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Abstract. In the context of grid scheduling we consider a scheduling
scenario, where parallel jobs have to be scheduled non-preemptively on
heterogeneous computational platforms of processors. The speed of the
processors may differ among the platforms and the jobs are submitted si-
multaneously or over the time and cannot run across multiple platforms.
We focus on the target of minimizing the total makespan, i.e. the global
latest finishing time of a job. In this paper we present an AFPTAS for
the problem without release times and show how to generalize our result
to malleable jobs and jobs with release times.

1 Introduction

For solving problems that include large-scale computation grid computing gets
more and more important. The efficient coordination of those computations ap-
pearing as atomic jobs on distributed resources is a difficult task. To get theoret-
ical insights one first need to think of an adequate model that realizes the main
principles of grid computing. In this paper we focus on a scheduling scenario,
where parallel jobs have to be scheduled non-preemptively on heterogeneous
computational platforms of processors. In order to complete extensive computa-
tions as fast as possible we are interested in minimizing the total makespan, i.e.
the global latest finishing time of a job. The jobs are submitted simultaneously
or over the time and cannot run across multiple platforms. In the following we
describe our basic model where we consider heterogeneous platforms with dif-
ferent speeds and parallel jobs without release times (SPP). Later we fit this
model to take malleable jobs and release times into account.
Model. In our setting we have n jobs {J1, . . . , Jn} that have to be scheduled
on N platforms P`, ` ∈ {1, . . . , N}. A platform P` contains a set M` of m`

identical processors. We assume the platforms to be sorted by non-decreasing
order of their number of processors (or machines), i.e. m1 ≤ m2 ≤ . . . ≤ mN .
To each platform is assigned a speed value s` ∈ R>0. Every job Jj is described
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by a pair (pj , qj) of the length of a job pj (number of operations) and a number
of parallel processors qj (degree of parallelism), that Jj requires when executed.
We assume qj ≤ mN = max`m` for all jobs, if not there is no feasible schedule.
Since sometimes we will identify jobs with rectangles we call qj the width of job
Jj . Consequently, the area (or work) of a job is pjqj and for a list of jobs or
rectangles L we denote with A(L) the total area of the jobs (or rectangles) in L.
A job Jj is only allowed to be scheduled within one platform, its processing time
in platform P` is t`j :=

pj

s`
if qj ≤ m` else t`j = ∞. We assume furthermore (by

scaling) min` s` = 1 and define tmax := maxj,`{t`j |t`j < ∞}, which is less than
pmax := maxj pj (as min` s` = 1). Our objective is to find a non-preemptive
schedule of all jobs into the platforms minimizing Cmax := max` Cmax(`), where
Cmax(`) denotes the completion time of a feasible schedule in P`. For an instance
J of SPP let OPT(J) denote the optimum value for Cmax.
For a minimization problem as SPP we say that an algorithm B has absolute
ratio α, if supJ

B(J)/OPT (J) ≤ α, and asymptotic ratio α, if
α ≥ lim supOPT (J)→∞ B(J)/OPT (J), respectively. A minimization problem admits
an (asymptotic) polynomial-time approximation scheme ((A)PTAS), if there ex-
ists a family of polynomial-time approximation algorithms {Bε|ε > 0} of (asymp-
totic) (1+ε)-approximations. We call an approximation scheme fully polynomial
((A)FPTAS), if the running time of every algorithm Bε is bounded by a poly-
nomial in the size of the input |J | and 1

ε .
Related work. For N = 1 the problem is equivalent to scheduling n paral-
lel jobs on m identical machines. The well-known List Algorithm of Garey and
Graham [13] achieves absolute ratio 2 for this problem. For the case that the
number of machines is polynomially bounded in the number of jobs a (1.5 + ε)-
approximation for the contiguous case and a (1 + ε)-approximation for the non-
contiguous case were given in [11]. For malleable job scheduling there are several
results, as e.g. in [4], [9], [7] and [18].

If N = 1 and the jobs are assigned to processors of consecutive addresses,
the problem corresponds directly to strip packing. For strip packing classical
shelf-based algorithms are given in [12]. Further results are given in [20], [22]
and [6]. An important result is an AFPTAS for strip packing with additive con-
stant O(1/ε2hmax) given by Kenyon and Rémila in [14], where hmax denotes the
height of the tallest rectangle (i.e. the length of the longest job). This constant
was improved by Jansen and Solis-Oba, who presented in [10] an APTAS with
additive constant hmax.

The problem SPP is also closely related to the generalized multiple strip
packing (MSP) where rectangles have to be packed into strips of infinite height
and different widths. Here one wants to find a packing that minimizes the max-
imum of the heights used in every strip. It corresponds to the case that all plat-
forms are identical and the jobs need to be scheduled on contiguous processors.
For MSP Zhuk [25] showed that there is no polynomial time approximation al-
gorithm with absolute ratio better than 2 (unless P = NP ). Later, Ye et al. [24]
obtained an algorithm for MSP with ratio 2 + ε. In [1] we presented a tight
2-approximation and an AFPTAS for MSP. Keep in mind that because of the
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contiguity constraint algorithms for SPP cannot be directly applied to the gen-
eralized MSP, but vice versa. However, in general approximation ratios are not
preserved, but the optimal value for generalized MSP is an upper bound of the
optimal value for SPP.

Schwiegelshohn et al. [21] achieved ratio 3 scheduling parallel jobs on hetero-
geneous platforms with identical speeds without release times, and ratio 5 with
release times. Tchernykh et al. presented in [23] an algorithm with absolute ratio
10 without release times. For scheduling parallel jobs on identical platforms, we
proposed recently a low cost approximation algorithm with absolute ratio 5/2
in [2]. We were able to improve our result to a fast 5/2-approximation for het-
erogeneous platforms with identical speeds and under the additional constraint
that every job can be scheduled in each platform [3].
Our results. In this paper we present an AFPTAS for SPP with additive factor
O(1/ε2pmax).

Theorem 1. For every accuracy ε there exists an approximation algorithm with
running time polynomial in the size of the input |J | and 1/ε that produces for ev-
ery instance J of SPP a schedule of length at most (1+ε)OPT(J)+O(1/ε2pmax).

In practical applications the jobs are usually small compared to the optimum
so that an algorithm with a good asymptotic ratio is more applicable than one
with a worse absolute ratio. If pmax ≤ ε3OPT(J) for an instance J , the makespan
of the schedule constructed by our algorithm is very close to the optimum (≤
(1 + ε)OPT (J) +O(1/ε2pmax) ≤ (1 + cε)OPT (J)) for a constant c ∈ R≥0, while
an absolute 2 or 3-approximation may be quite far away. To our best knowledge
this is also the first result for platform scheduling that takes different speed
values among the platforms into account. Since the platforms may have different
numbers of processors the AFPTAS in [1] does not apply for SPP, because it is
based on cutting a solution for a single strip and distributing it well-balanced.
Additionally, we do not assume that every job fits in every platform. Thus, the
algorithm in [3] does also not apply.
The algorithm and its analysis are given in Section 2. Since we assign each job to
processors of consecutive addresses our algorithm also applies to the generalized
MSP. Moreover, in Section 4 we show how our model and the algorithm can
be slightly modified to achieve an AFPTAS for scheduling malleable jobs in
heterogeneous platforms with different speeds. In Section 5 we give an AFPTAS
for SPP with release times. Due to space reduction missing proofs can be found
in the appendix.

2 An AFPTAS for SPP

Our algorithm is based on an LP -relaxation where migration and preemption
are allowed. That is a job is allowed to be split into fractions that are executed
in different platforms (if they fit). Emanating from the solution of the LP we
compute a unique assignment of almost all jobs to the platforms. This is done by
skillful rounding the fractions of jobs using a result of Lenstra et al. [17]; i.e. the
number of remaining fractional jobs per platform will be bounded by O(1/ε2).
Remarkably, the rounding technique needs except an (approximate) solution
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of the LP no extra information about the speed values. For each platform we
reschedule the obtained integral jobs with an approximation algorithm for strip
packing [14] and schedule the fractional jobs behind them. An overview of the
algorithm is given in Figure 1.

Algorithm 1

1: Solve a linear program relaxation of the problem (1) and get a fractional schedule
where preemption and migration are allowed.

2: Group the fractional jobs corresponding to the LP-solution as described in steps
1-4 in Section 2.2 according their widths and for every platform P` obtain sets
L`

wide and L`
narrow of wide and narrow fractional rectangles, respectively.

3: Via a general assignment problem (2) round the fractional rectangles and obtain
sets of rounded rectangles L̃`

wide, L̃`
narrow and fractional rectangles F ` for ` ∈

{1, . . . , N}.
4: for all ` ∈ {1, . . . , N} do
5: Pack L̃`

wide∪L̃`
narrow with the approximation algorithm for strip packing in [14]

into platform P`.
6: Schedule the fractional jobs in F ` greedily on top of the schedule corresponding

to the packing obtained before.
7: end for

2.1 Relaxed Schedule
Let J be an instance of SPP and let T be the makespan of an optimum schedule
for J . To simplify the structure of the schedule instead of handling the specific
processing times t`j we consider each platform as a two-dimensional bin of width
m` and height Ts` and schedule the jobs concerning their lengths pj within this
bin. Furthermore, we abandon the constraint that a job has to be scheduled non-
preemptively and within only one platform. We represent the schedule of a job
Jj = (pj , qj) as a (finite) sequence of pairs (Ii, Qi)i∈I(j), I(j) ⊂ N, where every
Ii ⊂ [0, T ] is a time interval and every Qi is a set of processors so that there
is a uniquely defined platform P`i ∈ {1, . . . , N} with Qi ⊂ M`i and |Qi| = qj .
Additionally, we assume that the following conditions hold:

(i) the time intervals for job Jj within the same platform do not overlap except
maybe at the endpoints, i.e. for all ` ∈ {1, . . . , N}⋃
i,i′∈I(j),i 6=i′
`i=`=`i′

(
◦
Ii ∩

◦
Ii′

)
= ∅, where

◦
A denotes the interior of a set A.

(ii)
∑N

`=1 s`
∑
{i∈I(j)|Qi⊂M`} |Ii| ≥ pj (covering constraint).

(iii) at any time for every processor there is at most one job running on it.

Keep in mind that under this constraints a job is allowed to be split among the
platforms and may be executed in two different platforms at the same time, but
never in parallel with itself within the same platform (except for a discrete time,
when one piece starts and another ends). It can be executed on two different
(not necessary disjoint) subsets of processors within the same platform during
different time intervals, where only the endpoints of the time intervals may over-
lap. An example how such a relaxed schedule can look like is given in Figure 1:
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Assume that T = 10/s`1 and job Jj needs to be scheduled on qj = 3 processors
for pj = 7.5 operations. So in P`1 it is scheduled on processors {7, 8, 9} during
time [0, 1/s`1 ] and on processors {2, 3, 4} during time [5/s`1 , 7/s`1 ]. In P`2 it is
scheduled on processors {1, 2, 3} during time [0, 3/s`2 ] and in P`3 it is sched-
uled on processors {3, 4, 5} during time [3.5/s`3 , 5/s`3 ]. This gives 1 + 2 = 3
operations in P`1 , 3 operations in P`2 and 1.5 operations in P`3 (this fulfills
the covering constraint). The relaxed schedule can be formulated via the linear

Ts`1 = 10

P`1

Ts`2

P`2

Ts`3

P`3

Job Jj , pj = 7.5, qj = 3

Fig. 1. Relaxed schedule

program below: For each platform in P`, 1 ≤ ` ≤ N we introduce configura-
tions C`. A configuration C` is a function C` : {1, . . . , n} −→ {0, 1}, so that∑
{j∈{1,...,n}|C`(j)=1} qj ≤ m`. It tells us which jobs can be scheduled in parallel

in platform P`. By definition, the number q(`) of different configurations for P` is
bounded by 2n. Let C` = {C`

1, . . . , C
`
q(`)} denote the set of all configurations for

a platform P`. In the LP below the variable xC`
k

indicates the length of configu-

ration C`
k. That means that the jobs in {j ∈ {1, . . . , n}|C`

k(j) = 1} are executed
in platform P` during xC`

k
operation steps.

q(`)∑
k=1

xC`
k

= s`T ` ∈ {1, . . . , N}

N∑
`=1

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

xC`
k
≥ pj j ∈ {1, . . . , n}

xC`
k
≥ 0 k ∈ {1, . . . , q(`)}, ` ∈ {1, . . . , N}

(1)

The first N constraints ensure that the makespan Cmax(`) in each platform P`

does not exceed T . The next n constraints are covering constraints for the n
jobs. They make sure that every job is executed sufficiently long. We describe
how to solve the LP efficiently in the full version of this article.

Lemma 1. If T is the makespan of an optimum schedule for SPP(J), the linear
program above (1) is a relaxation of SPP(J).

2.2 Rounding the Fractional Solution.

In this section we round the jobs in order to get a unique assignment of every
job to a subset of processors of a platform. Consider an approximate solution
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(xC`
k
) of the LP-relaxation. We introduce a new variable x`j ∈ [0, pj ] that in-

dicates the length of the fraction of job Jj that is scheduled on P`. Formally
this is x`j =

∑
{k∈{1,...,q(`)}|C`

k(j)=1} xC`
k
, the sum of the length of all configu-

rations in P` in which Jj appears. We can assume for all jobs Jj the equality∑N
`=1 x

`
j = pj , if not we simply delete job Jj from appropriate configurations or

replace a configuration by two “shorter” configurations (one with job Jj and one
without, their total length is the same as the one of the original configuration).
For all fractions x`j of a platform P` we build rectangles (x`j , qj) of height x`j and
width qj . In the following steps the rectangles of every platform P` are grouped
geometrically.

y`j,1

y`j,2 H`

M

2H`

M

3H`

M

G`
1

G`
2

G`
3

Rectangle (x`j , qj), a fraction of Jj .

Fig. 2. Constructing L′`
wide

1. Choose ε′ := ε/3 and partition the rectangles into wide and narrow rectangles,
L`
wide := {(x`j , qj)|qj > ε′m`} and L`

narrow := {(x`j , qj)|qj ≤ ε′m`}.
2. Build a stack of the rectangles in L`

wide ordered by non-increasing width.
The total height of the stack is denoted with H`.

3. Set M := (1/ε′2). Divide the stack into M groups G`
i by drawing M − 1

horizontal lines at height iH`
/M for i ∈ {1, . . . ,M − 1} through it. If the

interior of a rectangle intersects a horizontal line, cut the rectangle along
this line and introduce two new rectangles, so that every rectangle can be
assigned to exactly one group. Let L′`wide denote the modified list of rectangles
(see Figure 2). With y`j,i ∈ [0, pj ] we denote the fraction of job j that is

assigned to G`
i . Let z`j,i = y`

j,i/pj ∈ [0, 1] denote the scaled fraction.

4. Compute A(L`
narrow) =

∑
(x`

j ,qj)∈L`
narrow

x`jqj and locate the corresponding

rectangles on top of the stack as group G`
0. Let y`j,0 ∈ [0, pj ] denote the

fraction of a narrow job Jj that is assigned to G`
0 and and let z`j,0 = y`

j,0/pj ∈
[0, 1].

If we were able to round the variables z`j,i to integer values {0, 1} (without
losing too much), this would imply a unique assignment of every rectangle to
exactly one group of a platform. Re-identifying the rectangles with jobs, where
we identify the height of a rectangle with the length of a job, this would also
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imply a unique assignment of every job to a platform. We achieve such a rounding
of the variables z`j,i via the following general assignment problem, so that there
remain at most M + 1 fractionally assigned rectangles per platform.

n∑
j=1

z`j,0pjqj ≤ A(L`
narrow) ` ∈ {1, . . . , N}

n∑
j=1

z`j,ipj ≤
H`

M
i ∈ {1, . . . ,M}, ` ∈ {1, . . . , N}

N∑
`=1

M∑
i=0

z`j,i ≥ 1 j ∈ {1, . . . , n}

z`i,j ∈ [0, 1]

(2)

The above formulation is related to the problem of scheduling jobs on parallel
unrelated machines with (M + 1)N machines. Each group G`

i corresponds to
a machine. Lenstra et al. showed in [17] that a feasible solution (z`i,j) of this

problem can be rounded to a feasible solution (z̃`i,j) of the corresponding inte-
ger program formulation in polynomial time, so that there remains at most one
fractional job z̃`i,j < 1 per machine. Hence, we get a unique assignment of almost
all rectangles to the platforms P` except at most M + 1 fractionally assigned
rectangles per platform. Let F ` denote the set of rectangles with fractional vari-
ables z̃`j,i after the rounding. We will execute the corresponding jobs at the end
of the schedule; their total processing time is bounded by (M + 1)tmax. From
now on we consider for each platform P` an instance of strip packing containing
a set of wide rectangles L̃`

wide := {(z̃`j,ipj , qj)|z̃`j,i = 1, i > 0} and a set of nar-

row rectangles L̃`
narrow := {(z̃`j,0pj , qj)|z̃`j,0 = 1}. In every platform we repack

the pre-assigned rectangles in L̃`
wide ∪ L̃`

narrow using the following strip packing
subroutine by Kenyon and Rémila [14].

2.3 Strip Packing Subroutine.

For wide rectangles in L̃`
wide we generate a list of rounded rectangles L̃`

sup with
only a constant number M of different widths w1, . . . , wM for the rectangles:
We partition the stack of L̃`

wide into M groups by drawing M horizontal lines

at height iH̃`

M , i ∈ {0, 1 . . . ,M − 1}. Thus, we obtain at most M threshold rect-
angles, i.e. rectangles that intersect either with their lower bounds or with their
interiors such a horizontal line. The widths of rectangles between the ith and
the (i + 1)th line are rounded up to the width of the ith threshold rectangle,
i ∈ {0, 1, . . . ,M − 1}. For rectangles above the Mth line we take the width of
the Mth threshold rectangle.
The main part of the algorithm is to produce a fractional packing for the rect-
angles in L̃`

sup using a linear program. In doing so we build configurations

C̃`
j := {α̃`

ij : wi|i ∈ {1, . . . ,M}}, i.e. multisets of widths where α̃`
ij denotes

the number of rectangles of width wi in C̃`
j and

∑M
i=1 α̃

`
ijwi ≤ m`. Then the
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following LP is solved.

min

q`∑
j=1

x̃`j

s.t.

q`∑
j=1

α̃`
ij x̃

`
j ≥ β`

i for all i ∈ {1, . . . ,M}

x̃`j ≥ 0 for all j ∈ {1, . . . , q`}.

(3)

The variable x̃`j indicates the height of configuration C̃`
j , β`

i is the total height

of rectangles of width wi in L̃`
sup and q` denotes the number of possible configu-

rations. A feasible solution of the LP corresponds to a fractional strip packing.
The fractional packing can be converted into an integral one. Then the nar-
row rectangles in L̃`

narrow are added in the remaining space next to the integral
packing and on top of it with Next Fit Decreasing Height heuristic.

3 Analysis

In the end we re-identify the rectangles with jobs, i.e. their widths with qj and
their heights with pj . Note that a packing of the rectangles of total height h` in
platform P` corresponds to a schedule with makespan h`

/s`. Then the fractional
jobs in F ` are scheduled on top. To directly apply strip packing results we scale
the widths of all rectangles in L̃`

sup ∪ L̃`
narrow by 1/m`. Furthermore we consider

platform P` as a strip of width 1 and infinite height. As we consider each platform
and the allocated jobs independently, this has no impact on the solution.

3.1 Analyzing the Output
Let (xC`

k
) be an approximate solution of (1) and let L̃`

wide ∪ L̃`
narrow contain the

rectangles that have to be repacked in Step 5 of Algorithm 1 with the strip pack-
ing subroutine above. For a list of rectangles L let LinSP (L) denote the height
of an optimal fractional strip packing for the rectangles in L. By construction we
have that the height of an optimal fractional strip packing for the wide and nar-
row rectangles in L`

wide ∪L`
narrow into platform P`, is less than the length of the

schedule corresponding to the approximate solution of (1) constructed in step
1, that is LinSP (L`

wide ∪L`
narrow) ≤ s`(1 + 3ε)Lin(J). Let “≤” denote a partial

order on lists of rectangles. For a list of rectangles L let S denote the shape of a
stack built as described above. We say L ≤ L′ for two lists of rectangles, if shape
S′ covers S. It is clear that LinSP (L̃`

wide) ≤ LinSP (L̃`
sup), since L̃`

wide ≤ L̃`
sup.

With Lemma 3 in [14] we conclude LinSP (L̃`
sup) ≤

(
1 + 1

Mε′

)
LinSP (L̃`

wide) and

A(L̃`
sup) ≤

(
1 + 1

Mε′

)
A(L̃`

wide).

We go on with step 2 and consider the stack built from L′`wide in the 3rd step
of the grouping procedure in Section 2.2. We introduce a new list of rectangles
L′`sup that is developed when in each group G`

i of the stack, i ∈ {1, . . . ,M}, the
width of each rectangle is rounded up to the widest width of a rectangle that
is contained in this group. Remember that every rectangle in L′`wide is uniquely
assigned to one of the groups G`

i since we introduced two new rectangles for
border rectangles before. Notice that during building L̃`

wide in step 3 of Algorithm
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1 we do not increase the total height of any group G`
i and we do not exceed the

largest width of a rectangle that appears in it. Thus, we obtain L̃`
wide ≤ L′`sup.

Since LinSP (L′`wide) = LinSP (L`
wide) and A(L′`wide) = A(L`

wide) this gives:

Lemma 2. For all ` ∈ {1, . . . , N} we have

a) LinSP (L̃`
sup) ≤

(
1 + 1

Mε′

)2
LinSP (L`

wide)

b) A(L̃`
sup) ≤

(
1 + 1

Mε′

)2
A(L`

wide).

Let h`sup denote the height of the packing produced by converting the frac-
tional solution of (3) into an integral one. This is done by adding for each config-
uration appearing with height > 0 in the fractional solution the maximum height
of a rectangle. Each basic solution of (3) has at most M non-zero entries and one
can show that there are effectively at most 2M different configurations in plat-
form P` [14]. So we conclude h`sup ≤ LinSP (L̃`

sup) + (1 + 2M) max{pj |(pj , qj) ∈
L̃`
sup}. Note that we only packed the rounded rectangles in L̃`

sup so far. Let h`

denote the height after adding the narrow rectangles in L̃`
narrow to platform P`,

` ∈ {1, . . . , N}. We can now bound h`:

Lemma 3. For all ` ∈ {1, . . . , N} we have
h` ≤ (1 + 7ε)Lin(J)s` +O(1/ε2) max{pj |(pj , qj) ∈ L`

wide ∪ L`
narrow}.

The packing in each platform P` corresponds to a schedule with length (referring
to pj) at most (1 + 7ε)Lin(J)s` + ( 36

ε2 + 1) max{pj |(pj , qj) ∈ L`
wide ∪ L`

narrow},
thus we conclude that its completion time (referring to t`j) is bounded by (1 +

7ε)Lin(J) + O( 1
ε2 tmax). The remaining jobs in F ` have total processing time

bounded by (M + 1)tmax ∈ O( 1
ε2 tmax) ≤ O( 1

ε2 pmax), since tmax ≤ pmax as
min s` = 1. Adding now the remaining jobs in F ` to the schedule does not
change the magnitude of the additive factor. With rescaling ε and since Lin(J) ≤
OPT(J) we obtain that the makespan of the produced schedule in each platform
P` is less than Cmax(`) ≤ (1 + ε)OPT(J) + O( 1

ε2 pmax) and conclude our main
Theorem 1. Since during the repacking process we considered jobs as rectangles,
we assigned every job to a set of processors with consecutive addresses. Thus
we also obtain an AFPTAS for multiple strip packing for strips with different
widths (in this case we have s` = 1 for all ` ∈ {1, . . . , N}).

3.2 Running Time of the Algorithm

The time needed for solving (1) approximately via max-min resource sharing (de-
tails in the full version)in step 1 is O(Nn2ε−6 log2(n) log2(1/ε) log(N max s`)).
The number of non-zero configurations in the final solution is bounded byO(n(ε−2+
lnn)) [15]. So step 2 takes time O(Nn2(ε−2 + log n) log(n2(ε−2 + log n))
= O(Nn2ε−2 log2(n) log(1/ε)), since there are at most n2(ε−2 + log n) rect-
angles in each platform that have to be sorted. We represent the assignment
problem in step 3 as a weighted bipartite graph G = (V1, V2, E), where V1
corresponds to the N(M + 1) machines (parts of the stacks), V2 to the jobs.
There is an edge between the node representing part i of the stack for P` and
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the node representing job Jj if z`j,i > 0. This assignment problem can be con-

verted in time O(|E||V1|) = O(|V1|2|V2|) = O(ε−2N2n) into another assign-
ment problem, whose corresponding graph is a forest [19]. Applying the round-
ing technique in [17] to the new assignment takes time in O(|V1| + |V2|) =
O(ε−2N + n). So step 3 takes time in O(ε−2N2n). In step 5 it is sufficient
to solve the corresponding linear program (3) approximatively with accuracy
ε also via a max-min resource sharing problem. This can be done in time
O(M(ε−2 +lnM) ln(ε−1) max{M +ε−3,M ln ln(Mε−1)}) for every platform [8].
Since M ∈ O(ε−2) this gives for step 5 a total running time in O(Nε−7). The
overall running time sums up to O(ε−7N2n2 log2(n) log2(1/ε) log(N max s`)).

4 Malleable Jobs

One can also obtain an AFPTAS for scheduling malleable jobs non-preemptively
by only adding a few modifications to the algorithm. To get a better overview
we do not consider the platform speeds here. But remember that one can easily
add speeds here by considering bins of height s`T instead of T , where T denotes
an optimum value for the makespan for scheduling malleable jobs in platforms.
In the following we give a short instruction how to adjust our algorithm:
In malleable scheduling a job Jj is described by a function pj : {1, . . . ,mN} −→
Q+ ∪ ∞, where pj(k) is the length of job j running on k parallel processors
of a platform. We introduce a configuration as a map f` : {1, . . . ,m`} −→
{0} ∪ {1, . . . , n} that assigns a processor to a job (0 for idle time). Instead of
solving (1) we can solve in a similar way the following linear program:∑

f`∈F`

xf` = T ` ∈ {1, . . . , N}

N∑
`=1

m∑̀
k=1

1

pj(k)

∑
f`∈F`,|f−1(j)=k|

xf` ≥ 1 j ∈ {1, . . . , n}

xf` ≥ 0.

(4)

Consider step 2 of the algorithm. Let a`i , b
`
i be the smallest and the largest width

of a rectangle in group G`
i and let W `

i,j be the set of widths job Jj adopts in

G`
i . To guarantee that we have chosen the right number of processors for a job

we add the following steps before rounding the jobs via the general assignment
problem:
– For i ∈ {1, . . . ,M} and w ∈ W `

i,j let y`j,i(w) denote the fraction of job j of

width w that is assigned to G`
i . Let z`j,i =

∑
w∈Wi,j

y`j,i(w) be the complete

fraction of job j in G`
i .

– For each part i ∈ {1, . . . ,M} and job j with |W `
j,i| ≥ 2 compute k`j,i :=

arg mink∈[a`
i ,b

`
i ]
p`j(k) and replace the rectangles corresponding to job j in G`

i

by (z`j,ipj(k
`
j,i)k

`
j,i). Note that pj(k

`
j,i) is the smallest processing time among

all processor numbers k ∈ [a`i , b
`
i ].

– For each job j with |W `
j,0| ≥ 2 compute k`j,0 := arg mink∈[0,ε′m`]

p`j(k)k and

replace all rectangles corresponding to job j in G`
0 by (z`j,0pj(k

`
j,0), k`j,0).
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Including different speed values we define the processing time of job Jj in

platform P` as t`j(k) =
pj(k)
s`

. Note that t`j(k) = ∞ is possible. We define

pmax := maxj,k{pj(k)|pj(k) < ∞} and tmax := maxj,k,`{t`j(k)|t`j(k) < ∞}. To
include speed values in the linear program we change the first N constraints of
LP (4) into ... = s`T , since different speeds can be considered as providing length
s`T instead of T for the schedule. During the repacking process the algorithm
remains the same and finally we achieve the following theorem

Theorem 2. There is an AFPTAS for scheduling non-preemptive malleable jobs
in heterogeneous platforms with different speeds with additive factor O(1/ε2pmax).

5 Release Times

Theorem 3. There is an AFPTAS for scheduling parallel jobs in heterogeneous
platforms with different speeds and release times with additive factor O(1/ε3pmax).

For a better overview we describe here the idea for the proof when all platforms
run with the same speed, i.e. s` = 1 for all ` ∈ {1, . . . , N}. The general case can
be derived from it. Let rj denote the release time of job Jj and Φ := maxj rj . We
assume that Φ > εT , otherwise it is easy. As in [5] we round down the release
times to the next multiples of iεT i ∈ {0, 1, . . . , 1/ε} and obtain new release
times r̃1 . . . , r̃n with at most R = O(1/ε) different values ρ1, . . . , ρR. To recover
the loss we made by rounding down we shift the final schedule by εT in the end.
For every platform P` we consider R new platforms P̃`,i, i ∈ {1, . . . , R}, with

m` processors and create a new instance J̃R of SPP (without release times) with
RN platforms and n jobs. A job Jj can now be scheduled in platform P̃`,i if it
fits and if it is already released, i.e. qj ≤ m` and r̃j ≤ ρi. For each of the new

platforms P̃`,i the value of an optimal fractional schedule is at most εT .
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18. G. Mounié, C. Rapine, and D. Trystram. Efficient approximation algorithms for
scheduling malleable tasks. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 23–32, 1999.
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