
INSTITUT FÜR INFORMATIK

Multiple strip packing and scheduling

parallel jobs in platforms

Marin Bougeret, Pierre-Francois Dutot, Klaus
Jansen, Christina Robenek, Denis Trystram

Bericht Nr. 1108

Oktober 2011

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Multiple strip packing and scheduling parallel

jobs in platforms

Marin Bougeret, Pierre-Francois Dutot, Klaus Jansen,
Christina Robenek, Denis Trystram

Bericht Nr. 1108

Oktober 2011

ISSN 2192-6247

e-mail:
marin.bougeret@ens-lyon.f,pierre-francois.dutot@imag.fr,

kj@informatik.uni-kiel.de, cot@informatik.uni-kiel.de,
denis.trystram@imag.fr

Parts of this results have been published as extended abstract in
Proceedings of the 7th Workshop on Approximation and Online

Algorithms (WAOA 2009) and Computing and Combinatorics - 17th
Annual International Conference (COCOON 2011). The research was

supported by EU project ”‘AEOLUS: Algorithmic Principles for Building
Efficient Overlay Computers”’, EU contract number 015964, and DFG

project JA612/12-1, ”‘Design and analysis of approximation algorithms for
two- and threedimensional packing problems”’, and DGA-CNRS

Abstract

We consider two strongly related problems, multiple strip packing and schedul-
ing parallel jobs in platforms. In the first one we are given a list of n rectangles
with heights and widths bounded by one and N strips of unit width and infinite
height. The objective is to find a non-overlapping orthogonal packing without rota-
tions of all rectangles into the strips minimizing the maximum height used. In the
scheduling problem we consider jobs instead of rectangles, i.e. we are allowed to
cut the rectangles vertically and we may have target areas of different size, called
platforms. A platform P` is a collection of m` processors running at speed s` and
the objective is to minimize the makespan, i.e. the latest finishing time of a job.

1 Introduction

We consider two strongly related problems, multiple strip packing and scheduling parallel
jobs in platforms. Strip packing (SP) is the geometric version of the cutting-stock problem.
Here we are given a list of n rectangles L = {rj|j ∈ {1, . . . , n}} with heights hj and widths
wj bounded by one and a strip of unit width and infinite height. The objective is to find
a non-overlapping orthogonal packing without rotations of all rectangles into the strip
minimizing the total height used. The optimum value for this height will be denoted
with OPTSP (L). Multiple strip packing (MSP) is a generalization of the strip packing
problem. Here the rectangles have to be packed into N identical strips S1, . . . SN . For
each strip S`, ` ∈ {1, . . . , N} we denote with h(`) the height of the packing in this strip.
The objective in MSP is to minimize max` h(`). For an instance of MSP we simply write
L suppressing the number of strips (that will always be N). The optimum value of MSP
for a given list of rectangles L will be denoted with OPTMSP (L).

The second problem is called scheduling parallel job in platforms (SPP). As strip pack-
ing is closely related to scheduling parallel jobs on identical machines, we consider its gen-
eralization to N platforms of processors. Moreover we are given n jobs J = {J1, . . . , Jn}
and N heterogeneous platforms P` each of them representing a set of m` processors
(machines) running at speed s` ∈ R>0. We assume the platforms to be ordered non-
decreasingly by their number of processors, i.e. m1 ≤ m2 ≤ . . . ≤ mN . Every job Jj
is described by a pair (pj, qj) of the length of a job pj (number of operations) and a
number of parallel processors qj (degree of parallelism) that Jj requires when executed.
We assume qj ≤ mN = max`m` for all jobs, if not there is no feasible schedule. Since
sometimes we will identify jobs with rectangles, we call qj the width of job Jj. A job Jj
is only allowed to be scheduled within one platform, its processing time in platform P`
is t`j :=

pj
s`

if qj ≤ m` else t`j := ∞. We assume furthermore (by scaling) min` s` = 1 and

define tmax := maxj,`{t`j|t`j <∞}, which is less than pmax := maxj pj (as min` s` = 1). Our
objective is to find a non-preemptive schedule of all jobs into the platforms minimizing
Cmax := max`Cmax(`), where Cmax(`) denotes the completion time of a feasible schedule
in P`, i.e. the latest finishing time of a job in P`. For an instance J of SPP let OPTSPP (J)
denote the optimum value for Cmax.
The size (sometimes called work) of a job is SIZE(Jj) = pjqj and for a list of jobs
J we define SIZE(J) =

∑
j∈J pjqj. Analogously we define the size of a rectangle

SIZE(rj) = wjhj and the size of a list of rectangles SIZE(L) =
∑

j∈Lwjhj. The to-

3

tal processing time (or length) of a list of jobs J is P (J) =
∑

j∈J pj. Similar we define
the total height of a list of rectangles L as the sum over all heights H(L).

The quality of an approximation algorithm is measured by its performance ratio. For
an instance I of a minimization problem with optimum value OPT(I) as MSP and SPP
we say that B has absolute ratio α, if supI B(I)/OPT(I) ≤ α, and asymptotic ratio α,
if α ≥ lim supOPT(I)→∞

B(I)/OPT(I), respectively. A minimization problem admits an

(asymptotic) polynomial-time approximation scheme ((A)PTAS), if there exists a fam-
ily of polynomial-time approximation algorithms {Bε|ε > 0} of (asymptotic) (1 + ε)-
approximations. We call an approximation scheme fully polynomial ((A)FPTAS), if the
running time of every algorithm Aε is bounded by a polynomial in n and 1

ε
.

Both problems MSP and SPP are closely related where at first sight the scheduling
problem offers us more possibilities to manipulate the instance to find an optimal solution
while the packing problem seems to be more rigid. We will see that there are similar
LP-relaxations based on fractional bin packing that can be used to give approximation
algorithms for both problems.

1.1 Known results

Multiple strip packing was first considered by Zhuk [24], who showed that there is no
approximation algorithm with absolute ratio better than 2, and later by Ye et. al. [23].
Both concentrated on the online case. Additionally an approximation algorithm for the
offline case with ratio 2 + ε was achieved in [23].

In [7] Coffman et al. gave an overview about performance bounds for shelf-orientated
algorithms for strip packing as NFDH (Next Fit Decreasing Height) and FFDH (First
Fit Decreasing Height). Those adopt an absolute ratio of 3, and 2.7, respectively. Schier-
meyer [18] and Steinberg [21] presented independently an algorithm for SP with absolute
ratio 2. Recently, Harren et al. gave an algorithm for strip packing with absolut ratio
close to 5/3 [10]. An important result is an AFPTAS for strip packing with additive con-
stant O(1/ε2hmax) given by Kenyon and Rémila in [14], where hmax denotes the height of
the tallest rectangle (i.e. the length of the longest job). This constant was improved by
Jansen and Solis-Oba who presented in [12] an APTAS with additive constant hmax.

If the jobs are assigned to processors of consecutive addresses, the problem SPP cor-
responds directly to MSP. But, keep in mind that in general because of the contiguity
constraint algorithms for SPP cannot be directly applied to the generalized MSP, because
rectangles may be cut. But the optimal value for generalized MSP is an upper bound
for the optimal value for SPP. Schwiegelshohn et al. [20] achieved ratio 3 for scheduling
parallel jobs on heterogeneous platforms with identical speeds without release times, and
ratio 5 with release times. Tchernykh et al. presented in [22] an algorithm with absolute
ratio 10 without release times. For scheduling parallel jobs on identical platforms, we
proposed a low cost approximation algorithm with absolute ratio 5/2 in [3]. Recently, we
were able to improve our result to a fast 5/2-approximation for heterogeneous platforms
with identical speeds and under the additional constraint that every job can be scheduled
in each platform [4].

4

1.2 Our results

In the first part of this article we present several results for multiple strip packing. We
present an approximation algorithm with absolute ratio 2, which is an improvement of the
former result of 2 + ε by Ye et al. [23] and best possible, unless P = NP . Furthermore,
we show how to use the shelf-based heuristics NFDH and FFDH to obtain approxima-
tion algorithms for MSP with the same asymptotic ratio as for strip packing. We also
introduce an AFPTAS for multiple strip packing, which is a based on a generalization of
an improved version of the algorithm of Kenyon and Rémila [14]. By using a different
rounding technique we can reduce the additive constant of the strip packing algorithm
by Kenyon and Rémila to O(1/ε log(1/ε))hmax and its running time. We generalize that
algorithm to several strips and achieve the following:

Theorem 1.1. For any instance L of MSP and accuracy ε > 0 there is an algorithm
that produces a packing into N strips of unit width with height at most

(1 + ε)OPTMSP (L) +O(1/ε log(1/ε))hmax

and running time polynomial in the size of the input |L| and 1/ε. For N sufficiently large,
namely N = Ω(1/ε2 log(1/ε)) the packing produced has height at most

(1 + ε)OPTMSP (L) +O(1)hmax.

This is also an improvement of the first version of the algorithm published as an
extended abstract in [2].

The same algorithm can be applied to scheduling parallel jobs in identical platforms
achieving the same approximation ratio. The problem with heterogeneous platforms
(SPP) is more complex since the platforms may have different numbers of processors
and speeds. The algorithm for MSP does not apply here because it is based on cutting
a solution for a single strip and distributing it well-balanced. Additionally, we do not as-
sume that every job fits in every platform. Thus, the algorithm in [4] does also not apply.
For SPP we found a different approach which also leads to an AFPTAS. Our algorithm
first transforms the problem into a 2-dimensional bin packing problem with different bin
sizes and formulates an LP-relaxation for it. Solving the LP gives a fractional assignment
of the jobs to the platforms. By clever rounding the solution of the LP we get an integral
assignment of nearly every job. Applying the improved strip packing algorithm the pre-
assigned jobs are repacked. This also improves the running time and the additive term of
the first version of the algorithm published as an extended abstract in [5].

Theorem 1.2. For every accuracy ε there exists an approximation algorithm that produces
for every instance J of SPP a schedule of length at most

(1 + ε)OPTSPP (J) +O(1/ε log(1/ε))pmax

and running time polynomial in the size of the input |J | and 1/ε.

Furthermore our algorithm can easily be modified to handle malleable jobs or release
times. For malleable jobs we achieve the same approximation ratio while for SPP with
release times we present an AFPTAS with additive factor O(1/ε2 log(1/ε))pmax.

5

1.3 Organization of the paper

In Section 2 we give generalizations of NFDH and FFDH for MSP. Section 3 contains
our 2-approximation for MSP. We describe how to improve the algorithm of Kenyon and
Rémila in Section 4 and give an AFPTAS for MSP in Section 5. Finally we present an
AFPTAS for SPP in Section 6 and discuss its modification for malleable jobs in Section
8 and for release times in Section 9.

2 Shelf-based algorithms for MSP

We start with some elementary results for the NFDH and FFDH heuristics [7] applied
to several strips that will give an understanding of the problem. The NFDH and FFDH
heuristics are so-called shelf-based algorithms. A shelf is a row of items placed next to
each other aligned by their edges. The bottom of a shelf is either the bottom of the bin
or at the same height as the upper edge of the tallest item packed in the shelf below.
Typically the principle of operation of those algorithms is easy to grasp, but it can be
difficult to analyze them.

Theorem 2.1. Let A be one of the shelf-based strip packing algorithms NFDH and FFDH
with asymptotic ratio α > 1, that creates for a list of rectangles L a packing into a single
strip of unit width with height less than αOPTSP (L) + hmax. For any N ∈ N there exists
an algorithm AN that packs a list of rectangles L into N strips with max`∈{1,...,N} h(`) ≤
αOPTMSP (L) + hmax.

Proof. Consider Algorithm 1. We show that for a list of rectangles L, the packing pro-
duced by AN has height less than αOPTMSP (L) + hmax. Let t ∈ N be the number of
shelves produced by A in Step 1 and Hj, j ∈ {1, . . . , t}, the height of the jth shelf.
Since there are no items intersecting the 0th line, after the last step of the algorithm

the height h(1) of the first strip S1 is bounded by hmax +
∑t

j=1Hj−hmax

N
. For any strip S`,

` ∈ {2, . . . , N}, containing items from between the (`−1)th and the `th line and the ones
intersecting the (`− 1)th line, we have

h(`) ≤
∑t

j=1Hj − hmax

N
+ hmax =

A(L)− hmax

N
+ hmax.

With OPTSP as the optimum of SP we conclude

AN(L) = max
i
hi ≤

A(L)− hmax

N
+ hmax

≤ αOPTSP (L) + hmax − hmax

N
+ hmax =

αOPTSP (L)

N
+ hmax.

Since 1/NOPTSP (L) is a lower bound for OPTMSP (L) the proof is complete.

Corollary 2.2. The algorithms FFDHN and NFDHN generate packings for a set of
rectangles L into N strips with height less than 1.7OPTMSP (L) + hmax and hMSP ≤
2OPTMSP (L) + hmax, respectively.

6

Algorithm 1 AN
1: Pack rectangles with A in one strip S. (Keep in mind that both, NFDH and FFDH

order the rectangles by height first) Let H be the height of S.
2: Cut out the first shelf and pack it into the first strip S1.
3: for all ` ∈ {0, 1, . . . , N} do
4: Draw a horizontal line trough S at height `(H − hmax)/N .
5: end for
6: for all ` ∈ {0, 1, . . . , N − 1} do
7: Pack all items intersecting the `th line and all items between the `th and (`+ 1)th

lines into strip `+ 1.
8: end for

Corollary 2.3. Let L be an instance of MSP. In a packing generated by the above algo-
rithm AN we have

max
`∈{1,...,N}

|h(`)− AN(L)| ≤ 2hmax,

where h(`) denotes the height of the packing in strip S`.

Proof. By construction height of the packing for the rectangles selected between the `th

and (`+ 1)th line is at least
∑t

j=1Hj−hmax

N
− hmax and at most

∑t
j=1Hj−hmax

N
+ hmax.

Another way to pack a set of rectangles with a modified version of the NFDH heuristic
into N strips is Algorithm 2. The packing generated by that algorithm is very smooth,

Algorithm 2

1: Order the rectangles by non-increasing height.
2: For each ` ∈ {1, . . . , N} pack one shelf according to the NFDH heuristic in strip S`,

that means starting in the lower left corner pack the rectangles next to each other on
the baseline of strip S`, until the next rectangle does not fit. Draw a new baseline at
the height of the highest rectangle (that clearly is the first one).

3: Take the strip S− with the current lowest height h− (if there is more than one, take
the one with the smallest index) and pack one shelf according to the NFDH heuristic
on top of the shelves.

4: Repeat Step 3 until all rectangles are packed.

in the sense that the heights of the strips only differ by hmax.

Lemma 2.4. For a set of rectangles L = {r1, . . . , rn} Algorithm 2 generates a packing
into N strips, so that

max
`,k∈{1,...,N}

|h(k)− h(`)| ≤ hmax.

Proof. Let a1, . . . , ar denote the shelves created by the algorithm and let bi denote the
height of the first rectangle placed in shelf ai, i ∈ {1, . . . , r}, clearly b1 ≥ . . . ≥ br. We
show per induction on i that the claim is true after creating shelf ai.
During step 2 the assertion is obviously true. Let 1 ≤ i0 < r and assume that the
assertion is true for the current packing with shelves ai, i ≤ i0. Let S− be the strip with

7

the lowest current height h− and h+ the height of the currently highest strip S+ after
packing shelf ai0 . The value h(`)∗ denotes the height of strip S` after packing the next
shelf ai0+1. Then h+ > h− + bi0+1 or h+ ≤ h− + bi0+1. In the first case we conclude
h(`)∗ ∈ [h−, h+] for all ` ∈ {1, . . . , N}. Since |h+ − h−| ≤ hmax by induction hypothesis,
the assertion follows. In the second case the assertion is true, because since bi0+1 ≤ hmax

we have h(`)∗ ∈ [h−, h− + hmax] for all ` ∈ {1, . . . , N}.

This leads to a further result about rectangles with bounded width.

Theorem 2.5. For a set of rectangles L = {r1, . . . , rn} with width bounded by ε we obtain
by Algorithm 2 a packing into N strips with height less than

1

1− ε
OPTMSP (L) + 2hmax. (1)

Proof. Let SIZE(S`) denote the total area of the rectangles packed into S`. We consider
the strip Smin with SIZE(Smin) = min`∈{1,...,N} SIZE(S`). Let a1, . . . , ar be the ordered
sequence of shelves constructed by algorithm 2. Furthermore, let bi and b′i be the heights of
the first and last rectangle placed in shelf ai, i ∈ {1, . . . , r}. We have b1 ≥ b′1 ≥ . . . ≥ br ≥
b′r. A shelf is closed when the next rectangle does not fit completely on the shelf. Notice
that all narrow rectangles on shelf ai have heights ≥ b′i. For i ∈ {1, . . . , r − 1} the total
width of the rectangles packed on shelf ai is larger than (1−ε). Therefore on these shelves
ai an area of (1−ε)b′i is fully covered by rectangles and thus SIZE(Smin) ≥

∑r−1
i=1 (1−ε)b′i.

Let h(Smin) denote the height of strip Smin. With SIZE(Smin) ≤ SIZE(L)/N and Lemma
2.4 we conclude

hMSP ≤ h(Smin) + hmax =
r∑
l=1

br + hmax ≤
r−1∑
l=1

b′r + 2hmax

≤ SIZE(Smin)

1− ε
+ 2hmax ≤

SIZE(L)

N(1− ε)
+ 2hmax ≤

OPTMSP (L)

1− ε
+ 2hmax.

3 A 2-Approximation for MSP

Since there is no approximation algorithm for MSP with absolute ratio smaller than 2
(unless P=NP), a 2-approximation is best possible for MSP. In this section we show the
following theorem.

Theorem 3.1. For any N ∈ N there is a polynomial-time algorithm for MSP with absolute
ratio two.

To handle different sizes ofN different subroutines are used to obtain a 2-approximation.
For N = 1 MSP is equivalent to strip packing and we can use the algorithm of Steinberg
[21] or Schiermeyer [18] with absolute performance bound 2.

8

Theorem 3.2 (Steinberg [21]). Let L = {r1, . . . , rn} be a set of rectangles with heights
hi and widths wi and Q be a rectangle with width u and height v. Let h := maxi∈{1,...,n} hi
and w := maxi∈{1,...,k}wi. If the following inequalities hold,

w ≤ u, h ≤ v, 2SIZE(L) ≤ uv − (2w − u)+(2h− v)+ (2)

then it is possible to pack L into the rectangle Q.(As usual, x+ = max(x, 0).)

If N is sufficiently large, the algorithm of Caprara [6] for 2-dimensional bin packing
(2DBP) with asymptotic ratio 1.69... gives us a 2-approximation:
Two-dimensional bin packing is the 2-dimensional generalization of bin packing, where
a set of rectangles with widths and heights bounded by one has to be packed into a
minimum number of unit squares, called bins. Moreover in [19] it is shown that Caprara’s
algorithm already gives a 2-approximation if OPT2DBP (I) ≥ 1446 for an instance I. Given
an instance L of MSP we transform it into an instance of 2-dimensional bin packing L̃
with OPTDBP (L̃) = N by scaling the height of any item with 1/OPTMSP (L). The value
OPTMSP (L) can be found via binary search in time O(log(nhmax) (see Lemma 3.3 below
for more details). For N ≥ 1446 the algorithm of Caprara gives a packing for L̃ into at
most 2N unit square bins in time O(n log(n)) + T where T is the running time of an
AFPTAS for bin packing. Stacking every two bins on top of each other and rescaling
gives us a 2-approximation for MSP.

Lemma 3.3. Let L = {r1, . . . , rn} be an instance of MSP, so that we have for the heights
of the rectangles hi ∈ Q. Binary search finds in polynomial time the height of an optimal
solution.

Proof. For each height hi there exist qi, pi ∈ N with hi = pi/qi. For i ∈ {1, . . . , n} we have
Qhi ∈ N, where Q =

∏n
i=1 qi. Since OPT (L) is equal to the sum of heights of rectangels

from L, we also haveQOPT(L) ∈ N. So for the height v of an optimal solution we conclude
that Qhmax ≤ Qv ≤ Qnhmax. Since log2(Qnhmax) =

∑n
i=1 log2(qi)+log2(n)+log2(hmax) ≤

|L|, where |L| is the length of the input, Binary Search finds in polynomial time the value
Qv and so the value v.

In case 2 ≤ N < 1446 there is something more to do. Here we use a PTAS for
rectangle packing with area maximization (RPA) found by Bansal et al. [1]. In RPA we
are given a set of rectangles L = {r1, . . . , rn} with widths wi and heights hi and a bin
of unit size. The objective is to find a feasible packing of a subset L′ of the rectangles
into the bin while maximizing the total area of the rectangles in L′. Let us first consider
N = 2. Algorithm 3 gives us a 2-approximation in this case.

If 2 < N < 1446 we use an extended version of the PTAS for RPA in [1] for several
strips. Moreover, one can show the following

Theorem 3.4. Given a constant number N of bins, a fixed value ε and a set of rectangles
L = {r1, . . . , rn} there is a polynomial time algorithm AN,ε that finds a subset L′ ⊂ L
with total area at least (1 − ε) times the optimal value and a packing for L′ into N bins
or decides that no such subset exists.

For a detailed proof we refer to [19]. Together with the next assertion we can state
that Algorithm 4 that gives us a 2-approximation.

9

Algorithm 3 2-Approximation for MSP if N=2

1: Guess the height of an optimal solution for MSP and denote it with v.
2: Scale the heights of the rectangles in L by 1/v so that the corresponding packing fits

into one bin of height 2 and width one.
3: The set of resulting rectangles Lv is now considered as an instance of RPA with

OPTRPA(L) = SIZE(Lv), where SIZE(Lv) is the total area of all rectangles in Lv.
Apply the algorithm in [1] with accuracy ε = 1/4 and find a packing of a subset
L′v ⊂ Lv with total area at least (1− ε)SIZE(Lv) into a bin of height 2. By rescaling
the rectangles of L′v get a packing for the first strip with height at most 2v.

4: Since SIZE(Lv) ≤ 2 the remaining items in Lv\L′v have total area SIZE(Lv\L′v) ≤
εSIZE(Lv) ≤ 1/2. Therefore we can pack them with Steinberg’s algorithm into a strip
of height at most 2. Rescaling gives us a second strip of height at most 2v.

Lemma 3.5. Let N ≥ 3 and L be an instance of 2DBP with total area SIZE(L) ≤ N/4.
There exists a packing of L into N bins.

Proof. Since for h,w, u = 1 and v = N/2 the inequalities (2) hold, we can apply Steinberg’s
algorithm. By this we get a solution for SP with height at most N/2. By drawing dN/2e+1
horizontal lines with distance one through the strip starting at the bottom we divide the
strip into dN/2e bins of height one and dN/2e − 1 sets of cut items. Packing each set of
fractional items into an extra bin we use at most dN/2e+ dN/2e − 1 ≤ N bins.

Algorithm 4 2-Approximation for MSP if 2 < N < 1446

1: Guess an optimal height for MSP and denote it with v.
2: Scale the heights of the rectangles of L by 1/v so that the corresponding packing fits

into N bins of height and width one.
3: The set of resulting rectangles Lv is now considered as an instance of RPA with

OPTRPA(L) = SIZE(Lv). Extend the PTAS of Bansal et al. [1] to N bins of unit
size and find for an accuracy ε ≤ 1/4 a packing for a subset L′v ⊂ Lv with total area
(1− ε)SIZE(Lv). By rescaling the rectangles of L′v we get N bins of height v.

4: For the total area of the remaining rectangles in Lv\L′v we have SIZE(Lv\L′v) =
εSIZE(Lv) ≤ N/4. Pack those rectangles according to Lemma 3.5 into N bins and
rescale the rectangles. This results again in N bins of height at most v.

5: Stack every two bins on top of each other and get a solution with bins of height at
most 2v.

The running time for both Algorithms 3 and 4 dominated by the running time of the
Algorithm for RPA, which is doubly exponential in 1/ε = 4, i.e. O(n256).

4 Improved Strip Packing Algorithm

In this section we show how to improve the additive constant in the algorithm of Kenyon
and Rémila from O(1/ε2)hmax to O(1/ε log(1/ε))hmax.

10

Theorem 4.1 (Kenyon & Rémila [14]). For a list L = {r1, . . . , rn} of rectangles with
widths and heights ≤ 1 and accuracy ε > 0 the algorithm AKRε in [14] generates a packing
into one strip with height at most (1 + ε)OPTSP (L) + (4(2+ε

ε
)2 + 1)hmax.

By applying a different rounding technique than in the original algorithm in [14] we
reduce the additive term. Roughly described the algorithm by Kenyon and Rémila works
as follows:
For some value ε′ ∈ Θ(ε) the rectangles in L are partitioned into Lwide := {rj ∈ L|wj > ε′}
and Lnarrow := {rj ∈ L|wj ≤ ε′}. Then Lwide is rounded to an instance Lsup with O(1/ε2)
different widths. The grouping and rounding technique used for the wide rectangles called
”‘geometric rounding”’ and is described by Algorithm 5 and Fig 1.

Algorithm 5 Rounding I

1: Put the wide rectangles ordered by non-increasing widths and pack them left-aligned
on a stack with height H := H(Lsup).

2: Let M := (1/ε′)2

3: Draw M − 1 horizontal lines through the stack with distance H/M starting at the
bottom. Therefore we get M so-called threshold rectangles. A rectangle is a threshold
rectangle if it either with its interior or with its lower edge intersects a line at height
iH/M, i ∈ {1, . . . ,M − 1}.

4: for all i ∈ {1, . . . ,M − 1} do
5: Round up the width of each rectangle between the lines iH/M and (i + 1)H/M to

the width of the ith threshold rectangle. The widths of the rectangles below the first
line are rounded up to the width of the undermost rectangle in the stack.

6: end for
7: Let Lsup denote the list of rounded rectangles.

0

H/M

2H/M

3H/M

4H/M

Group 1

Group 2

Group 3

Group 4

Figure 1: Rounding the rectangles in Lsup.

The main part of the algorithm is to produce a fractional packing for the rectangles in
Lsup using a linear program for fractional bin packing. In doing so we build configurations
Cj := {αij : wi|i ∈ {1, . . . ,M}}, i.e. multisets of widths where αij denotes the number of

rectangles of width wi in C`
j and

∑M
i=1 αijwi ≤ 1. Then the following LP is solved.

11

min

q∑
j=1

xj

s.t.

q∑
j=1

αijxj ≥ βi for all i ∈ {1, . . . ,M}

xj ≥ 0 for all j ∈ {1, . . . , q}.

(3)

The variable xj indicates the height of configuration Cj, βi is the total height of rect-
angles of width wi in Lsup and q denotes the number of possible configurations. A feasible
solution of the LP corresponds to a fractional strip packing. Note that rank(αij)ij ≤M
and hence a basic solution x of (3) has at most M nonzero entries. The fractional packing
can be converted into an integral one increasing the height only by 2Mhmax. Moreover,
the rounded instance of wide rectangles has nice properties:

Lemma 4.2. [14] The rounded instance Lsup has the following properties

1. The number of different width in Lsup is bounded by M = O(1/ε2).

2. FSP (Lsup) ≤ FSP (Lwide)
(
1 + 1

Mε′

)
3. SIZE(Lsup) ≤ SIZE(Lwide)

(
1 + 1

Mε′

)
Finally, the narrow rectangles in Lnarrow are added in the remaining space next to the

integral packing and on top of it with Next Fit Decreasing Height heuristic.

4.1 Modified geometric rounding

Our improved algorithm uses a different geometric rounding technique. We choose a value
ε′ := ε/2 and partition the rectangles into wide Lwide and narrow ones Lnarrow as before.
Then we apply geometric grouping with parameter k introduced by Karmarkar and Karp
in [13] for fractional bin packing and obtain an instance J ∪ J ′ with only O(1/ε log(1/ε))
different widths. Therefore we may assume that εSIZE(Lwide) > 2(blog(2/ε)c + 1)hmax.
Otherwise we can achieve a packing for Lwide with height less than 2SIZE(Lwide)+hmax ≤
4/ε(blog(2/ε)c+ 1)hmax + hmax = O(1/ε log(1/ε))hmax using NFDH heuristic.

For arbitrary lists L′′, L′ we define a partial order ≤g, so that L′′ ≤g L′, if and only if
the stack of L′′ can be geometrically included into the one of L′. For a list L of rectangles
let FSP (L) denote the height of an optimum fractional strip packing for L. Moreover we
have Lwide ≤g Lsup.

Lemma 4.3. The rounded instance J ∪ J ′ has the following properties

(i) The number of different width is bounded by M = O(1/ε log(1/ε)).

(ii) SIZE(Lwide) ≤ SIZE(J ∪ J ′) ≤ (1 + ε)SIZE(Lwide).

(iii) FSP (Lwide) ≤ FSP (J ∪ J ′) ≤ (1 + ε)FSP (Lwide).

12

Algorithm 6 Rounding II

1: Let k :=
⌊

SIZE(Lwide)ε
(blog(2/ε)c+1)hmax

⌋
2: for all t ∈ {0, 1 . . . , blog(2/ε)c} do
3: partition Lwide into blog(2/ε)c+ 1 lists Wt := {rj ∈ Lwide|wj ∈ (2−(t+1), 2−t)}.
4: For each list Wt order the rectangles by non-increasing widths and pack them

left-aligned on a stack.
5: Starting at the baseline draw horizontal lines at height (ik2t)hmax for i =
{0, . . . , bh(Wt)/(k2thmax)c} through the stack. For every rectangle whose interior
is cut by such a line we introduce two new rectangles, so that the stack is divided into
q(t) = bh(Wt)/(k2thmax)c+1 groups G1(t), . . . , Gq(t)(t) all having total height exactly
k2thmax except maybe the last group Gq(t)(t) of the narrowest rectangles having height
< k2thmax.

6: In each group Gi(t) we round up the width of every rectangle to the width of the
widest rectangles contained in this group and obtain G′i(t).

7: end for
8: Define Jt :=

⋃q(t)
i=2 G

′
i(t). Further let J :=

⋃
t Jt, J

′ :=
⋃
tG
′
1(t)

Proof. We have that SIZE(Wt) ≥ 2−(t+1)h(Wt) ≥ 2−(t+1)(q(t)−1)k2thmax ≥ khmax(q(t)−1)/2

and thus q(t) ≤ 2SIZE(Wt)
khmax

+ 1 for all t. With εSIZE(Lwide) > 2(blog(2/ε)c + 1)hmax we
conclude

M =

blog(2/ε)c∑
t=0

q(t) ≤
blog(2/ε)c∑

t=0

2SIZE(Wt)

khmax

+ 1

≤ 2

khmax

SIZE(Lwide) + blog(2/ε)c+ 1.

≤ 2SIZE(Lwide)

hmax

⌊
εSIZE(Lwide)

(blog(2/ε)c+1)hmax

⌋ + blog(2/ε)c+ 1

≤ 2SIZE(Lwide)

hmax

(
εSIZE(Lwide)

(blog(2/ε)c+1)hmax
− 1
) + blog(2/ε)c+ 1

=
2SIZE(Lwide)(blog(2/ε)c+ 1)hmax

hmax(εSIZE(Lwide)− (blog(2/ε)c+ 1)hmax)
+ blog(2/ε)c+ 1

<
2SIZE(Lwide)(blog(2/ε)c+ 1)

ε
2
SIZE(Lwide)

+ blog(2/ε)c+ 1

= 4/ε(blog(2/ε)c+ 1) + blog(2/ε)c+ 1

≤ 5/ε(blog(2/ε)c+ 1)

The total height of the rectangles in every group G1(t) is at most k2thmax. Since
each of the rectangles in G1(t) has width at most 2−t we have SIZE(G1(t)) ≤ khmax.
Then SIZE(Lwide) ≤ SIZE(J ∪ J ′) ≤ SIZE(J) + (blog(2/ε)c+ 1)khmax, since there are
blog(2/ε)c+ 1 groups G1(t) in J ′. With our choice of k assertion (ii) follows.

For all t ∈ {0, 1 . . . , blog(2/ε)c} we have by construction

13

G′1(t) ≥g G1(t) ≥g G′2(t) ≥g . . . ≥g Gq(t)(t) and thus

J ∪ J ′ =
q(t)⋃
i=1

G′i(t) ≥g Wt ≥g
q(t)⋃
i=2

G′i(t) = J. (4)

We have FSP (J ∪ J ′) ≤ FSP (J) + FSP (J ′). Since at least 2t of the rectangles in G′1(t)
fit next to each other into the strip we conclude also FSP (G′1(t)) ≤ khmax. Thus, we have

FSP (J ′) ≤ (blog(2/ε)c+ 1)khmax ≤ εSIZE(Lwide) ≤ εFSP (Lwide).

We conclude FSP (J ∪ J ′) ≤ FSP (J) + εFSP (Lwide) ≤ (1 + ε)FSP (Lwide).

Algorithm 7 Improved Strip Packing

1: For accuracy ε > 0 partition L into Lwide := {rj ∈ L|wj > ε/2} and Lnarrow := {rj ∈
L|wj ≤ ε/2}.

2: Round the widths of the rectangles in Lwide with Algorithm 5 and obtain J ∪ J ′ with
only M = O(1/ε log(1/ε)) different widths.

3: Solve the linear program LP (J ∪ J ′).
4: Construct a feasible solution for J ∪ J ′ with height at most FSP (J ∪ J ′) + 2Mhmax.
5: Use modified NFDH to pack the rectangles in Lnarrow into the remaining space and

on top of the strips.

With the tuned rounding technique the additive factor of the AFPTAS for strip pack-
ing improves:

Theorem 4.4. Algorithm 7 produces for any accuracy ε > 0 and list of rectangles L
produces a packing of the rectangles into N strips of unit width with height less than
(1 + ε)OPTSP (L) + (4M + 1)hmax, where M = O(1/ε log(1/ε)). The running time is
polynomial is in O(ε−6 + n log n).

The proof uses similar techniques in [11]. The difference is mainly in converting the
fractional solution into an integral one. Techniques used for the converting process can
be found later in Theorem 5.5. We can solve the linear program used in the algorithm
via max-min resource sharing. Thus, since M ≤ 5/ε(blog(2/ε)c+ 1) and according to [11]
the fractional stip packing can be solved in time

O(M(1/ε2 + log(M)) max{M + 1/ε3,M log log(M/ε)}) = O(ε−6 log(1/ε)).

This gives a total running time ofO(ε−6 log(1/ε)+n log n). This also improves the original
algorithm with O(1/ε2) different widths and running time O(ε−7 + n log n).

5 An AFPTAS for MSP

In this section we present an AFPTAS for MSP. Interestingly, this result also applies to
scheduling parallel jobs in identical platforms. The algorithm is a generalization of our
improved version of the AFPTAS for strip packing by Kenyon and Rémila [14]. We show

14

that there exists an algorithm for multiple strip packing achieving the same asymptotic
approximation ratio with additive term O(1/ε log(1/ε))hmax for an arbitrary number N
of strips. For instances with N sufficient large, namely N ∈ Ω(1/ε2 log(1/ε)), we show the
existence of an algorithm that adopts an improved additive constant of O(1).

As in Section 2 by dividing a packing for one strip into N parts of nearly the same
height and distributing them among N strips we get an algorithm for MSP. We define an
Algorithm Aε as follows:

Algorithm 8 Aε
1: Pack the sorted rectangles with Algorithm 7 into a single strip S.
2: for all ` ∈ {0, 1, . . . , N} do
3: Draw a horizontal line through S at height `AKRε (L)/N .
4: end for
5: for all ` ∈ {0, 1, . . . , N − 1} do
6: Pack all items intersecting the `th line and all items between the `th and (`+ 1)th

lines into strip S`+1.
7: end for

Theorem 5.1. For a list L = {r1, . . . , rn} of rectangles with widths and heights ≤ 1 and
accuracy ε > 0 Algorithm Aε generates a packing into N ≥ 2 strips with height less than
(1 + ε)OPTMSP (L) +O(1/ε log(1/ε))hmax and running time O(ε−6 log(1/ε) + n log n).

Proof. By Step 2 every strip S`, ` ∈ {1, . . . , N} has height

hi ≤
AKRε (L)

N
+ hmax

≤ (1 + ε)OPTSP (L) + (4M + 1)hmax

N
+ hmax

N≥2

≤ (1 + ε)OPTSP (L)

N
+ (2M + 1)hmax + hmax

≤ (1 + ε)OPTMSP (L) + (2M + 2)hmax,

where the last inequality holds because OPTSP (L)/N is a lower bound for OPTMSP (L). The
running time is dominated by the time used for Algorithm 7.

5.1 Instances with a large number of strips

Now let us consider instances with a large number of strips. In this case it is possible
to improve the additive constant to O(1) by balancing the configurations. Choose δ :=
ε

4+ε
and N > 10/δ2(blog(2/δ)c + 1) = Ω(1/ε2 log(1/ε)). We divide the list of rectangles

L into a list of narrow rectangles Lnarrow := {rj ∈ L|wj ≤ δ/2} and a list of wide
rectangles Lwide := {rj ∈ L|wj > δ/2}. Then we round Lwide to an instance J ∪ J ′ with
M ≤ 5/δ(blog(2/δ)c + 1) = O(1/ε log(1/ε)) (compare Lemma 4.3) different widths using
Algorithm 6. Our first objective is to create a fractional packing for the rounded wide
rectangles into N strips. To do this we solve approximately (see Section 6.2) the linear
program (3) for the rounded instance of wide rectangles (J∪J ′). Let h0 := FSP (J∪J ′)/N .

15

We first show there is a fractional packing for J ∪ J ′ that contains only O(1/ε log(1/ε))
different configurations and has height at most (1 + δ)h0.

Lemma 5.2. Let x = (x1, . . . , xq) be a solution of LP (J ∪ J ′) with at most m ≤ M
nonzero entries x1, . . . , xm. For N > 10/δ2(blog(2/δ)c+ 1) we get a fractional packing into
N strips with height at most (1 + δ)h0 and at most m′ ≤ 2M different configurations.

Proof. We first pack the rectangles fractionally into the configurations. Imagine each
configuration Cj as a bin with height xj and width cj and divide it into αij columns of
widths wi and height xj. Pack the rectangles in J ∪ J ′ of width wi in a Greedy manner
fractionally into the columns of width wi until exactly height xj, starting with i = 1. In
this way each column contains a sequence of rectangles, which completely fit inside the
column and possibly the top part of a rectangle, that started in a previous column and the
bottom part of a rectangle, that is too tall to fit into this column. Since

∑m
j=1 αijxj ≥ βi,

the total height of the rectangles of width wi, there will be maybe more than enough
space for the rectangles of width wi in the configurations. In this case we distribute the
rectangles among the columns and delete the additional space. So we split a configuration
Cj into two parts, one of the old type where the columns of width wi are completely filled
and one without columns of width wi. This case may happen only M times. So we have
in total m′ = m+M ≤ 2M configurations C1, . . . Cm′ with nonzero heights x1, . . . , xm′ .
Assume w.l.o.g. w1 ≥ w2 ≥ . . . ≥ wM . We start filling the columns for each width with
the rounded fraction of the wide rectangle in Lwide that is split into a rectangle of width
wi and the next wider width wi−1 by the rounding Algorithm 5, if such a fraction exists.
We finish packing each width wi with the fraction of the wide rectangle in Lwide that is
split into a rectangle of width wi and the next smaller width wi+1, if such a fraction exists.
Notice that there exist configurations with height larger or equal h0, since if not we con-
clude

∑m′

j=1 xj < m′h0 ≤ 2Mh0 = 10/δ(blog(2/δ)c+ 1)h0 < Nh0, which is a contradiction.
Consider a configuration Cj, j ∈ {1, . . . ,m′}. If xj ≥ h0 we allocate bxj/h0c empty strips
with height h0 for Cj. If then xj/h0 − bxj/h0c ≤ δh0, we assign to Cj additional space with
height (xj/h0 − bxj/h0c) in a strip, that has already height h0. If xj/h0 − bxj/h0c > δh0, we
divide (xj/h0−bxj/h0c) into at most 1/δ stripes with height less or equal δh0. So assign to Cj
additional space of height δh0 in no more than 1/δ strips, which are already occupied until
height h0. In the same way as the remaining stripes we handle configurations of height
less than h0. Since there are at most 2M configurations with nonzero height, we get at
most 2M/δ = 10/δ2(blog(2/δ)c + 1) < N additional assignments of height δh0, which can
be distributed to N strips. Thus by this assignment policy, where the configurations are
balanced, each strip has allocated area of height at most (1 + δ)h0 for at most 2 different
configurations

The next Lemma shows how to get from a fractional packing to a feasible integral
packing.

Lemma 5.3. Let x = (x1, . . . , xq) be a solution of LP (J ∪ J ′) with at most m′ ≤ 2M
nonzero entries x1, . . . , xm′. For N > 10/δ2(blog(2/δ)c+ 1) we can convert x to a feasible
packing for the rectangles in J ∪J ′ and with height at most (1 + δ)h0 + 2hmax and at most
2 different configurations per strip.

16

Proof. Consider a strip S`. Emanating from the above fractional solution with m′ ≤ 2M
completely filled configurations we have in S` at most 2 configurations. Between height
zero and h0 we have a configuration Cj of height xj` = h0 and between height h0 and
(1 + δ)h0 we have a configuration Ck of height xk` = δh0. First we assign to each
configuration additional space of height 2hmax. This increases the total height of the
packing by 2hmax. Consider now the fractional packing in the proof of Lemma 5.2. We
convert this packing to a feasible integral packing for the rectangles in J ∪ J ′ in the
following way:
Consider the columns of width wi starting in the first strip where wi appears. In each
column, but the last one for wi there are a sequence of rectangles and possibly two
fractional rectangles. One is the top part of a rectangle, which does not fit completely
into the previous column and the other one is the bottom part of a rectangle that is
too tall to fit into this column. In each column we pack all rectangles belonging to the
sequence and the completed fractional rectangle from the top. If the considered column is
the last one for width wi we have only one fractional rectangle at the bottom and possibly
a rectangle that is a rounded fraction of a rectangle in Lwide that was split by rounding
Algorithm 6 between width wi and the next smaller width wi+1. Here we add the fraction
of width wi+1 belonging to the same rectangle in Lwide.

So we can guarantee that each configuration Cj with height xj` in strip S` is filled up
to height at least xj` − hmax with rectangles of J ∪ J ′.

Since we can guarantee that there are at most 2 different configurations per strip,
the additive constant will be improved to O(1)hmax, while the running time remains the
same. For a smaller value of N the balancing argument for the configurations can not
be applied. For N = 1 we can guarantee a feasible packing for the wide rectangles with
height at most h0 + 2Mhmax.

0

h0 − hmax

h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Cj

Ck

Figure 2: S` with Cj and Ck.

0

h0 − hmax

h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Figure 3: S` after packing the narrow rect-
angles.

Our last step is to pack the narrow rectangles. We use a modified version of the NFDH
algorithm: For strip S` as above we pack narrow rectangles with NFDH into the empty
space next to the configurations until the total height is at most (1 + δ)h0 + 2hmax. After
that we repeat the process for strip S`+1. When all strips are filled in this way, we draw
a horizontal line at height (1 + δ)h0 + 2hmax in each strip and pack the remaining narrow
rectangles with Algorithm 2 on top (see Fig 2 and 3). Thus we can ensure by Lemma 2.4
that the maximum difference of the heights of two arbitrary strips is at most hmax (see
Fig 3). Let hfinal denote the height of the packing after adding the narrow rectangles.

17

Lemma 5.4. Let N > 10/δ2(blog(2/δ)c+ 1). If hfinal ≥ (1 + δ)h0 + 2hmax, then we have

hfinal ≤
SIZE(J ∪ J ′ ∪ Lnarrow)

N(1− δ/2)
+ δh0 + 6hmax.

Proof. We consider the strip Smin with SIZE(Smin) = min`∈{1,...,N} SIZE(S`) and with
configurations Cj and Ck with heights xj` = h0 and xk` ≤ δh0 and widths cj, ck, re-
spectively. Let a1 < . . . < ar be the ordered sequence of shelves constructed by modi-
fied NFDH in Smin, such that ak ≥ (1 + δ)h0 + 2hmax or 0 ≤ ak ≤ h0 − hmax for all
k ∈ {1, . . . , r}. Let as1 < . . . < asr′ be the subsequence of shelves with at least one
rectangle. Furthermore, let bsi and b′si be the heights of the first and the last rectangle
placed in shelf asi , i ∈ {1, . . . , r′}. A shelf is closed, when the next narrow rectangle
does not fit completely on the shelf. Notice that all narrow rectangles on shelf asi have
height ≥ b′si . Let as̄1 < . . . < as̄r̄ be the subsequence of as1 < . . . < as′r such that either
as̄i ≥ (1 + δ)h0 + 2hmax or 0 ≤ as̄i + b′s̄i ≤ h0 − hmax. Keep in mind that the region
[0, cj]× [0, xj` − hmax] of Smin is completely filled with rectangles from J ∪J ′. We consider
three cases for shelf ak with k < r:
Case 1: On shelf ak is at least one narrow rectangle and ak ≥ (1 + δ)h0 + 2hmax or
0 ≤ ak + b′k ≤ h0 − hmax. In this case there exists i ∈ {1, . . . , r̄ − 1} with k = s̄i.
Therefore, an area of at least b′s̄i(1− δ/2) is covered by wide and narrow rectangles from
J ∪ J ′ ∪ Lnarrow.
Case 2: On shelf ak is at least one narrow rectangle with ak + b′k > h0 − hmax and
ak ≤ h0 − hmax. In this case (h0 − hmax − ak)(1 − δ/2) is covered by wide and narrow
rectangles.
Case 3: On shelf ak is no narrow rectangle and ak ≤ h0 − hmax. This case may happen,
when the wide rectangles in configuration Cj have already a total width larger than 1−ε′.
In this case an area of at least (h0 − hmax − ak)(1− δ/2) is covered by wide rectangles in
J ∪ J ′. Cases 2 and 3 may happen only once per strip.
Let

X :=
∑

k/∈{s̄1,...,s̄r̄−1}

(h0 − hmax − ak) .

Then (1 − δ/2)(X +
∑r̄−1

i=1 b
′
s̄i

) is a lower bound for the total size SIZE(Smin) which
itself is bounded from above by 1/NSIZE(J ∪J ′∪Lnarrow). On the other hand, the height
of the final packing is at most X +

∑r̄
i=1 bs̄i + 4hmax + δh0 plus hmax by Lemma 2.4 by

packing the rectangles on top. This gives

hfinal ≤ X +
r̄∑
i=1

bs̄i + δh0 + 5hmax

≤ X +
r̄−1∑
i=1

bs̄i + δh0 + 6hmax

≤ SIZE(Smin)

1− δ/2
+ δh0 + 6hmax

≤ SIZE(J ∪ J ′ ∪ Lnarrow)

N(1− δ/2)
+ δh0 + 6hmax.

18

Theorem 5.5. If N > 10/δ2(blog(2/δ)c + 1) the Algorithm 9 generates for an instance
L of MSP a packing of height at most (1 + ε)OPTMSP (L) + O(1) and running time
O(ε−6 log(1/ε) + n log(n)).

Proof. If hfinal > (1 + δ)h0 + 2hmax we conclude with Lemma 5.4

hfinal <
SIZE(J ∪ J ′) + SIZE(Lnarrow)

N(1− δ/2)
+
δFSP (J ∪ J ′)

N
+ 6hmax

L 4.3

≤ (1 + δ)SIZE(Lwide) + SIZE(Lnarrow)

N(1− δ/2′)
+
δ(1 + δ)FSP (Lwide)

N
+ 6hmax

≤ 1 + δ

1− δ/2
OPTMSP (L) + δ(1 + δ)OPTMSP (L) + 6hmax

≤ 1 + 3δ

1− δ
OPTMSP (L) + 6hmax

= (1 + ε)OPTMSP (L) + 6hmax,

where the third inequality holds because SIZE(L)/N and FSP (Lwide)/N are lower
bounds for OPTMSP (L). On the other hand, it follows immediately from 5.3 and 4.3
that

hfinal ≤ (1 + δ)
FSP (J ∪ J ′)

N
+ 2hmax

≤ (1 + δ)2FSP (Lwide)

N
+ 2hmax

≤ (1 + ε)OPTMSP (L) + 2hmax.

Algorithm 9

1: Set δ := ε/(4+ε)

2: Partition L into Lwide := {rj ∈ L|wj > δ/2} and Lnarrow := {rj ∈ L|wj ≤ δ/2}.
3: Round the widths of the rectangles in Lwide with Algorithm 5 and obtain J ∪ J ′ with

only M = O(1/ε log(1/ε)) different widths.
4: Solve the linear program LP (J ∪ J ′).
5: Construct a feasible solution for J ∪ J ′ by balancing the configurations.
6: Use modified NFDH to pack the rectangles in Lnarrow into the remaining space and

on top of the strips.

Corollary 5.6. There is an algorithm for scheduling parallel jobs in identical platforms
that for any input J of SPP and ε > 0 produces a schedule of length at most

(1 + ε)OPTSPP (J) +O(1/ε log(1/ε))pmax

adn running time O(ε−6 log(1/ε) + n log(n)). For N = Ω(1/ε2 log(1/ε)) the length of the
schedule improves to

(1 + ε)OPTSPP (J) +O(1)pmax.

19

6 An AFPTAS for SPP

The algorithm for the more general scheduling problem is based on an LP -relaxation.
This allows migration and preemption of jobs. That is a job is allowed to be split into
fractions that are executed in different platforms (if they fit). Emanating from the solution
of the LP we compute a unique assignment of almost all jobs to the platforms. This is
done by grouping the jobs similar as in Algorithm 6 and then rounding the fractions of
jobs using a result of Lenstra et al. [16] ; i.e. the number of remaining fractional jobs
per platform will be bounded by O(1/ε log(1/ε)). Remarkably, the rounding technique
needs except an (approximate) solution of the LP no extra information about the speed
values. For each platform we reschedule the obtained integral jobs with Algorithm 7, our
improved version of for strip packing of Kenyon and Rémila. Finally, the fractional jobs
are scheduled behind. An overview of the algorithm is given below Algorithm 10.

Algorithm 10

1: Solve a linear program relaxation of the problem (5) and get a fractional schedule
where preemption and migration are allowed.

2: Group the fractional jobs corresponding to the LP-solution as described in Algorithm
11 according their widths and for every platform P` obtain sets L`wide and L`narrow of
wide and narrow fractional rectangles, respectively.

3: Via a general assignment problem (10) round the fractional rectangles and obtain sets
of rounded rectangles L̃`wide, L̃

`
narrow and fractional rectangles F ` for ` ∈ {1, . . . , N}.

4: for all ` ∈ {1, . . . , N} do
5: Pack L̃`wide ∪ L̃`narrow with the strip packing subroutine 7 into platform P`.
6: Schedule the fractional jobs in F ` greedily on top of the schedule corresponding

to the packing obtained before.
7: end for

6.1 Relaxed Schedule

Let J be an instance of SPP and let T be the makespan of an optimum schedule for
J . To simplify the structure of the schedule instead of handling the specific processing
times t`j we consider each platform as a two-dimensional bin of width m` and height
Ts` and schedule the jobs concerning their lengths pj within this bin. Furthermore, we
abandon the constraint that a job has to be scheduled non-preemptively and within only
one platform. We represent the schedule of a job Jj = (pj, qj) as a (finite) sequence of
pairs (Ii, Qi)i∈I(j), I(j) ⊂ N, where every Ii ⊂ [0, T] is a time interval and every Qi is a set
of processors so that there is a uniquely defined platform P`i ∈ {1, . . . , N} with Qi ⊂ P`i
and |Qi| = qj. Additionally, we assume that the following conditions hold:

(i) the time intervals for job Jj within the same platform do not overlap except maybe
at the endpoints, i.e. for all ` ∈ {1, . . . , N}⋃
i,i′∈I(j),i 6=i′
`i=`=`i′

(
◦
Ii ∩

◦
Ii′

)
= ∅, where

◦
A denotes the interior of a set A.

20

(ii)
∑N

`=1 s`
∑
{i∈I(j)|Qi⊂P`} |Ii| ≥ pj (covering constraint).

(iii) at any time for every processor there is at most one job running on it.

Keep in mind that under this constraints a job is allowed to be split among the
platforms and may be executed in two different platforms at the same time, but never in
parallel with itself within the same platform (except for a discrete time, when one piece
starts and another ends). It can be executed on two different (not necessary disjoint)
subsets of processors within the same platform during different time intervals, where only
the endpoints of the time intervals may overlap. An example how such a relaxed schedule
can look like is given in Figure 4: Assume that T = 10/s`1 and job Jj needs to be scheduled
on qj = 3 processors for pj = 7.5 operations. So in P`1 it is scheduled on processors
{7, 8, 9} during time [0, 1/s`1] and on processors {2, 3, 4} during time [5/s`1 , 7/s`1]. In P`2
it is scheduled on processors {1, 2, 3} during time [0, 3/s`2] and in P`3 it is scheduled on
processors {3, 4, 5} during time [3.5/s`3 , 5/s`3]. This gives 1 + 2 = 3 operations in P`1 , 3
operations in P`2 and 1.5 operations in P`3 (this fulfills the covering constraint).

Ts`1 = 10

P`1

Ts`2

P`2

Ts`3

P`3

Job Jj , pj = 7.5, qj = 3

Figure 4: Relaxed schedule

The relaxed schedule can be formulated via the linear program below: For each plat-
form in P`, 1 ≤ ` ≤ N we introduce configurations C`. A configuration C` is a function
C` : {1, . . . , n} −→ {0, 1}, so that

∑
{j∈{1,...,n}|C`(j)=1} qj ≤ m`. It tells us which jobs

can be scheduled in parallel in platform P`. By definition, the number q(`) of different
configurations for P` is bounded by 2n. Let C` = {C`

1, . . . , C
`
q(`)} denote the set of all

configurations for a platform P`. In the LP below the variable xC`
k

indicates the length of

configuration C`
k. That means that the jobs in {j ∈ {1, . . . , n}|C`

k(j) = 1} are executed
in platform P` during xC`

k
operation steps.

q(`)∑
k=1

xC`
k

= s`T ` ∈ {1, . . . , N}

N∑
`=1

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

xC`
k
≥ pj j ∈ {1, . . . , n}

xC`
k
≥ 0 k ∈ {1, . . . , q(`)}, ` ∈ {1, . . . , N}

(5)

The first N constraints ensure that the makespan Cmax(`) in each platform P` does
not exceed T . The next n constraints are covering constraints for the n jobs. They make
sure that every job is executed sufficiently long.

21

Lemma 6.1. If T is the makespan of an optimum schedule for SPP(J), the linear program
above (5) is a relaxation of SPP(J).

Proof. Consider an optimum solution with makespan T for SPP(J). Then we construct
a solution for LP (5) in the following way:
For each platform P` we consider the finishing and starting times t1, . . . , t2ñ(`) ∈ [0, T] of
the ñ(`) ≤ n jobs assigned to this platform. They give a partition of [0, T] (not minding
empty intervals). We can assume w.l.o.g. 0 = t1 ≤ . . . ≤ t2ñ(`) and denote t2ñ(`)+1 = T .
For each non-empty interval [ti, ti+1], i ∈ {1, . . . , 2ñ(`)}, we store a vector v`i ∈ {0, 1}n
and set v`i (j) = 1 if job Jj is scheduled in platform P` during this interval, else v`i (j) = 0.
Furthermore we store a value x`i := s`(ti+1 − ti) for v`i . Note that if t2ñ(`) < T the vector
v`2ñ(`) is equal to 0{0,1}n . Note that we store at most 2n vectors for every platform, since for

ñ(`) = n we conclude t2n = T . Let V ` denote the set of stored vectors. As long as there
are two identical vectors v`i = v`j with i 6= j (w.l.o.g. i < j) in V ` we reset x`i = x`i + x`j
and discard v`j. Finally we define for every ` ∈ N and 1 ≤ k ≤ q(`)

x̄C`
k

:=

{
x`i if C`

k = v`i for i ∈ 1, . . . , 2ñ(`)

0 else.

We claim that x̄ := (x̄C`
k
)k∈{1,...,q(`)},`∈{1,...,N} is a solution of (5). Clearly, we have that

x̄C`
k
≥ 0 and

q(`)∑
k=1

x̄C`
k

= s`T for ` ∈ {1, . . . , N}, since it is the sum of the values s`(ti+1−ti),

i ∈ {1, . . . , 2ñ(`)}. Since we started with a feasible schedule, by definition of x̄ we already
have

∑
{k∈{1,...,q(`)}|C`

k(j)=1} x̄C`
k

=
∑
{v`i∈V `|v`i (j)=1} x

`
i = pj for all jobs assigned to platform

P`, so the covering constraint in (5) is fulfilled.

6.2 Solving the LP

The problem above is a feasibility problem with an exponential number of variables and
N + n constraints. Let PS(J) denote the makespan of an optimal preemptive schedule
with the properties as described above. Clearly, PS(J) ≤ OPTSPP (J). It is sufficient to
solve the LP approximately obtaining a value T with PS(J) ≤ T ≤ (1 + ε)PS(J) ≤
(1 + ε)OPTSPP (J). Let dmin :=

max pj
max s`

. Since in our LP-relaxation a job can be scheduled
in parallel with itself, when scheduled in different platforms we obtain a lower bound
L := dmin/N and an upper bound U := ntmax for PS(J). Now there must be a value
L+ jεL ∈ [L,U] for j ∈

{
0, . . .

⌊
U−L
εL

⌋}
, so that PS(J) ∈ [L+ jεL, L+ (j + 1)εL]. Thus

we have PS(j) ≤ L + (j + 1)εL ≤ (1 + ε)PS(J). Consequently, using binary search
to find a proper value T takes time in O(log(U−L

εL
)) = O(log(ntmaxN(εdmin)−1)). Since

tmax ≤ max pj
min s`

, we have tmax/dmin ≤ max s` (remember that min s` = 1) and therefore we

find T in time O(log(nNε−1 max s`)).
We can now formulate the problem described in (5) as a max-min resource sharing

problem and solve (5) by using binary search on the optimum value PS(J) and testing
in each step the feasibility of a system of (in-)equalities for a given T ∈ [L,U]. Let

22

(xC`
k
) := (xC`

k
)k∈{1,...,q(`)},`∈{1,...,N}. The system of inequalities is given as

N∑
`=1

1

pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

xC`
k
≥ 1,

for j ∈ {1, . . . , n}, x ∈ B(T), where

B(T) :=

(xC`
k
)|xC`

k
≥ 0,

q(`)∑
k=1

xC`
k

= s`T, ` ∈ {1, . . . , N}

 .

We test the feasibility of the system by computing an approximate solution for

λ? = max{λ|
N∑
`=1

1

pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

xC`
k
≥ λ,

1 ≤ j ≤ n, x ∈ B(T)}.

(6)

This problem can be considered as a fractional covering problem with convex set B(T) and
n covering constraints. We present the n covering constraints by Ax ≥ λ. According to
[8] we can compute an (1− δ)-approximate solution for (6) in O(n(1/δ2 + lnn)) iterations,
where an iteration includes roughly summarized the following steps:
We start with an initial solution x̄ ∈ B(T) and compute a certain price vector y = y(x̄) ∈
Rn

+ depending on x̄. Then we consider the so called block problem, Max {yTAx|x ∈ B(T)}
and compute a (1− δ′)-approximate solution x̃ ∈ B(T) for it with δ′ = δ/6 (for details see
the next paragraph). Set x̄ := (1− τ)x̄+ τ x̃ for a certain τ ∈ (0, 1). The algorithm stops
after O(n(1/δ2 + lnn)) iterations with a vector x̄ so that

N∑
`=1

1

pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

x̄C`
k
≥ (1− δ)λ?

j ∈ {1, . . . , n}
q(`)∑
k=1

x̄C`
k

= Ts` ` ∈ {1, . . . , N}

x̄C`
k
≥ 0 k ∈ {1, . . . , q(`)}, ` ∈ {1, . . . , N}

After O(n(1/δ2 + lnn)) iterations for a given value T ∈ [L,U] we either

1) get a solution x̄ ∈ B(T) such that for all j ∈ {1, . . . , n} we have∑N
`=1

1
pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}
x̄C`

k
≥ (1− δ)

2) or conclude that there is no solution x̄ with∑N
`=1

1
pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}
x̄C`

k
≥ 1 for ` ∈ {1, . . . , N}.

23

For x ∈ B(T) define λ(x) := minj
∑N

`=1
1
pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1} xC`
k
. If λ? ≥ 1 we have

λ(x̄) ≥ (1−δ), so in case 1) we select a smaller value for T . In case 2) we have λ(x̄) < 1−δ
and therefore λ? < 1. So we know that the value T was chosen too small and chose a
larger one.

Solving the Block Problem. Consider the block problem Max{yTAx|x ∈ B(T)}.
The set B(T) can be written as a Cartesian product of N convex sets

B`(T) :=

(xC`
k
)k∈{1,...,q(`)}|

q(`)∑
k=1

xC`
k

= s`T, xC`
k
≥ 0

 .

Each set B`(T) is a simplex. So the block problem can be re-written as

Max
N∑
`=1

n∑
j=1

yj
pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

xC`
k
,

x ∈
N×̀
=1

B`(T).

(7)

Thus, it is sufficient to solve N independent smaller block problems of the form

Max
n∑
j=1

yj
pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

xC`
k
,

(xC`
k
)k∈{1,...,q(`)} ∈ B`(T).

(8)

For each ` ∈ {1, . . . , N} we find the optimum of (8) at a vertex x̃ of B`(T). Such a vertex
corresponds to a configuration C`

k̃
with x̃C`

k̃
= s`T and x̃C`

k
= 0 for C`

k 6= C`
k̃
. Thus, we

have to find a configuration C`
k̃

of jobs that can be executed in parallel in P` with largest

profit, where the profit value of a configuration C`
k is given as

∑
{j∈{1,...,n}|C`

k(j)=1}
yj
pj

. This

results in the following knapsack problem:

Max
n∑
j=1

yj
pj
xj

s.t
n∑
j=1

qjxj ≤ m`

xj ∈ {0, 1}

Lawler showed in [15] that a (1− δ′)-approximate solution for this knapsack problem can
be computed in time O(n log(1/δ′) + 1/δ′4). Summing up all near optimal solutions for (8),
` = 1, . . . , N , gives a (1− δ′)-approximate solution for (7).

Constructing a Schedule. Now we construct a schedule based on an approximate
solution. Choose δ := 3ε

20
and assume ε ≤ 1. By binary search on T we can achieve a

24

solution x̃ so that for every ` ∈ {1, . . . , N} we have
∑q(`)

k=1 x̃C`
k

= Ts` ≤ (1 + ε)s`PS(J)

and
∑N

`=1
1
pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1} x̃C` ≥ (1− δ) for all j ∈ {1, . . . , n}. We slightly extend

the length of each configuration setting xC`
k

:= x̃C`
k
(1 + 4δ) and conclude

N∑
`=1

1

pj

∑
{k∈{1,...,q(`)}|C`

k(j)=1}

xC`
k
≥ (1− δ)(1 + 4δ)

= (1 + 3δ − 4δ2)

≥ 1,

(9)

since δ ≤ 3
4
. Consequently, in each platform the length of our generated schedule is also

extended to

q(`)∑
k=1

xC`
k

= (1 + 4δ)

q(`)∑
k=1

x̃C`
k

≤ (1 + 4δ)(1 + ε)s`PS(J)

≤ (1 + 3ε)s`PS(J) ≤ (1 + 3ε)s`OPTSPP (J).

6.3 Rounding the Fractional Solution.

In this section we round the jobs in order to get a unique assignment of every job to a
subset of processors of a platform. Consider an approximate solution (xC`

k
) of the LP-

relaxation. We introduce a new variable x`j ∈ [0, pj] that indicates the length of the
fraction of job Jj that is scheduled on P`. Formally this is x`j =

∑
{k∈{1,...,q(`)}|C`

k(j)=1} xC`
k
,

the sum of the length of all configurations in P` in which Jj appears. We can assume

for all jobs Jj the equality
∑N

`=1 x
`
j = pj, if not we simply delete job Jj from appropriate

configurations or replace a configuration by two “shorter” configurations (one with job Jj
and one without, their total length is the same as the one of the original configuration).
For all fractions x`j of a platform P` we build rectangles (x`j, qj) of height x`j and width qj.
We use Algorithm 11 to group the rectangles of every platform P` geometrically.

y`j,1

y`j,2

G`
1

G`
2

G`
3

Rectangle (x`
j , qj), a fraction of Jj .

Figure 5: Constructing L′`wide

If we were able to round the variables z`j,i to integer values {0, 1} (without losing too
much), this would imply a unique assignment of every rectangle to exactly one group of

25

Algorithm 11 Grouping

1: for all 1 ≤ ` ≤ N do
2: Choose δ := ε/(4+ε) and partition the rectangles into wide and narrow rectangles,
L`wide := {(x`j, qj)|qj > (δ/2)m`} and L`narrow := {(x`j, qj)|qj ≤ (δ/2)m`}.

3: Group the rectangles in L`wide with Step 1 to 5 of Algorithm 6 into M ≤
5/δ(blog(2/δ)c+ 1) = O(1/ε log(1/ε)) groups G`

i . Denote the resulting list of rectan-
gles with L′`wide and let y`j,i ∈ [0, pj] denote the fraction of job j that is assigned to G`

i .
Let z`j,i = y`j,i/pj ∈ [0, 1] denote the scaled fraction.

4: Compute SIZE(L`narrow) =
∑

(x`j ,qj)∈L`
narrow

x`jqj and locate the corresponding rect-

angles on top of the stack as group G`
0. Let y`j,0 ∈ [0, pj] denote the fraction of a narrow

job Jj that is assigned to G`
0 and and let z`j,0 = y`j,0/pj ∈ [0, 1].

5: end for

a platform. Re-identifying the rectangles with jobs, where we identify the height of a
rectangle with the length of a job, this would also imply a unique assignment of every job
to a platform. We achieve such a rounding of the variables z`j,i via the following general
assignment problem, so that there remain at most M + 1 fractionally assigned rectangles
per platform.

n∑
j=1

z`j,0pjqj ≤ SIZE(L`narrow) ` ∈ {1, . . . , N}

n∑
j=1

z`j,ipj ≤ H(G`
i) i ∈ {1, . . . ,M}, ` ∈ {1, . . . , N}

N∑
`=1

M∑
i=0

z`j,i ≥ 1 j ∈ {1, . . . , n}

z`i,j ∈ [0, 1]

(10)

The above formulation is related to the problem of scheduling jobs on parallel unrelated
machines with (M + 1)N machines. Each group G`

i corresponds to a machine. Lenstra
et al. showed in [16] that a feasible solution (z`i,j) of this problem can be rounded to
a feasible solution (z̃`i,j) of the corresponding integer program formulation in polynomial
time, so that there remains at most one fractional job z̃`i,j < 1 per machine. Hence, we
get a unique assignment of almost all rectangles to the platforms P` except at most M +1
fractionally assigned rectangles per platform. Let F ` denote the set of rectangles with
fractional variables z̃`j,i after the rounding. We will execute the corresponding jobs at
the end of the schedule; their total processing time is bounded by (M + 1)tmax. From
now on we consider for each platform P` an instance of strip packing containing a set
of wide rectangles L̃`wide := {(z̃`j,ipj, qj)|z̃`j,i = 1, i > 0} and a set of narrow rectangles

L̃`narrow := {(z̃`j,0pj, qj)|z̃`j,0 = 1}. In every platform we repack the pre-assigned rectangles

in L̃`wide ∪ L̃`narrow using Algorithm 7.

26

7 Analysis

In the end we re-identify the rectangles with jobs, i.e. their widths with qj and their
heights with pj. Note that a packing of the rectangles of total height h(`) in platform
P` corresponds to a schedule with makespan h(`)/s`. Then the fractional jobs in F ` are
scheduled on top. To directly apply strip packing results we scale the widths of all
rectangles in L̃`wide ∪ L̃`narrow by 1/m`. Furthermore, we consider platform P` as a strip
of width 1 and infinite height. As we consider each platform and the allocated jobs
independently, this has no impact on the solution.

7.1 Analyzing the Output

Let (xC`
k
) be an approximate solution of (5) and let L̃`wide ∪ L̃`narrow contain the rectangles

that have to be repacked in Step 5 of Algorithm 10 with the strip packing subroutine
above.

Let L`round, L
′`
round and L̃`round denote the instances obtained from L`wide, L

′`
wide and L̃`wide

via rounding algorithm 6. Remember that the difference between L`wide and L′`wide is that
in L′`wide every rectangle is uniquely assigned to one group G`

i since we introduced two new
rectangles for border rectangles before. Thus L`round = L′`round. Moreover, we can show the
following:

Lemma 7.1. For all ` ∈ {1, . . . , N} we have

a) FSP (L̃`round) ≤ (1 + δ)2FSP (L`wide)

b) SIZE(L̃`round) ≤ (1 + δ)2SIZE(L`wide).

Proof. First notice that FSP (L`wide) = FSP (L′`wide) since we are comparing fractional
solutions. By Lemma 4.3 we have (1 + δ)FSP (L`wide) ≥ FSP (L`round) = FSP (L′`round).
During building the the lists L̃`wide from lists L′`wide in step 3 of Algorithm 10 via the
general assignment problem we do not increase the total height of any group G`

i and we
do not exceed the largest width of a rectangle that appears in it. Therefore we have
L′`round ≥g L̃`wide and thus FSP (L′`round) ≥ FSP (L̃`wide). Again applying Lemma 4.3 to
L̃`wide and L̃`round gives a). In a similar way assertion b) follows.

Let h`round denote the height of the packing produced by converting the fractional
solution of 3 for the instance L̃`round into an integral one. This is done by adding for each
configuration appearing with height > 0 in the fractional solution the maximum height of
a rectangle. Each basic solution of (3) has at most M non-zero entries. Thus, there are
effectively at most 2M different configurations after filling the configurations as in Lemma
5.2 (since we consider only one strip we do not divide any configuration). Consequently
we achieve a feasible integral packing for L̃`round with height h`round ≤ FSP (L̃`round) + (1 +
2M) max{pj|(pj, qj) ∈ L̃`sup}.

Now let h(`) denote the height after adding the narrow rectangles in L̃`narrow to our
packing in platform P`, ` ∈ {1, . . . , N}. We bound h(`) in the following way:

Lemma 7.2. For all ` ∈ {1, . . . , N} we have
h` ≤ (1 + 7ε)PS(J)s` +O(1/ε log(1/ε)) max{pj|(pj, qj) ∈ L`wide ∪ L`narrow}.

27

Proof. First note that by construction we have that the height of an optimal fractional
strip packing for the wide and narrow rectangles in L`wide ∪ L`narrow into platform P`, is
less than the length of the schedule corresponding to the approximate solution of (5)
constructed in step 1, that is

FSP (L`wide ∪ L`narrow) ≤ s`(1 + 3ε)PS(J). (11)

We consider two different cases:
If h(`) > h`round, Kenyon and Rémila showed that

h(`) ≤ SIZE(L̃`round ∪ L̃`narrow)

(1− δ/2)
+ (4M + 1) max{pj|(pj, qj) ∈ L̃`round ∪ L̃`narrow}.

Since SIZE(L̃`narrow) ≤ SIZE(L`narrow) by construction Lemma 7.1 b) implies

SIZE(L̃`round ∪ L̃`narrow) ≤ (1 + δ)2SIZE(L`wide ∪ L`narrow). (12)

With (11) and since we scaled the widths of the rectangles by 1/m` we have SIZE(L`wide∪
L`narrow) ≤ s`(1 + 3ε)PS(J). With δ = ε

4+ε

h(`)
(12)

≤ A(L`wide ∪ L`narrow)
(1 + δ)2

(1− δ/2)

+ (4M + 1) max{pj|(pj, qj) ∈ L`wide ∪ L`narrow}

≤ (1 + 3ε)PS(J)s`(1 + δ)2

(1− δ/2)

+ (4M + 1) max{pj|(pj, qj) ∈ L`round ∪ L`narrow}
≤ (1 + 7ε)PS(J)s` + (4M + 1) max{pj|(pj, qj) ∈ L`round ∪ L`narrow}

If h(`) ≤ h`round the converting process from fractional to integral gives us

h`round ≤ FSP (L̃`round)

+ (1 + 2M) max{pj|(pj, qj) ∈ L̃`wide}
7.1 a)

≤ FSP (L`wide)(1 + δ)2

+ (1 + 2M) max{pj|(pj, qj) ∈ L`wide ∪ L`narrow}
≤ FSP (L`wide ∪ L`narrow)(1 + δ)2

+ (1 + 2M) max{pj|(pj, qj) ∈ L`wide ∪ L`narrow}
(11)

≤ s`(1 + 3ε)PS(J)(1 + δ)2

+ (1 + 2M) max{pj|(pj, qj) ∈ L`wide ∪ L`narrow}
≤ (1 + 6ε)PS(J)s` + (1 + 2M) max{pj|(pj, qj) ∈ L`wide ∪ L`narrow}

According to Lemma 4.3 we have M ≤ 5/δ(blog(2/δ)c + 1) = 5(4+ε)
ε

(blog(2(5+ε)
ε

)c + 1) =
O(1/ε log(1/ε))

28

The packing in each platform P` corresponds to a schedule with length (referring to
pj) at most (1 + 7ε)PS(J)s` +O(1/ε log(1/ε)) max{pj|(pj, qj) ∈ L`wide ∪L`narrow}, thus its
completion time (referring to t`j) is bounded by (1 + 7ε)PS(J) +O(1/ε log(1/ε))tmax. The
remaining jobs in F ` have total processing time bounded by
(M+1)tmax ∈ O(1/ε log(1/ε)tmax) ≤ O(1/ε log(1/ε)pmax), since tmax ≤ pmax as min s` = 1.
Adding the remaining jobs in F ` to the schedule does not change the magnitude of the
additive factor. With rescaling ε and since PS(J) ≤ OPTSPP (J) we obtain that the
makespan of the produced schedule in each platform P` is less than Cmax(`) ≤ (1 +
ε)OPTSPP (J) + O(1/ε log(1/ε)pmax) and conclude our main Theorem 1.2. Since during
the repacking process we considered jobs as rectangles, we assigned every job to a set of
processors with consecutive addresses. Thus we also obtain an AFPTAS for multiple strip
packing for strips with different widths (in this case we have s` = 1 for all ` ∈ {1, . . . , N}).

7.2 Running Time of the Algorithm

The time needed for solving (5) approximately via max-min resource sharing in step
1 is ‘binary search on T’ × ‘number of iterations’ ×N× ‘solving the knapsack’ which
is less than O(log(nNε−1 max s`)) × O(n(ε−2 + log n)) × N × O(n log(1/ε) + ε−4) ≤
O(Nn2ε−6 log2(n) log2(1/ε) log(N max s`)). The number of non-zero configurations in
the final solution is bounded by the number of iterations O(n(ε−2 + log n)) [8], since
in each iteration there is at most one new configuration included. So step 2 takes time
O(Nn2(ε−2 + log n) log(n2(ε−2 + log n))
= O(Nn2ε−2 log2(n) log(1/ε)), since there are at most n2(ε−2 + log n) rectangles in each
platform that have to be sorted. We represent the assignment problem in step 3 as a
weighted bipartite graph G = (V1, V2, E), where V1 corresponds to the N(M+1) machines
(parts of the stacks), V2 to the jobs. There is an edge between the node representing part
i of the stack for P` and the node representing job Jj if z`j,i > 0. This assignment problem

can be converted in time O(|E||V1|) = O(|V1|2|V2|) = O(ε−2 log2(1/ε)N2n) into another
assignment problem, whose corresponding graph is a forest [17]. Applying the rounding
technique in [16] to the new assignment takes time in O(|V1|+ |V2|) = O(ε−1 log(1/ε)N +
n). So step 3 takes time in O(ε−2 log2(1/ε)N2n). In step 5 it is sufficient to solve the
corresponding linear program (3) approximatively with accuracy Θ(ε) also via a max-min
resource sharing problem. This can be done in time O(M(ε−2 + lnM) ln(ε−1) max{M +
ε−3,M ln ln(Mε−1)}) for every platform [11]. Since M ∈ O(1/ε log(1/ε)) this gives
for step 5 a total running time in O(Nε−6). The overall running time sums up to
O(ε−6N2n2 log2(n) log2(1/ε) log(N max s`)).

8 Malleable Jobs

One can also obtain an AFPTAS for scheduling malleable jobs non-preemptively by only
adding a few modifications to the algorithm. To get a better overview we do not consider
the platform speeds here. But remember that one can easily add speeds here by consider-
ing bins of height s`T instead of T , where T denotes an optimum value for the makespan
for scheduling malleable jobs in platforms. In the following we give a short instruction
how to adjust our algorithm:

29

In malleable scheduling a job Jj is described by a function pj : {1, . . . ,mN} −→ Q+ ∪∞,
where pj(k) is the length of job j running on k parallel processors of a platform. We
introduce a configuration as a map f` : {1, . . . ,m`} −→ {0} ∪ {1, . . . , n} that assigns a
processor to a job (0 for idle time). Instead of solving (5) we can solve in a similar way
the following linear program:

∑
f`∈F`

xf` = T ` ∈ {1, . . . , N}

N∑
`=1

m∑̀
k=1

1

pj(k)

∑
f`∈F`,|f−1(j)=k|

xf` ≥ 1 j ∈ {1, . . . , n}

xf` ≥ 0.

(13)

Here the upper and lower bounds for binary search on T , U and L, respectively, are
U := ndmin and L := dmin/N where dmin := max` d

` and
d` := maxj min1≤k≤m`

{pj(k)|pj can be scheduled on P`}. The block problem also splits
into N smaller block problems, where each of them corresponds to a multiple choice
knapsack. Lawler showed in [15] that those knapsack problems can be solved approxi-
mately in fully polynomial time. To guarantee that we have chosen the right number of
processors for a job we replace 11 by Algorithm 12 in step 2 of Algorithm 10

Algorithm 12 Grouping for malleable jobs

1: for all 1 ≤ ` ≤ N do
2: Choose δ := ε/(4+ε) and partition the rectangles into wide and narrow rectangles,
L`wide := {(x`j, qj)|qj > (δ/2)m`} and L`narrow := {(x`j, qj)|qj ≤ (δ/2)m`}.

3: Group the rectangles in L`wide with Step 1 to 5 of Algorithm 6 into M ≤
5/δ(blog(2/δ)c + 1) = O(1/ε log(1/ε)) groups G`

i . Denote the resulting list of rect-
angles with L′`wide. Let a`i , b

`
i be the smallest and the largest width of a rectangle in

group G`
i and let W `

i,j be the set of widths job Jj adopts in G`
i .

4: For i ∈ {1, . . . ,M} and w ∈ W `
i,j let y`j,i(w) denote the fraction of job j of width

w that is assigned to G`
i . Let z`j,i =

∑
w∈Wi,j

y`j,i(w) be the complete fraction of job j

in G`
i .

5: For each group i ∈ {1, . . . ,M} and job j with |W `
j,i| ≥ 2 compute k`j,i :=

arg mink∈[a`i ,b
`
i]
p`j(k) and replace the rectangles corresponding to job j in G`

i by

(z`j,ipj(k
`
j,i)k

`
j,i). Note that pj(k

`
j,i) is the smallest processing time among all processor

numbers k ∈ [a`i , b
`
i].

6: For each job j with |W `
j,0| ≥ 2 compute k`j,0 := arg mink∈[0,ε′m`]

p`j(k)k and replace

all rectangles corresponding to job j in G`
0 by (z`j,0pj(k

`
j,0), k`j,0).

7: end for

Including different speed values we define the processing time of job Jj in platform P`
as t`j(k) =

pj(k)

s`
. Note that t`j(k) =∞ is possible. We define pmax := maxj,k{pj(k)|pj(k) <

∞} and tmax := maxj,k,`{t`j(k)|t`j(k) <∞}. To include speed values in the linear program
we change the first N constraints of LP (13) into

∑
f`∈F`

xf` = s`T , since different speeds can

30

be considered as providing length s`T instead of T for the schedule. The block problem
also splits into N multiple choice knapsack problems with bin sizes s`T and can be solved
in a similar way. The rounding step and the repacking process remain the same and finally
we achieve the following theorem.

Theorem 8.1. There is an AFPTAS for scheduling non-preemptive malleable jobs in
heterogeneous platforms with different speeds with additive factor O(1/ε log(1/ε))pmax.

9 Release Times

For a better overview we describe here the idea for the proof when all platforms run with
the same speed, i.e. s` = 1 for all ` ∈ {1, . . . , N}. The general case can be derived from
it.

Theorem 9.1. There is an AFPTAS for scheduling parallel jobs in heterogeneous plat-
forms with different speeds and release times with additive factor O(1/ε2 log(1/ε))pmax.

Proof. Let T denote the optimum value of the makespan for SPP(J) with release times
r1, . . . , rn. Let Φ := maxj rj, ε > 0 and assume that 1/ε ∈ N or round it up to the next
integer. Clearly we have Φ ≤ T ≤ Φ + nmaxj pj. If Φ ≤ εT , we can apply Algorithm 10
to the instance ignoring the release times and shift the constructed schedule in the end
by εT . So in this case we achieve for every accuracy ε an algorithm with output less than
(1+ε)OPT(J)+O(1/ε log(1/ε))pmax. Thus, we assume Φ > εT . As in [9] we round down
the release time to the next multiples of iεT i ∈ {0, 1, . . . , 1/ε} and obtain new release
times r̃1 . . . , r̃n with at most R := 1/ε+1 ∈ O(1/ε) different values ρ1, . . . , ρR. To recover
the loss we made by rounding down we will shift the final schedule by εT in the end. For
every platform P` we consider R new platforms P̃`,i, i ∈ {1, . . . , R}, with m` processors
and create a new instance J̃R of SPP (without release times) with RN platforms and n
jobs. A job Jj can now be scheduled in platform P̃`,i if it fits and if it is already released,
i.e. qj ≤ m` and r̃j ≤ ρi. For each of the new platforms P̃`,i the value of an optimal
fractional schedule is at most εT . Now we slightly modify the concept of a configuration:
A configuration for a platform P̃`,i is a function C`,i : {1, . . . , n} −→ {0, 1}, so that

• r̃j ≤ ρi for all j ∈ {1, . . . , n} with C`,i(j) = 1

• and
∑
{j∈{1,...,n}|C`(j)=1} qj ≤ m`.

We can apply Algorithm 10 (using the new concept of configurations in the LP -relaxation)
to J̃R obtaining in each platform P̃`,i a feasible schedule with length
(1 + ε)εT + O(1/ε log(1/ε))pmax. Summing up the schedules for P̃`,1, . . . , P̃`,R (in the
right order of course) we create a schedule for the original platform P` with length
1/ε[(1 + ε)εT + O(1/ε log(1/ε))pmax] = (1 + ε)T + O(1/ε2 log(1/ε))pmax. Correcting the
mistake we made in the beginning and shifting the whole schedule by εT we obtain in
every platform a schedule with length

(1 + 2ε)T +O(1/ε2 log(1/ε))pmax.

The running time of the algorithm is in
O(ε−8N2n2 log2(n) log2(1/ε) log(max{N, 1/ε})) as we apply Algorithm 10 to N := N/ε
platforms and s` = 1 for all ` ∈ {1, . . . , N}.

31

References

[1] N. Bansal, A. Caprara, K. Jansen, L. Prädel, and M. Sviridenko. A structural lemma
in 2-dimensional packing, and its implications on approximability. In Proceedings of
the 20th International Symposium on Algorithms and Computation (ISAAC 2009),
LNCS 5878, pages 77–86, 2009.

[2] M. Bougeret, P. F. Dutot, K. Jansen, C. Otte, and D. Trystram. Approximation
algorithms for multiple strip packing. In Proceedings of the 7th Workshop on Approx-
imation and Online Algorithms (WAOA 2009), LNCS 5893, pages 37–48, 2009.

[3] M. Bougeret, P. F. Dutot, K. Jansen, C. Otte, and D. Trystram. Approximating
the non-contiguous multiple organization packing problem. In Proceedings of the 6th
IFIP International Conference on Theoretical Computer Science (TCS 2010), pages
316–327, 2010.

[4] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trystram. A fast 5/2-
approximation algorithm for hierarchical scheduling. In Proceedings of the 16th In-
ternational Euro-Par Conference- Parallel Processing Part I (Euro-Par 2010), LNCS
6272, pages 157–167, 2010.

[5] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, and D. Trystram. Scheduling
jobs on heterogeneous platforms. In Computing and Combinatorics - 17th Annual
International Conference (COCOON 2011), pages 271–283, 2011.

[6] A. Caprara. Packing d-dimensional bins in d stages. Math. Oper. Res., 33:203–215,
February 2008.

[7] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM J. Comput., 9(4):808–
826, 1980.

[8] M. D. Grigoriadis, L. G. Khachiyan, L. Porkolab, and J. Villavicencio. Approxi-
mate max-min resource sharing for structured concave optimization. SIAM J. Optim.,
11(4):1081–1091, 2001.

[9] L. A. Hall and D. B. Shmoys. Approximation schemes for constrained scheduling
problems. In 30th Annual Symposium on Foundations of Computer Science (FOCS
1989), pages 134–139, 1989.

[10] R. Harren, K. Jansen, L. Prädel and R. van Stee. A (5/3 + ε)-Approximation for
Strip Packing. To appear in Algorithms and Data Structures - 12th International
Symposium (WADS 2011), pages 475–487, 2011.

[11] K. Jansen. Efficient Approximation and Online Algorithms, chapter Approximation
algorithms for min-max and max-min resource sharing problems and applications,
LNCS 3484, pages 156–202. Springer, 2006.

[12] K. Jansen and R. Solis-Oba. Rectangle packing with one-dimensional resource aug-
mentation. Discrete Optimization, 6(3):310–323, 2009.

32

[13] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of
Computer Science (FOCS 1982), pages 312–320, 1982.

[14] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting
stock problem. Math. Oper. Res., 25(4):645–656, 2000.

[15] E. L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper.
Res., 4(4):339–356, 1979.

[16] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Program., 46:259–271, 1990.

[17] É. Tardos S. A. Plotkin, D. B. Shmoys. Fast approximation algorithms for fractional
packing and covering problems. Math. Oper. Res., 20(2):257–301, 1995.

[18] I. Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Proceed-
ings of the 2nd European Symposium on Algorithms (ESA 1994), LNCS 855, pages
290–299, 1994.

[19] Ulrich M. Schwarz. Approximation Algorithms for Scheduling and Two-Dimensional
Packing Problems (Dissertation). 2010.

[20] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour. Online scheduling in grids.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS 2008),
pages 1–10, 2008.

[21] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
J. Comput., 26(2):401–409, 1997.

[22] A. Tchernykh, J. Ramı́rez, A. Avetisyan, N. Kuzjurin, D. Grushin, and S. Zhuk.
Two level job-scheduling strategies for a computational grid. In Proceedings of the 6th
International Conference on Parallel Processing and Applied Mathematics (PPAM
2005), LNCS 3911, pages 774–781, 2005.

[23] D. Ye, X. Han, and G. Zhang. On-line multiple-strip packing. The 3rd Annual
International Conference on Combinatorial Optimization and Applications (COCOA
2009), LNCS 5573, 2009.

[24] S.N. Zhuk. Approximate algorithms to pack rectangles into several strips. Discrete
Mathematics and Applications, 16(1):73–85, 2006.

33

