distinct grid dimen-
sions, they can legally be composed in any order. So another optimization is to
permute the communications in favor of reducing the message sizes handled by
processors.

4. SOLVING THE ALIGNMENT-DISTRIBUTION PROBLEM

As already stated, we start from a parallelized program, i.e., a program for which
dependence analysis and loop parallelization have already been carried out: we are
using the same hypotheses as Li and Chen [14]. Our goal is to preserve the poten-
tial parallelism while conducting the alignment step. We first describe our algorithm
for a unidimensional processor grid. Next we move to a bidimensional grid. In both
cases, we target a single (possibly nonperfectly nested) loop nest. For several con-
secutive loop nests, we simply use the approach of Lee [11], who uses a dynamic
programming algorithm to determine whether some data redistribution is needed
between two successive loop nests.

4.1. Unidimensional Grids

4.1.1. Construction of the Alignment-Communication Graph

We have two kinds of nodes in the graph, array dimension nodes and loop nodes:

v For each array, each dimension of this array is represented by a node (like
for the Li and Chen graph). The weight of such a node is zero.

v Each loop is also represented by a node. We give a weight to this node,
which represents the (approximated) execution time of the loop. For parallel loops,
we divide the sequential execution time by the number of processors, as in Ayguade�
et al. [3, 4].

Edges link array dimension nodes to loop nodes. There is an edge between two
such vertices if there is a reference to the corresponding array dimension in the
corresponding loop; the edge weight represents the (estimated) communication
costs induced by the distribution of both the array dimension and the loop instances
to the processors.

Finally, we add dashed arrows to illustrate the loop nesting. This is only for con-
venience. We refer to loop nodes and dashed arrows as the loop subgraph of the
alignment�communication graph.

Consider the Cholesky factorization algorithm showed in Example 3. We use this
example to describe our algorithm because it is a classical in compilation literature.
Data dependence analysis can be conducted exactly on this example because all
references are affine, but this is by no means a requirement for our algorithm.
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Example 3

for k=1, to n do
S1: a(k, k)=- a(k, k)
for �� j=k+1 to n do

S2 : a(k, j)=
a(k, j)
a(k, k)

end for ��
for ��i=k+1 to n&1

for �� j=i to n&1
S3=a(i, j)=a(i, j)&a(k, i) V a(k, j)

end for ��
end for ��

end for

Note that Li and Chen's CAG for Cholesky has no edge, because there is a single
array in the nest, and they do not take self-references into account. We represent
the alignment�distribution graph in Fig. 7. Boxed nodes are the loop nodes: we use
a circle for a parallel loop and a square for a sequential loop. The other nodes are
the array dimension nodes. We use the following routines for the edge weights:

Br(N)=Broadcast(N) a given process or sends the same message
of size N to all processors.

Sc(N)=Scatter(N) a given processor sends a (different) message
of size N to each processor.

Ga(N)=Gather(N) a given processor receives a (different) message
of size N from each processor.

Aa(N)=All�to�all(N) e ach processor sends the same message
of size N to all processors.

Aap(N)=All�to�all person.(N) each processor sends a (different) message
of size N to each processor.

FIG. 7. The assignment�distribution graph for Example 3.
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For example, the edge between a2 and the left parallel node j comes from state-
ment S2 . It means that if we distribute this j loop and the second dimension of a,
each processor j that computes a(k, j) must receive from the same processor k the
value of a(k, k), hence the label Br(1).

4.1.2. The Algorithm

The goal is to find exactly one parallel loop node to distribute along each path
of the loop subgraph. We also need to distribute a dimension of each array. The
optimization criteria is to minimize residual communications costs.

The optimal solution is to consider all different possibilities to distribute the
parallel loops. Once a given distribution is chosen, we compare for each array the
communication costs generated by this distribution, and we select the dimension
that minimizes the communications. We sum the costs over all arrays and we
obtain the total cost of the selected loop distribution. We keep the loop distribution
scheme of minimal cost.

Coming back to Example 3, there are two different paths. We must choose j in
the left path, and either i or j in the right path. In the case of the distribution
scheme ( j, i), we have for a1 the weight N V Br(1)+2N V Sc(N�P)+N V Ga(N�P)+
N V Br(N) and N V Br(1)+2N V Aap(N�P)+N V Sc(N�P)+N V Br(N�P) for a2.
The weight of a1 is lower; hence we distribute a1. For the other distribution scheme
( j, j), the weight is N V Br(1)+N V Sc(N�P)+N V Ga(N�P)+2N V Aap(N�P)+N V
Aa(N�P) for a1 and N V Br(1)+N V aa(N�P) for a2. In this case, we choose a2.
Then we must compare the two solutions. The cost of the first solution is N V Br(1)
+2N V Sc(N�P)+N V Ga(N�P)+N V Br(N), and the cost of the second solution is
N V Br(1)+N V aa(N�P). Since a personalized all-to-all is expensive, we would most
certainly select the first solution.

4.1.3. Complexity

Consider first the case of a perfect loop nest. Let s be the number of parallel
loops, T be the number of arrays, and di the dimension of the ith array Ti . The
complexity of our algorithm is O(s_�T

i=1 di) because for each parallel loop and for
each array, we search for the best dimension to distribute. Letting d=maxi (di) be
the largest array dimension, the complexity of our algorithm is O(d_T_s).

It is important to understand why this result does not contradict the NP-com-
pleteness result of Li and Chen, who show that the alignment problem is NP-com-
plete in the size of the CAG, i.e., the number of arrays T multiplied by the largest
array dimension d. The intuitive explanation is the following: Li and Chen have no
template reference for the alignment problem, so they must explore the possibility
of aligning each dimension of each array with every dimension of every other array,
hence the combinatorial swell. In contrast in our approach, because we aim at
preserving the potential parallelism, each loop distribution scheme constitutes a
reference pattern for which we search the best distribution for each array. Because
we have few possible loop distribution schemes, the overall complexity is kept
small.
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Theorem 1. The alignment�distribution problem can be solved in time O(d_T
_s) for a perfect loop nest with s parallel loops and T arrays with largest dimension d.

In the case of a nonperfect nest, on a given path labeled i in the loop nodes
of the alignment�distribution graph, there are si parallel loops. For instance in
Example 3, we have two paths in the loop subgraph, s1=1 and s2=2. The complexity
of the algorithm is O(d_T_> p

i=1 si) because > p
i=1 si represents the number of

distribution scheme. In the worst case, the complexity is O(d_T_es).
The exponential term is not important. Indeed, the number of parallel loops in

a nest is not higher than 3 in practice.

4.1.4. Remarks

Remark 1. In the above version of the algorithm, we always distribute exactly
one parallel loop along each path of the loop subgraph. In certain cases, it may well
be more efficient to execute a parallel loop in sequential mode on a single processor.
We can implement this modification, which amounts to select at most one (instead
of exactly one) parallel loop along each path of the loop subgraph: we make a copy
of each parallel node. One copy indicates a sequential execution and the other a
parallel execution. So, there are twice as many loop nodes, hence more loop dis-
tribution schemes to evaluate.

Similarly, we always distribute one dimension of each array. Sometimes, it will be
better to allocate a whole array to an unique processor. To that purpose, we can
add a node for each array, which indicates that we do not want to distribute this
array.

Remark 2. The problem (and of course the alignment�communication graph) is
``symmetric'' between loop nodes and array dimension nodes. Sometimes, it will be
better to iterate on all possible distribution schemes for the arrays, and to deduce
the best distribution scheme for the loops. For Example 3, there is a single array of
dimension 2 and several loop nodes, so we should indeed consider the different
choices for distributing a, and for each of them to determine the best distribution
scheme for the loops.

Remark 3. For the (mostly theoretical) situation where our algorithm would be
too costly, we can introduce the following greedy heuristic: along each path of the
loop subgraph, give priority to distributing the most external parallel loop. This
will lead to the largest granularity of the tasks that are distributed to processors.

4.2. Bidimensional Grids

If the dimension of the processor grid of processors is larger than 1, we propose
the following two strategies.

4.2.1. Recursive Algorithm

We build the alignment�distribution graph just as in Section 4.1, and we use the
previous unidimensional algorithm. At this stage we have chosen to distribute one
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parallel loop and one dimension of each array. We distribute them along the first
dimension of the grid.

We construct a new graph by deleting already chosen nodes. We update edge
weights by taking the distribution scheme for the first grid dimension into account.
Then we use a second time the unidimensional algorithm to determine which loops
and which array dimensions will be distributed along the second grid dimension.

We iterate the process as many times as there are dimensions in the processor
grid.

In all

Example 4. Assume that we target a 2D-processor grid for the nest

for �� i=1 to n do
for �� j=1 to n do

for �� k=1 to n do
a(i, j, k)=b( j, i, k) V b(i, j, k)

end for ��
end for ��

end for ��

Using this recursive algorithm, we first distribute the k loop and the last dimen-
sion of a and b. Indeed, such a choice preserves the parallelism and is communica-
tion-free. After deleting the corresponding nodes and updating the weights, we
obtain the graph of Fig. 8. Next the recursive algorithm decides to distribute i and
the first dimension of a and b along the second grid dimension.

4.2.2. Optimal Algorithm

The main principle of the optimal algorithm is the same as in the unidimensional
case. Instead of considering one node by path of the loop subgraph, we consider g
nodes by path, where g is the dimension of the target processor grid. When g loop
nodes are chosen along each path, we determine for each dimension of each array
the cost of the communications induced by the distribution of this dimension and
these loops. We keep the loop distribution scheme, which minimizes the com-
munications.

Coming back to Example 4, we construct the graph depicted in Fig. 9. In this
graph, we must compare the three following cases: distribute (i, j), distribute (i, k),
or distribute ( j, k).

FIG. 8. Recursive algorithm: after the first step.
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FIG. 9. The alignment�distribution graph for Example 4.

Distribute (i, j): We distribute (a1, a2) and (b1, b2).
Distribute (i, k): We distribute (a1, a3) and (b1, b3).
Distribute ( j, k): We distribute (a2, a3) and (b2, b3).

In all three cases communications come from accessing b( j, i, k). The first case is
very expensive. We must choose between the second and the third. Since the commu-
nications are the same for both, we distribute (i, k) the solution with largest task
granularity.

4.2.3. Comparison

Let g be the number of dimensions of the processor grid. For the recursive algo-
rithm, the complexity for a perfect loop nest is O(g_d_T_s). For a nonperfect
nest, we get O(g_d_T_es). This is because we use the unidimensional algorithm
g times. Of course g can be viewed as a small constant in practice (g=2 or 3 for
current machines).

For the optimal algorithm, the complexity for a perfect nest is O(> schemes_
T_d ). The number of loop distribution schemes is s(s&1) } } } (s& g+1). Hence
the complexity is O(d_T_s g). For a nonperfect nest, the complexity is O(d_T_
>d

i=1 s g
i ). So in the worst case, it's O(d_T_e g_s).

Of course the optimal algorithm has higher complexity. However, it relies on a
more accurate estimation of the communication costs, because when we search for
a loop distribution scheme we look for g dimensions of arrays to distribute together
with the selected loops.

4.3. Several Nests

In the case of several loop nests, we use the method proposed Lee [11]. Given
a program constituted by a sequence of n nests, we want to determine the best dis-
tribution scheme (for parallel loops and arrays) for the whole program. In a word,
Lee [11] uses Li and Chen's CAG as a basic block for a single-loop nest, together
with a dynamic programming algorithm to determine whether to redistribute some
array in between two consecutive blocks. We simply suggest to use our alignment�
distribution graph as a new basic block, and to keep the dynamic approach
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unchanged. This will preserve parallelism over the whole program in addition to
determining the best distribution and redistribution of arrays.

When we consider two consecutive nests, we have two main choices:

v Either we keep the same alignment�distribution for the two nests, and we
look for the scheme that minimizes the sum of the communications for both nests,

v or we determine the best alignment�distribution for each nest, and we use
a redistribution in between.

Consider a sequence of n loop nests L1L2 } } } Ln . For each subsequence LiLi+1 } } }
Li+ j&1 , where 1�i�n, 1� j�n&i+1. Let Ti, j be the minimal time to compute
L1L2 } } } Li+ j&1 with the restriction that it uses the distribution scheme Pi, j for the
sequence LiLi+1 } } } Li+ j&1 . Thus the final distribution scheme after computing Ti, j

is Pi, j . At the beginning, T1, j is equal to M1, j . Let cost(Pi&k, k , Pi, j) be the com-
munication cost of changing data layouts from Pi&k, k to Pi, j . Lee [11] uses the
dynamic programming algorithm

for i=2 to s do
for j=1 to s&i+1 do

Ti, j= min
1�k<i

(Ti&k, k+Mi, j+cost(Pi&k, k , Pi, j))
end for

end for
Minimum= min

1�k�s
(Ts&k+1, k)

If the sequence of nests is enclosed by an iterative loop, the last line of the
algorithm is modified as

Minimum= min
1�k�s

(Ts&k+1, k+MAX�ITER_dependence(Ts&k+1, k)),

where dependence(Ts&k+1) returns the cost of changing data layouts from the
distribution scheme of the last nest to the first one.

Consider the following simple example:

Example 5

for �� i=1 to n do
for j=1 to n do

a(i, j)=a(i, j+1)+a(i, j)
end for

end for ��
for i=1 to n do

for �� j=1 to n do
a(i, j)=a(i&1, j) V a(i, j)

end for ��
end for
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Lee's algorithm consists in considering the program either as a unique nest or as
two nests for which we may need to determine a redistribution scheme.

A unique nest. Our alignment�distribution algorithm decides to distribute the
two parallel loops and the first dimension of a. The second nest induces many
communications.

Two different nests. For the first nest, we distribute the i loop and the first
dimension of a. For the second nest we distribute the j loop and the second dimen-
sion of a. There is no communication inside the two nests, but we need communica-
tions to redistribute a between them.

We must compare both solutions. In the first case, processor Pj receives a(i, j)
from Pi and a(i&1, j) from Pi&1 , and then sends the result to Pi . Each processor
must communicate with all the others several times. However, if we use a block dis-
tribution, these communications are often transformed into local memory accesses.
So the final solution is to distribute i, j, and a1 (the unique nest strategy).

5. CONCLUSION

We have introduced the alignment�distribution graph to replace Li and Chen's
component affinity graph. The major two advantages of our approach are the
following:

v Parallelism is preserved: we derive the best loop distribution together with
the best array alignment.

v Complexity is polynomial for perfect loop nests. Complexity is always
polynomial in the number of arrays addressed inside the nest.

In addition, we retain all the flexibility of Li and Chen's approach: new results from
the literature and from experiments can be easily incorporated, for instance, to
refine the estimation of the communication and computation weights. Indeed, our
weight model for communications is much more refined than the original CAG of
Li and Chen; as for computation costs, we can also benefit from the literature, e.g.,
[8, 15, 16]. Finally, our graph can be used as a building block for techniques that
manipulate larger programs.

The current largest limitation is that our alignment�distribution graph is built for
a fixed, already parallelized loop nest. It would be nice to incorporate loop transfor-
mations in the framework: how to determine the best way of writing the loop nest
in order to derive the best way to distribute and computations to processors?
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