
Combining Multiple Heuristics on Discrete

Resources

Marin Bougeret∗ , Pierre-François Dutot, Alfredo Goldman† , Yanik Ngoko‡ and Denis Trystram

LIG, Grenoble University, France

Abstract—In this work we study the portfolio problem which
is to find a good combination of multiple heuristics to solve
given instances on parallel resources in minimum time. The
resources are assumed to be discrete, it is not possible to allocate
a resource to more than one heuristic. Our goal is to minimize
the average completion time of the set of instances, given a set
of heuristics on homogeneous discrete resources. This problem
has been studied in the continuous case in [13]. We first show
that the problem is hard and that there is no constant ratio
polynomial approximation unless P = NP in the general case.
Then, we design several approximation schemes for a restricted
version of the problem where each heuristic must be used at least
once. These results are obtained by using oracle with several
guesses, leading to various tradeoff between the size of required
information and the approximation ratio. Some additional results
based on simulations are finally reported using a benchmark of
instances on SAT solvers.

I. INTRODUCTION

A. Description of the context and motivation

We are interested in this work in solving hard computa-

tional problems like the satisfiability problem SAT. It is well-

established that a single algorithm cannot solve efficiently

all the instances of such problems. In most cases, they are

characterized by the great variability of their execution time

depending on the considered instances. Thus, a good effective

solution is to consider several heuristics and combine them

in such a way to improve the mean execution time when

solving a large set of instances. We are interested in this paper

in designing adequate combination schemes. The suggested

solution is based on the portfolio problem, introduced in the

field of finance many years ago [11]. This problem can be

informally recalled as follows: given a set of opportunities,

an amount of possible investments on the set of opportunities

and the payoff obtained when investing an amount on each

opportunity, what is the best amount of investment to make on

each opportunity in order to maximize the sum of the payoffs?

We consider the simultaneous use of heuristics of a portfolio

of instances on parallel resources. Using the vocabulary of

Computer Science, we assume that there exists a benchmark

composed of a finite set of instances and some heuristics

which solve these instances. The expected execution times of

heuristics on all the instances is known. The objective is to

determine the best resource allocation for the heuristics such

∗This work is supported by a PhD grant from DGA-CNRS.
†This work was done on sabbatical leave from São Paulo University.
‡This work is supported by a grant from EGIDE, SCAC Yaounde-

Cameroun.

as to minimize the mean execution time of the set of instances.

The execution time of an instance given a resource allocation

is taken here as the shortest execution time of a heuristic when

executing simultaneously all the heuristics on this instance

following the resource allocation.

This formulation of the problem as a portfolio is motivated

by the fact that we may not know which is the best suited

heuristic to solve an instance before actually solving it. The

interest of this sharing model is that in practice if the bench-

mark of instances is representative over all possible instances,

we will have a better mean execution time than using only

one heuristic.

B. Related works

There exist many studies focusing on the construction of

automated heuristic selection process in various area. For a

given problem, they usually proceed first by identifying the

set of features which characterize its instances. A matching is

then built between types of instances and heuristics in order

to determine an efficient heuristic for any instance.

In [12] for example, the authors introduce a generic frame-

work for heuristic selection in a parallel context and apply

it to some classical problems like sorting, remote method

invocation or parallel reductions. In [17], the authors suggest

a model for the heuristic selection in the case of the resolution

of partial differential equations. The Self Adapting Large-

scale Solver Architecture (SALSA) project uses statistical

techniques for solver selection [8]. In [6] the authors study the

construction of a selection process for linear system resolution.

The construction of automated selection process requires the

identification of a representative set of features. This can be

very difficult depending on problems [8].

There are other alternative works based on heuristic portfo-

lio that can be used in these cases. A portfolio of heuristics

is a collection of different algorithms (or algorithms with

different parameters) running in an interleaved scheme. There

are many other works interested by heuristic portfolio. In [9],

[10], the authors show the interest to use heuristic portfolio on

randomized heuristics. Concurrent use of heuristics for solving

an instance have also been suggested in [7], [15] with the

concept of asynchronous team. In [14], the authors study how

to interleave the execution of different heuristics in order to

reduce the execution time of a set of instances. We have mainly

been interested in the resource sharing approach, as introduced

in [13].

The oracle based approach used in part V is inspired from

many works. Indeed, the concept of adding some quantifiable

information to study what improvements can be derived exists

in other fields than optimization problems. Let us briefly

describe them.

In the distributed context [5], a problem is called informa-

tion sensitive if a few bits of information enable to decrease

drastically the execution time. The information sensitiveness

is used to classify problems by focusing on lower bounds on

the size of advice necessary to reach a fixed performance, or

giving explicitly oracle information and studying the improve-

ment (as in [5] and [4]).

In the on-line context, this quantifiable oracle information

could be recognized in the notion of “look-ahead”. The look-

ahead could be defined as a slice of the future which is

revealed to the on-line algorithm. Thus, it is possible to prove

lower and upper bounds depending on the size of this slice

[2], [3].

In the context of optimization, some polynomial time

approximation schemes have been designed thanks to the

guessing technique [1]. This technique can be decomposed

in two steps: proving an approximation ratio while assuming

that a little part of the optimal solution is known, and finally

enumerating the possibilities for this part of the optimal

solution.

C. Contributions

In this paper we introduce a new problem (Discrete Re-

source Sharing Scheduling Problem, dRSSP) which is an ex-

tension of the continuous version presented in [13] (also based

on heuristic portfolio [9], [10]). Our approach is motivated by

the fact that an optimal non integer allocation as considered

in [13] may not be feasible on an integer number of resources.

We provide complexity and inapproximability results for this

problem. Then, we study a restricted version of the dRSSP

using an oracle based approach. We do not only apply the

guessing technique, but we aim at developing a methodological

approach by looking for several guesses and studying the

different tradeoffs obtained. Finally, we run simulations (using

instances extracted from actual execution time of heuristics

solving the SAT problem) to evaluate these tradeoffs.

D. Organization of the paper

The rest of the paper is organized as follows. In Section II,

we present the resource sharing problem as defined in [13].

In Section III, we introduce a discrete version of the resource

sharing problem and we also study its complexity. In Sec-

tion IV we prove the inapproximability of the problem, and

define consequently a restricted version. We design in Section

V several approximation schemes (based on oracle guesses)

for this restricted problem. Finally, some experimental results

of these approximation schemes are presented in Section VI.

We conclude in Section VII.

II. RESOURCE SHARING SCHEDULING PROBLEM

A. Definition of the problem

We describe below the Resource Sharing Scheduling Prob-

lem introduced in [13]. As we have already indicated, the

problem is characterized by a set of exhaustive, or represen-

tative, instances. Given many heuristics that can be used to

solve these instances, a fraction of the whole resources has to

be allocated to each of these heuristics in order to minimize

the execution time of the set of instances. This problem can

formally be described as follows:

Resource Sharing Scheduling Problem (RSSP)

Instance: A finite set of instances I = {I1, . . . , In}, a finite
set of heuristics H = {h1, . . . , hk}, a cost matrix C(hi, Ij) ∈
R+ for each Ij ∈ I , hi ∈ H , a real value T ∈ R+.

Question: Is there a vector S = (S1, . . . , Sk)
with Si ∈ [0, 1] and

∑k
i=1 Si ≤ 1 such that

∑n
j=1 min

1≤i≤k

{

C(hi,Ij)
Si

s.t Si > 0
}

≤ T ?

In this problem, C(hi, Ij) indicates the execution cost of

heuristic hi on the instance Ij with all the available resources.

In practice, this cost can be considered as the execution time.

The vector S = (S1, . . . , Sk) with Si ∈ [0, 1] defines a

possible share indicating that each heuristic hi, 1 ≤ i ≤ k
will be executed with a proportion Si of the entire resources.

In this problem, if a proportion Si of the resources is allocated

to a heuristic hi, then hi solve an instance Ij with a cost equal

to
C(hi,Ij)

Si
. The resource sharing problem has been proved to

be NP-complete in [13].

B. A related problem

Sayag et al. [13] have also studied another related problem,

namely the time switching problem. This problem considers a

finite set of instances and assume a finite set of interruptible

heuristics. To solve instances, the execution of the different

heuristics are interleaved in a fixed pattern of time intervals.

As in RSSP an execution ends as soon as one heuristic solves

the current instance.

As previously, the goal in the task switching problem is to

find a schedule which minimizes the mean execution time on

the set of instances. This approach is interesting in a single

resource problem and has also been studied by Streeter et

al. [14].

In [13], it has been proved that to each resource sharing

schedule corresponds a time switching with a lower execution

time. Even if the time switching approach produces schedules

with a better execution time, it assumes that heuristics are

interruptible. However, all the interrupted states have to be

stored leading to a prohibitive memory cost on multiple

resources.

Notice also that in several cases, giving more resources to a

heuristic does not have a positive impact on its execution. This

is especially true when using hard to parallelize heuristics, as

those involving a large number of irregular memory accesses

and communications [16]. That is why we focus on the discrete

version of RSSP.

III. DISCRETE RESOURCE SHARING SCHEDULING

PROBLEM

A. Definition of the problem

We consider now a finite number of discrete resources.

Moreover, we initially do not assume a linear execution cost.

The solution cost of an instance should be explicitly given for

each heuristic and given number of resources. Formally, the

problem can be stated as follows:

discrete Resource Sharing Scheduling Problem (dRSSP)

Instance: A finite set of instances I = {I1, . . . , In}, a

finite set of heuristics H = {h1, . . . , hk}, a set of m identical

resources, a cost C(hi, Ij , p) ∈ R+ for each Ij ∈ I , hi ∈ H
and p ∈ {1, . . . ,m}, a real value T ∈ R+.

Question: Is there a vector S = (S1, . . . , Sk) with

Si ∈ {0, . . . ,m} and 0 <
∑k

i=1 Si ≤ m such that
∑n

j=1 min
1≤i≤k

{C(hi, Ij , Si)|Si > 0} ≤ T ?

The idea in this problem is to find an efficient partition of

resources to deploy the set of heuristics on the homogeneous

resources. The cost function (min
1≤i≤k

{C(hi, Ij , Si)}) introduced
by Sayag et al. [13] and used here, considers that for each

instance, all the different heuristics are executed with the

defined share and then stop their execution when at least one

heuristic finds a solution.

We study from now on the dRSSP with the linear cost

assumption, which indicates that the execution cost is pro-

portional to the number of resources used (C(hi, Ij , p) =
C(hi,Ij ,m)m

p). For the sake of simplicity, we will denote

C(hi, Ij ,m) by C(hi, Ij). Thus, the cost function C is entirely

defined by the C(hi, Ij), i ∈ {1, . . . , k}, j ∈ {1, . . . , n}.
To emphasize the difference between dRSSP and RSSP we

use the same example presented in [13]. Suppose that we have

2 instances (I1, I2), 2 heuristics (h1, h2), 2 resources and the

following execution cost matrix C =

(

2 10

10 1

)

.

To deduce the optimal solution with RSSP, a fraction x
of one heuristic has to be allocated such as to minimize:

min
(

2
x , 10

1−x

)

+min
(

10
x , 1

1−x

)

. The minimum is obtained for

x = 2−
√

2. Thus, the optimal solution with RSSP consists to

give 2(2−
√

2) resources to h1 and 2(
√

2−1) resources to h2.

This solution leads to a schedule with a total execution time

equal to 5.8284. The optimal solution with dRSSP consists to

give one resource to h1 and one to h2. This solution gives a

schedule with the total execution time equal to 6.

B. Complexity

Theorem 3.1: The dRSSP with linear cost assumption is

NP-Complete

Proof: The problem clearly belongs to NP. We now build

a reduction from the (well known) vertex cover problem to

prove that the dRSSP problem is NP-complete.

Being given a graph G = (V,E), V = {v1, . . . , vk}, k =
|V |, |E| = n in which we are looking for a vertex cover V c ⊆
V of size m, we construct a dRSSP problem instance where

I = {I1, . . . , In}, such that to each Ij ∈ I corresponds an

edge (vj1 , vj2) ∈ E, H = {h1, . . . , hk} where hi corresponds

to a vertex,

C(hi, Ij) =

{

α > 0 if vi = vj1 or vi = vj2

β where β = nmα + 1 otherwise.
,

and T = nmα.

Figure 1 presents an example of this reduction for a partic-

ular graph. Let us consider an instance of the Vertex Cover

problem for which the corresponding dRSSP problem has a

solution S.

Fig. 1. Example of derivation for a particular graph in which we are looking
for a vertex cover of size m. In this example, α = 1

m

The set V c = {vi s.t Si 6= 0} is of size at most m since we

have m resources. This set is also a vertex cover since if there

was (vj1 , vj2) ∈ E with vj1 /∈ V c, vj2 /∈ V c then the cost of

the associated problem would have been at least nmα + 1.

On the other hand, if there exists a vertex cover V c of size at

most m then the vector S = (S1, . . . , Sk) where ∀i, 1 ≤ i ≤

k Si =

{

1 if vi ∈ V c

0 otherwise,
is a solution to the above dRSSP

problem. Each instance Ij can be treated using a heuristic

corresponding to the considered vertex cover, and executed

with one resource, leads to total cost mα. Thus the cost of

the dRSSP instance is at most equal to nmα.

In the previous reduction, the corresponding dRSSP always

has more heuristics than resources. An interesting question is

to determine whether if dRSSP problem is still NP complete

when there are more resources than heuristics.

Proposition 3.2: The dRSSP problem remains NP complete

even when there are more resources than heuristics.

Proof: We will adapt the previous reduction in this case.

The idea here is to introduce a virtual instance and a virtual

heuristic such that we can reach the target bound only if we

solve the virtual instance with a large number of resources

with the virtual heuristic.

Being given a graph G = (V,E), V = {v1, . . . , vk}, k =
|V |, |E| = n in which we are looking for a vertex cover V c ⊆
V of size m, we construct a dRSSP instance with (k + 1)m
resources, I = {I1, . . . , In, In+1}, such that to each Ij ∈
I, j ≤ n corresponds an edge (vj1 , vj2) with (vj1 , vj2) ∈ E,

In+1 is a virtual instance added, H = {h1, . . . , hk, hk+1}
where the hi, i ≤ k corresponds to the vertices and hk+1 is a

virtual heuristic,

C(hi, Ij) =



















α > 0 if (i ≤ k, j ≤ n and

(vi = vj1 or vi = vj2))

kγ if (i = k + 1 and j = n + 1)

T + 1 otherwise.

Here T = γ(k+1)+nm(k+1)α and γ = nmα(km−1)+1.
We solve this problem by assuming that (k+1)m resources are

available and if there is a vector S satisfying the requirements

of dRSSP, we take the set V c = {vi s.t Si 6= 0} as a solution

for the vertex cover problem. Otherwise, we answer that the

given vertex cover problem does not have a solution. Notice

that with this reduction, the number of heuristics (k + 1) is

smaller than the number of resources (k + 1)m. The γ value

has been taken such that if there are less than km resources

(for example km − 1) which where assigned to hk+1, then

it will not be possible to have a portfolio of cost lower than

T since the execution cost of In+1 on hk+1 would be larger

than T . Then it leads that any solution to this problem gives

a solution to dRSSP on instances I1, . . . , In with heuristics

h1, . . . , hk on at most m resources and this corresponds to a

solution for the vertex cover problem.

IV. APPROXIMABILITY

In this section, we will show that the dRSSP cannot be

approximated within a constant factor. Therefore, we define a

restricted version of the dRSSP for which we provide a first

approximation algorithm.

Proposition 4.1: The dRSSP problem cannot be approxi-

mated within a constant factor in polynomial time, unless

P=NP.

Proof: The gap reduction is directly deduced from the

NP completeness proof. The only difference is that we choose

β = xαnm, for x in R
+ (and x > 1). Then if there is a

vertex cover of size m, the optimal cost of the corresponding

dRSSP is a1 ≤ nmα, otherwise the optimal cost is a2 ≥ β,
and a2

a1
= x, which can be arbitrarily large.

Since the case where the number of allocated resource can

be zero has no polynomial approximation algorithm within a

constant factor (unless P = NP), we consider from now on a

restriction of the linear version of dRSSP in which each heuris-

tic must use at least one processor, which requires m ≥ k.
This additional “allocating constraint” can be interpreted as a

justification of the chosen portfolio of heuristics. Indeed, if in a

solution we don’t allocate any processor to a heuristic, it means

that this heuristic shouldn’t appear in the given portfolio. In

other words, this constraint means that the portfolio is well

chosen. We could also notice that if a heuristic is completely

dominated by another (which means that for all the instances,

the first one is slower than the second one), it would have

no sense to allocate even one processor to the dominated

heuristic. Thus, no heuristic is dominated by another in the

given portfolio.

To solve this restricted version of the linear version of

dRSSP, let us now analyze a greedy algorithm which will serve

as a basis for more sophisticated approximations presented in

the next section. We consider the algorithm mean-allocation

(MA), which consists in allocating ⌊m
k ⌋ processors to each

heuristic.

Let us now define some new notations, given a fixed valid

solution S (not necessarily produced by MA), and a fixed

optimal solution S∗.

Definition 4.2: Let σ(j) = argmin1≤i≤kC(hi, Ij)/Si be

the index of the heuristic which finds the solution first for the

instance j in S (ties are broken arbitrarily).

We define in the same way σ∗(j) as the index of the used

heuristic for the instance j in S∗.

Definition 4.3: Let T (Ij) =
C(hσ(j),Ij)

Sσ(j)
be the processing

time of instance j in S.
We define in the same way T ∗(Ij) as the processing time of

instance j in S∗.

Proposition 4.4: MA is a k approximation for the restricted

dRRSP.

Proof: Let us first remark that MA allocates at least one

processor to every heuristic, which respects our new constraint.

Let (a, b) ∈ N
2 such that m = ak + b, b < k. Notice that

a ≥ 1, given that we must allocate at least one processor to

every heuristic.

For any instance j ∈ {1, .., n}, we have T (Ij) ≤
C(hσ∗(j),Ij)

Sσ∗(j)
by definition of T (Ij), and

C(hσ∗(j),Ij)

Sσ∗(j)
=

S∗

σ∗(j)

Sσ∗(j)
T ∗(Ij) ≤ m−(k−1)

Sσ∗(j)
T ∗(Ij) because in the worst case

the considered optimal solution allocates the maximum

possible number of resources to heuristic σ∗(j). Finally,
m−(k−1)

Sσ∗(j)
T ∗(Ij) = ak+b−(k−1)

a T ∗(Ij) ≤ kT ∗(Ij), which

leads to the proposition.

We will now study how this algorithm can be improved

thanks to the use of an oracle.

V. ORACLE BASED APPROACH

A. Introduction

In this section, we study the restricted version of dRSSP

in a non-standard perspective by assuming the existence of

a reliable oracle that can provide some extra information for

each instance. We will not only apply the guessing technique,

but have a methodological approach by looking for many

possible guesses, and studying the different tradeoffs obtained.

We show that by choosing “correctly” the asked information,

it is possible to derive very good approximation ratio while

simply using the MA algorithm. More specifically (for any

g ∈ {1, . . . , k − 1} and an execution time in O(kn)), we
provide a (k − g) approximation with an information of size
1 glog(m), and a k

g+1 approximation with an information

of size g(log(k) + log(m)). This kind of results leads to

two interesting developments. First, it gives more insight into

the considered problem because the type of information used

emphasizes where the difficulty comes from. Secondly, this

1As the encoding of the instance is fixed, all the information sizes are given
exactly, without using the O notation.

kind of approximation with advice is a first step towards the

design of classical approximation algorithms by replacing the

oracle with another algorithm (which for example enumerates

all the possibilities). In both cases, this methodology reduces

the original problem to the study of this oracle information.

B. Choosing an arbitrary subset of heuristics

As a first step, we choose arbitrarily g heuristics (denoted

by {h1, . . . , hg} without loss of generality and called “the

guessed heuristics”) among the k available heuristics. In the

first guess G1, the oracle provides a part of an optimal

solution: the oracle gives the number of processors allocated

to these g heuristics in an optimal solution of the restricted

dRSSP .

Definition 5.1 (Guess 1): Let G1 = (S∗
1 , . . . , S∗

g), for a

fixed subset of g heuristics and a fixed optimal solution S∗.

Notice that this guess can be encoded using |G1| = glog(m)
bits. We will study two algorithms, both based on MA, which

make use of G1. We first introduce some notations: let k′ =
k− g be the number of remaining heuristics, s = Σg

i=1S
∗
i the

number of processors used in the guess, and m′ = m − s the

number of remaining processors. We also define (a′, b′) ∈ N
2

such that m′ = a′k′ + b′, b′ < k′.

Let us consider a first algorithm MAG which, given any

guess G = (X1, . . . ,Xg),Xi ≥ 1, allocates Xi processors to

heuristic hi, i ∈ {1, . . . , g}, and applies MA on the k′ others

heuristics with the m′ remaining processors. This algorithm

used with G = G1 leads to the following ratio.

Proposition 5.2: MAG1 is a (k− g) approximation for the

restricted dRSSP, for any g ∈ {0 . . . k − 1}.
Proof: First, remark that MAG1 produces a valid solution

because we know that a′ ≥ 1 (there is at least one processor

per heuristic in the optimal solution considered). Then, for

any instance j treated by a guessed heuristic in the optimal

solution considered (σ∗(j) ∈ {1, . . . , g}), MAG1 is at least

as good as the optimal. For the other instances, the analysis

is the same as for the algorithm MA, and leads to the desired

ratio.

In the previous analysis, the approximation ratio for the

instances treated by the guessed heuristics is unnecessarily

good. Therefore, we will consider another algorithm, mean-

allocation-reassign (MAG
R), which redistribute a fraction of

the processors allocated on guessed heuristics to the others.

The goal will be of course to balance the tradeoff between the

ratio for the guessed heuristics and the ratio for the others.

A reasonable requirement for this algorithm to work is to

consider that the number of processors allocated to the guessed

heuristic is sufficiently large. Thereby, we need s > k + c
(with c ≥ 1) to apply MAG

R. We will discuss after the proof

the implication of this assumption on the problem.

Let us define now more precisely the algorithm: given any

guess G = (X1, . . . ,Xg),Xi ≥ 1, MAG
R allocates Xi −⌊Xi

α ⌋
processors to heuristic hi, i ∈ {1, . . . , g}, and apply MA on

the k′ others heuristics with the m′ + Σg
i=1⌊Xi

α ⌋ remaining

processors. This algorithm used with G = G1 leads to the

following ratio, which is naturally decreasing according to the

number s of processors allocated in the guess.

Proposition 5.3: For any guess G1 such that s > k + c,
there exists an α∗ such that MAG1

R is a

max(
k + c

c
, (k − g)(1 −

k−g−1
k−g s − g − 1

m − k
))

approximation for the restricted dRSSP.

Proof:

Let α ∈ R
+. We need α > 1 to allocate at least

one processor to the guessed heuristics. The ratio of any

instance j such that σ∗(j) ∈ {1, . . . , g} is α
α−1 . Now we will

bound the approximation ratio for the others heuristics. Let

x0 = ⌊ b′+Σg
i=1⌊

S∗

i
α

⌋

k′
⌋ be the number of processors added to

each non guessed heuristic hj , j ∈ {g + 1, . . . , k}. We have

x0 ≥ b′+Σg
i=1⌊

S∗

i
α

⌋

k′
− 1 ≥ b′+Σg

i=1(
S∗

i
α

−1)

k′
− 1 = αb′+s−αk

αk′
. So

we add at least x = α(b′−k)+s
αk′

processors per heuristic. The

ratio for any instance j such that σ∗(j) ∈ {g + 1, . . . , k} is

bounded by
m′−(k′−1)

a′+x . We have to ensure that α ≤ s
k−b′ to

have x ≥ 0. The two constraints are not conflicting because,

according to the hypothesis, we know that s
k−b′ ≥ s

k > 1.
To summarize, we are looking for α∗ which minimizes

max(α
α−1 , m′−(k′−1)

a′+x).

α∗

α∗ − 1
=

m′ − (k′ − 1)

a′ + α∗(b′−k)+s
α∗k′

=
α∗k′(m′ − (k′ − 1))

α∗(m′ − b′) + α∗(b′ − k) + s

=⇒ α∗ =
k′(m′ − (k′ − 1)) + s

k′(m′ − (k′ − 1)) + k − m′

We notice that α∗ > 1 is true as m ≥ s > k. If α∗ ≤ s
k−b′ ,

we choose α = α∗, and we get the desired ratio α
α−1 =

k′(m′−(k′−1))+s
m−k = (k − g)

(m−(k−g−1
k−g

s+k−g−1))

m−k .

In the other case (α∗ > s
k−b), we choose α = s

k−b (which

also insure α > 1), and the ratio is α
α−1 ≤ s

s−k ≤ k+c
c .

Let us conclude this proof with a remark. To apply MAG1

R ,

remind that we need s > k + c (c can be chosen in N
∗). To

use this algorithm in a practical way, we would like to choose

an arbitrary subset of g heuristics, and to try all the possible

allocations for these heuristics. However, we don’t know if

the chosen heuristics satisfy s > k + c in the optimal fixed

solution S∗. Even worse, there could be instances where no

such subset exists in S∗ if g is not large enough (for example

if S∗
i = m

k ,∀i ∈ {1, .., k}). Under certain assumptions (m >
k(k + c)), one solution could be to modify the guess G1 as

follows: G′
1 = (S∗

1 , ..., S∗
g), for an arbitrary subset of g − 1

heuristics, and S∗
1 ≥ S∗

i ,∀i ∈ {2, .., k}. Thus, as we know

that s ≥ S∗
1 > m

k , we could assert that s > k + c.
In the last solution, (where the only extra assumption we

finally need is m > k(k + c)), we notice that we need

particular properties for the chosen heuristics (S∗
1 ≥ S∗

i). Even

if asking such properties increases the length of the guess

(|G′
1| = log(k) + glog(m) bits), it may lead to better approx-

imation ratios. Thus, in the next part, instead of choosing an

arbitrary subset of g (or g − 1) heuristics, we will look for

what could be the “best” properties to ask for.

C. Choosing a convenient subset of heuristics

In this part we come back to the restricted dRSSP (which is

the dRSSP where the only extra constraint is to allocate at least

one processor to each heuristic), and we define a new guess,

which is larger than G1, but leads to a better approximation

ratio. Let us start with another analysis of the MA algorithm

which underlines an interesting property. For any heuristic

hi, i ∈ {1, .., k}, let T ∗(hi) = Σj/σ∗(j)=iT
∗(Ij) be the

“useful” computation time of heuristic i in the solution S∗. We

bound the value returned by MA by grouping the instances

according to the heuristic on which they are computed in S∗:

TMA =

k
∑

i=1

∑

j/σ∗(j)=i

T (Ij)

≤
k

∑

i=1

S∗
i

Si

∑

j/σ∗(j)=i

T ∗(Ij)

=
k

∑

i=1

S∗
i

Si
T ∗(hi)

≤ Maxi(T
∗(hi))

m

⌊m
k ⌋

≤ Maxi(T
∗(hi))(2k − 1)

The approximation ratio of the MA algorithm is (2k −
1)Maxi(T

∗(hi))
Opt . >From this form of the ratio, we can infer

that the difficulty in this problem comes from the input where

Opt is close to Maxi(T
∗(hi)), i.e. when a very small number

of heuristics is responsible for the major part of the total

computing. Hence, we define the second guess as follows.

Definition 5.4 (Guess 2): Let G2 = (S∗
1 , ..., S∗

g), be the

number of processors allocated to the g most efficient heuris-

tics (which means T ∗(h1) ≥ .. ≥ T ∗(hg) ≥ T ∗(hi),∀i ∈
{g + 1, .., k}) in a fixed optimal solution S∗.

Notice that this guess can be encoded using |G2| =
g(log(k)+log(m)) bits to indicate which subset of g heuristics

must be chosen, and the allocation of the heuristics.Thanks to

this larger guess, we derive the following better ratio.

Proposition 5.5: MAG2 is a k
g+1 approximation for the

restricted dRSSP.

Proof: We proceed as in the new analysis of MA:

Talgo =

g
∑

i=1

∑

j/σ∗(j)=i

T (Ij) +
k

∑

i=g+1

∑

j/σ∗(j)=i

T (Ij)

≤
g

∑

i=1

∑

j/σ∗(j)=i

T ∗(Ij) +

k
∑

i=g+1

∑

j/σ∗(j)=i

S∗
i

Si
T ∗(Ij)

=

g
∑

i=1

T ∗(hi) +

k
∑

i=g+1

S∗
i

Si
T ∗(hi)

=

k
∑

i=1

T ∗(hi) +

k
∑

i=g+1

(
S∗

i

Si
− 1)T ∗(hi)

Let us define M = maxi∈{g+1,...,k}(T
∗(hi)). Using the

same notations (m′ = a′k′ + b′, a′ ≥ 1, b′ < k′), we get

Talgo ≤ Opt + M(m′

a′
− k′) = Opt + M b′

a′
. Moreover, Opt =

Σg
i=1T

∗(hi) + Σk
i=g+1T

∗(hi) ≥ gT ∗(hg) + M ≥ (g + 1)M .

Finally, the ratio for MAG2 is r ≤ 1 + 1
g+1

b′

a′
≤ 1 + k′−1

g+1 =
k

g+1 .

D. Summary

In this section, we investigated the restricted dRSSP using

a methodology based on oracle guesses. We looked for what

could be the more "efficient" guess to ask to the oracle, and

obtained three particular tradeoff between the length of the

guess and the derived ratio. These results give insight on what

is difficult in this problem (finding which are the most used

heuristics, and of course their allocation), and can be used to

derive classical approximation schemes. The details of these

schemes are indicated in figure 2.

algorithm approximation ratio complexity

MAG1 (k − g) O(mg ∗ kn)

MAG1

R max

{

k+c
c

(k − g)(1 − x)
O((k − g)mg ∗ kn)

MAG2 k
g+1 O((km)g ∗ kn)

Fig. 2. Complexity of the oracle based approximation schemes,

MA
G1
R

requires m > k(k + c) and x =
k−g−1

k−g
s−g−1

m−k

In the next section we present experimental results of our

different approaches.

VI. EXPERIMENTAL RESULTS

We applied our algorithms on the satisfiability problem

(SAT). The SAT problem consists in determining whether a

formula of a logical proposition given as a conjunction of

clauses is satisfied for at least one interpretation. Since this

hard problem is very well known, there exist many heuristics

that have been proposed to provide solutions for it.

For our experiments, we used a SAT database (SatEx2)

which gives for a set of 23 heuristics (SAT solvers) and a

benchmark of 1303 instances for SAT the CPU execution time

(on a single machine) of each heuristics on the 1303 instances

of the benchmark. Thus we didn’t actually run these heuristics,

but we used these CPU times to have a realistic matrix cost.

Remember also that we have a linear cost assumption.

A. Benchmark

The 1303 instances of the SatEx database are issued from

many domains where the SAT problem are encountered.

Some of them are: Logistic planning, Formal verification of

microprocessors, Scheduling. These instances are also issued

2http://www.lri.fr/˜simon/satex/satex.php3

from many challenging benchmarks for SAT which are used

in one of the most popular annual SAT competition 3.

B. Heuristics

The SatEx database contains 23 heuristics issued from three

main SAT solvers family [18]. These are:

• The DLL family with the heuristics: asat, csat, eqsatz,
nsat, sat−grasp, posit, relsat, sato, sato−3.2.1, satz,
satz − 213, satz − 215, zchaff

• The DP family with : calcres, dr, zres,
• The randomized DLL family with : ntab, ntab − back,

ntab − back2, relsat − 200

Other heuristics are heerhugo, modoc, modoc − 2.0

C. Simulations plan

To validate our algorithms, we did simulations with the

set of heuristics and instances given by the SatEx database.

In order to have several simulation cases (with cost matrix

extracted from real execution time of heuristics solving the

SAT problem), we both consider the entire set of heuristics and

two randomly chosen subsets of heuristics. Given a heuristic hi

and an instance Ij of the database, let us denote by cpu(hi, Ij)
the execution time of the heuristic hi on the instance Ij . We

did three series of simulations:

• In the first series of simulations (Experiments 1) we

considered all the 23 heuristics of the SatEx database

and we assumed that we have 100 resources. For each

heuristic hi, we took its execution time on 100 resources

as equal to cpu(hi, Ij).
• In the second series (Experiments 2), we randomly se-

lected a set of 9 heuristics among the complete set of 23
ones in the SatEx database and we assumed that we have

100 resources. For each heuristic hi among the selected

one, we took its execution time on 100 resources as equal

to cpu(hi, Ij).
• In the third series (Experiments 3) , we randomly selected

a set of 6 heuristics and we assumed that we have 50
resources. For each selected heuristic hi , we took its

execution time on 50 resources as equal to cpu(hi, Ij).
The number of selected heuristics and the number of re-

sources have been chosen such as to observe the behavior

of our different approximation algorithms in comparison

to the exact algorithm.

In all these experiments, we assumed the linear cost as-

sumption.

D. Results

We present in Figure 3 the discrete resource sharing cost

(sum of execution time over the set of instances) for MA,

MAG1 and MAG2 in Experiments 1. Given a number g of

heuristics to guess for MAG1 , we did 20 simulations where

we randomly selected (following a uniform distribution law)

a subset of g heuristics between the 23 available. The values

presented in Figure 3 for MAG1 are the mean cost obtained

3http://www.satcompetition.org

from the 20 simulations and the standard deviation. In Figure 3

the MAG2 algorithm gives the discrete resource sharing with

the smallest cost for any value of g. One can notice that

as suggested by our theoretical studies the discrete resource

sharing cost of MAG1 and MAG2 decreases when the number

of guessed heuristics is increased. One can also notice here that

when guessing heuristics, the obtained resource sharing cost

is better than those of the MA algorithm.

Fig. 3. Discrete Resource Sharing Cost with 23 heuristics and 100 resources

In Figure 4, we present the discrete resource sharing cost

for, MAG1 , MAG1

R , MAG2 in Experiments 2. The subset of

selected heuristics for this case is composed of: satz, nsat,
sato− 3.2.1, satz− 215, eqsatz, modoc− 2.0, sato, modoc,
posit. Given a number g of heuristics to guess for MAG1 and

MAG1

R , we did 20 simulations where we randomly selected

a subset of g heuristics between those considered. As in

Experiments 1, one can notice here that the MAG2 algorithm

gives the discrete resource sharing with the smallest cost for

any value of g. One can also notice here that the MAG1

R returns

a better value than the MAG1 algorithm.

Fig. 4. Discrete Resource Sharing Cost with 9 heuristics and 100 resources

In Figure 5, we present the discrete resource sharing cost

for, MAG1 , MAG1

R , MAG2 and the exact algorithm in Ex-

periments 3. The subset of heuristics selected for this case is

composed of: csat, ntab− back2, modoc, dr, ntab, zchaff .
Given a number g of heuristics to guess for MAG1 and

MAG1

R , we did 20 simuations where we randomly selected

a subset of g heuristics between those considered. In this

Figure when guessing two heuristics, the MAG2 algorithm

provides a discrete resource sharing cost equal to those of the

exact algorithm. This cost does not change for MAG2 when

guessing more heuristics. One can also notice here that the

MAG1

R returns a better value than the MAG1 algorithm.

Fig. 5. Discrete Resource Sharing Cost with 6 heuristics and 50 resources

Fig. 6. Execution time with 6 heuristics and 50 resources

In Figure 6, we present the execution time necessary to

compute our discrete resource sharing in Experiments 3. The

exact solution is computed by brute force, MAG1 , MAG1

R

and MAG2 are executed with all the possible guesses of

size g. Therefore all the execution times are exponential in

g (the complexity of these algorithms is given in Figure 2,

Section V).

These simulations were done on a AMD Opteron 246 cpu

with 2 cores and 2 GB of memory. For MAG1 and MAG1

R ,

we considered their mean execution times over the set of 20
simulations. This figure shows that the execution time grows

when guessing more heuristics. We notice that for g = 4,
the execution time of our approximation schemes is close to

those of the exact algorithm. However remind that in this case

we guess four of the six available heuristics (which is almost

equivalent to the brute force algorithm), which is useless here

since for g = 2, MAG1

R is here an 1.1 approximation and

MAG2 provides the exact solution.

VII. CONCLUSION

In this document we introduced the discrete resource sharing

scheduling problem. This problem, even restricted to linear

costs, was shown to be NP-complete and does not have a

polynomial time approximation algorithm within a constant

factor, unless P = NP . However we provided approximation

algorithms for the restricted version where each heuristic must

be executed, based on oracles with well chosen guesses.

Following the theoretical analysis, some simulations have

been conducted to study in detail the trade-off between the

execution time and the size of the required information.

There are many perspectives to continue this work, namely

the study of other cost functions; the proposal of new heuristics

for the case of heterogeneous resources; and the study of a

mixed problem with both resource sharing and time switching.

REFERENCES

[1] H. Shachnai and T. Tamir – Polynomial Time Approximation Schemes - A
Survey. – In Handbook of Approximation Algorithms and Metaheuristics
(Ed. Teofilo F. Gonzalez), Chapman Hall/CRC Computer and Information
Science Series, 2007.

[2] Susanne Albers – On the Influence of Lookahead in Competitive Paging
Algorithms. – ALGORITHMICA, vol. 18, 283-305, 1997.

[3] Feifeng Zheng, Yinfeng Xu and E. Zhang – Oracle size : a new measure
of difficulty for communication tasks. – Proceedings of the 25th ACM
Symposium on Principles Of Distributed Computing (PODC),2006.

[4] Pierre Fraigniaud, David Ilcinkas and Andrzej Pelc – How much can
lookahead help in online single machine scheduling. – Information
Processing Letters (IPL), vol. 106, 2008.

[5] Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas and Andrzej Pelc –
Distributed Computing with Advice: Information Sensitivity of Graph
Coloring. – Proceedings of the 34th International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2007.

[6] S. Bhowmick et al. – Application of machine learning in selecting sparse
linear. – To appear in: The International Journal of High Performance
Computing Applications, 2006.

[7] V. Cicirello. – Boosting stochastic problem solvers through online self-
analysis of performance. – PHD Thesis Carnegie Mellon University, 2003

[8] J. Dongarra et al. – Self-adapting numerical software (SANS) effort. –
IBM Journal of Research and Development, vol. 50; 2-3, 223-238, 2006.

[9] C. Gomes and B. Selman. – Algorithm portfolios. – Artificial Intelligence
Journal, 43-62, 2001.

[10] B. Huberman, R. Lukose and T. Hogg. – An economics approach to
hard computational problems. – Science, 275: 51-54, 1997.

[11] Harry Markowitz. The early history of portfolio theory: 1600-1960,
Financial Analysts Journal, 55 (4), 5-16, 1999.

[12] A. Ping et al. – STAPL: An adaptive, generic parallel C++ library.
– International Workshop on Languages and Compilers for Parallel
Computing, 193-208, 2001.

[13] T. Sayag, S. Fine and Y. Mansour. – Combining multiple heuristics. –
Proceedings of the 23rd International Symposium on Theoretical Aspects
of Computer Science, 242-253, 2006.

[14] M. Streeter, D. Golovin and S. Smith. – Combining multiple heuristics
online. – Proceedings of the 22rd Conference on Artificial Intelligence,
1197-1203, 2007.

[15] S. Talukdar et al. – Asynchronous teams: Cooperation schemes for
autonomous agents. – Journal of Heuristics, Vol. 4(1), 1998

[16] H. Yu and L. Rauchwerger. – Adaptive reduction parallelization. –
Proceedings of the 14th ACM conference on supercomputing, 66-77,
2000.

[17] S. Weerawarana et al. – PYTHIA: A knowledge-based system to select
scientific algorithms. – ACM Transactions on Mathematical Software,
vol. 22-4, 447-468, 1996.

[18] L. Simon. – SatEx: A knowledge-based system to select scientific
algorithms. – ACM Transactions on Mathematical Software, vol. 22-4,
447-468, 1996.

