
A fast 5/2-approximation algorithm for
hierarchical scheduling

Marin Bougeret?1, Pierre-François Dutot1, Klaus Jansen??2, Christina Otte2,
and Denis Trystram1

1 Grenoble University
38330 Montbonnot Saint Martin, France
{bougeret,pfdutot,trystram@imag.fr}

2 Department of Computer Science
Christian-Albrechts-University to Kiel

Christian-Albrechts-Platz 4, 24098 Kiel, Germany.
{kj,cot}@informatik.uni-kiel.de

Abstract. We present in this article a new approximation algorithm for
scheduling a set of n independent rigid (meaning requiring a fixed num-
ber of processors) jobs on hierarchical parallel computing platform. A
hierarchical parallel platform is a collection of k parallel machines of dif-
ferent sizes (number of processors). The jobs are submitted to a central
queue and each job must be allocated to one of the k parallel machines
(and then scheduled on some processors of this machine), targeting the
minimization of the maximum completion time (makespan). We assume
that no job require more resources than available on the smallest ma-
chine.

This problem is hard and it has been previously shown that there is
no polynomial approximation algorithm with a ratio lower than 2 unless
P = NP . The proposed scheduling algorithm achieves a 5

2
ratio and runs

in O(log(npmax)knlog(n)), where pmax is the maximum processing time
of the jobs. Our results also apply for the Multi Strip Packing problem
where the jobs (rectangles) must be allocated on contiguous processors.

1 Introduction

Context and motivation. The evolution of the technology over the last past years
leads to the emergence of new types of parallel and distributed platforms. Many
of these new computing systems are hierarchical in nature. Such computing sys-
tems may be composed of several parallel machines, each having a certain number
of processors, or composed of several clusters, each having a certain number of
computers [1]. Thus, we make no distinctions between machines/clusters on one
side, and between processors/computers on the other side.

? M. Bougeret has a PhD grant from DGA-CNRS.
?? Research supported by German Research Foundation (DFG) project JA 612/12-1,

”Design and analysis of approximation algorithms for 2D and 3D packing problems”.

2 Bougeret, Dutot, Jansen, Otte, Trystram

In order to fully exploit the large number of available resources for reach-
ing the best performances, we need to revisit the classical resource management
algorithms taking into account new features induced by the hierarchical hard-
ware. In such platforms, the users submit their jobs in a centralized queue. The
resource manager selects the jobs and allocates them to a machine, and then
the jobs are scheduled locally. We assume in this work that the machines have
enough processors so as each job fits entirely in any machine. Notice that jobs
are not executed on processors that belong to different machines.

In the common context of an execution by successive batches, we target on
the minimization of the makespan (defined as the maximum completion time
over all the processors) which is the most popular objective function [2]. We
assume that the processing times of the jobs are available at the beginning (the
algorithm is clairvoyant [2]).

Related works. Let us qualify by regular, the case where the machines have the
same number of processors. The irregular case corresponds to the situation where
the machines have different sizes.

There exist a lot of related works for the regular case, as it is closely related to
the multiple strip packing problem. Indeed, the only difference is that in multiple
strip packing (MSP), the jobs are considered as rectangles and thus, they must
be allocated on “consecutive” processors. This problem (and the non-contiguous
version) are strongly NP -hard, and Zhuk [3] (and later Schwiegelshohn et al. [7])
showed that there is no approximation algorithm with absolute ratio better
than 2 unless P = NP , even for 2 machines. The proof is a gap reduction
from 2-partition problem. The main related positive results for MSP are a
2 + ε-approximation in [4] whose cost is doubly exponential in 1

ε , a (costly)
2-approximation and an AFPTAS in [5]. Some variants have been investigated
(like in [6]) where additional constraints come from pre-allocation.

Concerning the hierarchical scheduling problem in the irregular case, one of
the most relevant work is the result of Schwiegelshohn, Tchernykh and Yahyapour [7].
The authors address a version of this problem where a job may not fit every-
where, meaning that a job may requires more processors than the total number
of processors of some machines. They provide a 3-approximation for the off-line
case, and a 5-approximation when the jobs are submitted over time (on-line).
Their algorithms handle non-clairvoyant jobs (meaning that the processing time
of a job is only known at the end of its execution), but do not easily apply
for MSP. They also emphasize that the performance of the classical Garey and
Graham’s list scheduling algorithm is significantly worsened in hierarchical en-
vironments. Finally, (as we will see in remark 4), it is possible to derive a better
approximation ratio using the remark in [4] that leads to a 2 + ε ratio (in time
polynomial in 1

ε) for the regular case. However, the cost of the induced algorithm
is considerably too large, for instance taking ε = 1

2 leads to a cost in Ω(n60)!

Contribution. Our main contribution is a new 5
2 -approximation (almost) greedy

algorithm (called FAHS for fast approximation hierarchical scheduler) for schedul-
ing a set of (clairvoyant) rigid jobs on parallel machines that have different num-

A fast 5/2-approximation algorithm for hierarchical scheduling 3

ber of processors, and where every job fits everywhere. The algorithm runs in
O(log(npmax)knlog(n)). This result also applies for MSP.

2 Preliminaries

2.1 Problem statement

The problem studied in this paper is to schedule n jobs on a parallel system
composed of k parallel machines. Machine Mi (for 1 ≤ i ≤ k) has mi processors.
We assume that mi ≤ mi+1 for any i. A job Jj is characterized by the number of
processing resources needed for its completion, denoted by qj ∈ N∗ (sometimes
called the degree of parallelism) and its corresponding processing time pj ∈ N∗.
The qj processors must be allocated on the same machine. We assume that every
jobs fits everywhere, meaning that maxjqj ≤ m1. We denote by wj = pjqj the
work of job Jj . The objective is to minimize the maximum completion time over
all the machines (called the makespan and denoted by Cmax). Given a fixed
instance, we denote by C∗ the optimal makespan for this instance.

2.2 Other notations

Given a schedule, we denote by ui(t) the utilization of Mi at time t, which is
the sum of the required number of processors of all the jobs that are running on
Mi at time t. We say that job Jj1 is higher than job Jj2 if qj1 ≥ qj2 . We extend
the pj , qj , wj previous notations to P (X), Q(X) and W (X) where X is a set of
jobs and the capital letter denotes the sum of the corresponding quantity of all
the jobs in the set (for instance P (X) = ΣJj∈X pj).

We call shelf a set of jobs that are scheduled on the same machine and finish
at the same time. Scheduling a shelf at time t means that all the jobs of the
shelf finish at time t. This reverse definition of shelf (where usually jobs start
simultaneously) is used because some machines are filled from right to left. Using
v as a guess for the optimal makespan C∗, let L = {Jj |pj > v

2} denote the set
of long jobs, and let Hi = {Jj |qj > mi

2 } denote the set of high jobs for Mi, for
1 ≤ i ≤ k.

2.3 Useful results

We present briefly in this section some classical results that we will use later.
Let us recall first the well known Highest First (HF) list algorithm that, given
a set of jobs and one machine, starts from time 0 and schedules at any time
the highest job which fits. Secondly, let us state the following result that was
established by Steinberg [8]. Notice that even if this result is stated in term
of rectangle packing, it remains valid for parallel jobs (without the contiguous
constraint).

4 Bougeret, Dutot, Jansen, Otte, Trystram

Theorem 1 ([8]). Let L = {r1, . . . , rn} be a set of rectangles. Let wj, hj and sj
denote the width, the height and the surface of rj. Let S(L) = Σn

j=1sj, wmax =
maxjwj and hmax = maxjhj. If

wmax ≤ u, hmax ≤ v and 2S(L) ≤ uv −max(2wmax − u, 0)max(2hmax − v, 0)

then it is possible to pack L (in time O(nlog2(n)/log(log(n))) in a rectangular
box of width u and height v.

We are now ready to describe the FAHS algorithm.

3 Algorithm

As we target a 5/2 ratio, it is convenient to consider that we have in each machine
an empty available rectangular area of height mi and length 5C∗/2. Moreover,
we want to particularly take care of the jobs that have a processing time greater
than C∗/2, since these jobs are harder to schedule. As C∗ is unknown, we use
the classical dual approximation technique [9], and we denote by v the current
guess of C∗. According to this technique, our goal is to provide the FAHS (Fast
Approximation Hierarchical Scheduler) algorithm that either schedules all the
jobs with a makespan lower than 5v/2 or rejects v, implying that v < C∗. For the
sake of simplicity, we do not mention in the algorithm the “reject” instruction.
Thus, we consider throughout the paper that v ≥ C∗, and it is implicit that if
one of the claimed properties is wrong during the execution, the considered v
should be rejected.

FAHS is described in detail in Algorithm 1. The principle is to fill the
machines from the smallest (M1) to the largest one. As long as it is possible, we
aim at scheduling on each Mi a set of jobs whose total work is greater than miv.
The algorithm is designed such that the only reason for failing (meaning that it
does not reach miv) is the lack of jobs. Thus, if a failure occurs, there will be
only a few amount of jobs that will be straightforward to schedule.

In order to schedule a work of (at least) miv, we first intent to schedule a
set X of jobs of Hi such that P (X) is greater than 2v (phase 1). If it fails, we
schedule as many jobs of Hi as possible (again in phase 1), with a strict limit
P (X) < 3v/2 to have enough space to pack a shelf of long jobs between 3v/2
and 5v/2. Then, we select (in phase 2) some jobs of I\Hi, targeting a total work
of at least miv.

These selected jobs are then scheduled in phase 3. If the work goal miv
is reached we schedule the considered jobs in Mi (using the add algorithm in
Algorithm 2 in case 1 orHF in case 2), otherwise (case 3) there is by construction
only a few amount of unscheduled jobs, and they are scheduled using the pack
procedure described in Algorithm 3.

Remark 1 (Notation). For any set X considered in the algorithm or in the proof,
we use the X̃ notation to denote the set X during the execution of the algorithm
(X̃ ⊂ X). We consider that a job is removed from the instance when it is
scheduled.

A fast 5/2-approximation algorithm for hierarchical scheduling 5

Algorithm 1 Fast Approximation Hierarchical Scheduler (FAHS)
for all i, H̃i ← Hi and L̃← L
for i = 1 to k do

——————————————- phase 1 ——————————————-
if H̃i ∩ L̃ 6= ∅ then
• Jji ← highest job of H̃i ∩ L̃
• schedule Jji at time 0 and remove it from H̃i ∩ L̃

else
• Jji ← ”dummy” job (with pji = qji = 0)

end if
if pji + P (H̃i \ L̃) ≥ 2v then
• target← 2v

else
• target← v

end if
• schedule sequentially (in any order) jobs of H̃i \ L̃ (and remove them from H̃i)
until one of them ends later than target or until (H̃i \ L̃ = ∅)
• High← jobs scheduled on Mi

• reschedule jobs of High in non-increasing order of height
if target = v then

——————————————- phase 2 ——————————————-
• Select← ∅
• add to Select some jobs of Ĩ \ H̃i (and remove them from Ĩ) in non increasing
order of their work, until (W (High) + W (Select) ≥ miv) or until (Ĩ \ H̃i = ∅)
——————————————- phase 3 ——————————————-
if W (High) + W (Select) > 5

4
miv then //case 1

• schedule Select using add(i, Select)
else if 5

4
miv ≥W (High) + W (Select) ≥ miv then //case 2

• reschedule jobs High ∪ Select on Mi using HF algorithm
else //case 3

if i=k then
• reschedule High ∪ Select ∪ H̃i on Mi using HF algorithm (and remove
jobs from H̃i)

else
• reschedule High ∪ Select on Mi using HF algorithm
• schedule H̃i on {Mi+1, . . . , Mk} using pack(i, H̃i) (and remove jobs from
H̃i)

end if
• break //all the jobs are scheduled

end if
end if

end for

6 Bougeret, Dutot, Jansen, Otte, Trystram

Algorithm 2 add(i, Select)
• create a shelf Sh with the highest jobs of Select and schedule Sh at time 5v

2

• reschedule Sh such that the shortest jobs are on the top (as depicted figure 1)
if one job J1 ∈ Select remains then
• t1 ← smallest t such that uMi(t) + q1 ≤ mi

• schedule J1 at time t1
end if
if two jobs {J1, J2} ⊂ Select remain then
• create a shelf Sh′ using J1 and J2 and schedule Sh′ at time 3v

2

end if

Algorithm 3 pack(i, H̃i)
if H̃i ∩ L = ∅ then
• schedule jobs of H̃i sequentially on Mi+1 from 0 (we know that i < k)

else
• x← i
while H̃i ∩ L 6= ∅ do
• x← x + 1
• Sh← ∅
while ((Q(Sh) ≤ mx) and (H̃i ∩ L 6= ∅)) do
• add to Sh a job Jj from H̃i ∩ L

end while
• schedule all the jobs of Sh \ {Jj} at time 0
if Q(Sh) > mx then
• schedule Jj at time v

else
• schedule Jj at time 0

end if
end while
• schedule all the remaining jobs (which all belong to H̃i \ L) sequentially on Mk

from v
end if

A fast 5/2-approximation algorithm for hierarchical scheduling 7

Let us now quickly analyze the running time of FAHS.

Remark 2. FAHS runs in O(log(npmax)knlog(n)).

Proof. Phase 1 and phase 2 run in O(nlog(n)) as the jobs are sorted according
to their height at the end of phase 1 and according to their work before starting
the phase 2. Phase 3 runs in O(nlog(n)) because of the HF algorithm. Thus,
for a fixed value of v, the cost of FAHS is in O(knlog(n)), and the dichotomic
search on v can be done in log(npmax) since npmax is an upper bound of the
optimal.ut

4 Analysis of the algorithm

Notice first that the case where target = 2v is clear as in this case the schedule
has a makespan lower than 5v

2 , and the scheduled work is greater than 2vmi2 =
miv. Thus, we will focus on the second part of FAHS, where target = v. We
will first prove in lemma 1, 2 and 3 that (if v ≥ C∗, as usual) it is possible to
schedule the considered set of jobs with a makespan lower than 5v

2 in the three
cases of phase 3. Then, the final proof of FAHS is derived in theorem 2.

Lemma 1 (Feasibility of case 1). Any call to add(i, Select) produces a valid
schedule of makespan lower than 5v

2 .

Proof. Notice first that calling the add procedures implies that target = v. We
assume that the sets High and Select have been constructed in phase 1 and
2, implying W (High) + W (Select) > 5

4miv. Let p = |Select| and Select =
{J ′1, . . . , J ′p}, with w′j+1 ≤ w′j for all j, as stated in Algorithm 1. Let us start
with the following properties:

1) P (High) ≤ 3
2v

2) for all J ′j ∈ Select, w′j > miv
4 , implying J ′j ∈ L and 0 ≤ p ≤ 4

3) ∀X ⊂ Select,W (High) +W (Select \X) < vmi

The first property is true because target = v, and the jobs of High scheduled
in phase 1 have a processing time lower than v

2 . The second point comes from
the fact that W (Select \ {J ′p}) < miv and W (Select) > 5

4miv. This implies that
w′p >

miv
4 and property 2. The third point is true by definition of phase 2.

We start by creating a shelf Sh with the higher jobs of Select (as depicted
figure 1). We schedule Sh at time 5v

2 (remind that it means that all the jobs of
Sh finish at time 5v

2), which is possible according to property 1. Let α denote the
number of jobs in this shelf. As Select ∩Hi = ∅, we know that α ≥ 2, implying
that cases where p ≤ 2 are straightforward.

We now study the cases where p = 3. Let J1 be the remaining job (we
use the same notations as in Algorithm 2). Let us now analyze how the add
procedure schedules J1. Let us suppose by contradiction that J1 intersects Sh.

8 Bougeret, Dutot, Jansen, Otte, Trystram

Let t′1 = 5v
2 − t1 − p1. We get

W (High ∪ Sh) > t1(mi − q1) + t′1(mi − q1) + (Q(Sh)− (mi − q1))
v

2

> t1(mi − q1) + (
3v
2
− t1)(mi − q1) + (3q1 −mi)

v

2
= miv

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�

�
�
�
�
�

�
�
�
�
�

t1

v 2v

Sh

J2

J1 high

t′
1

2vv 3v
2

J1

Fig. 1. Example for the add procedure. Case where p = 3 is depicted on the left side,
and case where p = 4 is depicted on the right side.

The inequality Q(Sh) ≥ 2q1 used above is true since add schedules the high-
est jobs in the shelf. The inequality W (High ∪ Sh) > miv is a contradiction
according to property 3, implying that J1 must fit in the “staircase”.

Let us now study the case where p = 4. Let Select′ = Select \ {J ′4}. We have
W (Select′) > 3miv4 (according to property 2), implying W (High) + 3miv4 <
W (High∪Select′) ≤ vmi. Thus, we get P (High)mi2 < W (High) < miv

4 , leading
to P (High) < v

2 . Thus, the second shelf sh′ scheduled at time 3v
2 does not

intersect jobs of High. It ends the proof of feasibility of case 1. ut

Concerning the feasibility of case 2, we prove a slightly more general state-
ment which can be interpreted as a particular case of Steinberg’s theorem [8].

Lemma 2 (Feasibility of case 2). Let us consider an arbitrary machine M
with m processors. Let v such that for all j ∈ X, pj ≤ v. Let X be a set of jobs
such that W (X) ≤ αmv, with α ≥ 1. Then, the HF algorithm schedule X on
M with a makespan lower than 2αv.

Proof. Let C denote the makespan of the schedule, and let Jj0 be a job that
finishes at time C. If qj0 >

m
2 , then all the jobs Jj of X have qj > m

2 , implying
αmv ≥W (X) > C

2 m. Let us suppose now that qj0 ≤ m
2 . Let s denote the start-

ing time of Jj0 . As there are strictly less than qj0 available processors between

A fast 5/2-approximation algorithm for hierarchical scheduling 9

time 0 and s, we have W (X) > pj0qj0 +s(m−qj0), implying s < W (X)
m−qj0

− pj0qj0
m−qj0

.
Thus,

C ≤ s+ pj0

≤ W (X)
m− qj0

+ pj0
m− 2qj0
m− qj0

≤ v (α+ 1)m− 2qj0
m− qj0

As the last expression is an increasing function of qj0 and qj0 ≤ m
2 we get

C ≤ 2αv.ut
Remark 3. Notice that Lemma 2 does not apply for strip packing. However this
lemma can be simply adapted using Steinberg algorithm [8], as explained in
Section 5

We now study the feasibility of case 3.

Lemma 3 (Feasibility of case 3). The pack procedure schedules all the re-
maining jobs.

����
����
����
����

������
������
������
������

�����
�����
�����

�����
�����
����������
�����
�����

�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

v 2v

J8

J9

J7

J10

J11

v 2v

J5

J12J13

H̃1
i

Σ4
j=1wj < m2v

Σ5
j=1wj ≥ m2v

p12 + p13 ≤ 3v
2

Σ11
j=7qj ≤ m4 + m5

J2J1
J3

J4M2

M1

M3 M5

M4

Fig. 2. Example for the pack procedure. Case 3 occurs for i = 3. H̃1
i is defined as in

Lemma 3.

Proof. Let i be the index of the current machine when case 3 occurs for the first
time. Let H̃0

i be H̃i at line 7 of phase 1 (after setting the value of Jji) and let
H̃1
i be H̃i at the beginning of phase 3. Notice that W (High ∪ Select) < miv

implies that we collected all the jobs of Ĩ \ H̃1
i , and thus the set of jobs that

have not been scheduled on {M1, . . . ,Mi−1} is High∪Select∪H̃1
i . If i = k, then

W (High ∪ Select ∪ H̃1
i) ≤ vmi (otherwise, v is rejected), and HF is sufficient

according to lemma 2. We consider now that i < k. Jobs of High ∪ Select are
scheduled (on Mi) with a makespan lower than 5v

2 using again lemma 2. We now

10 Bougeret, Dutot, Jansen, Otte, Trystram

prove that pack(i, H̃1
i) successfully schedules H̃1

i . If H̃1
i ∩ L = ∅, it implies that

H̃0
i \ L̃ = H̃0

i , and thus P (H̃1
i) ≤ P (H̃0

i) ≤ 2v − pji ≤ 2v because phase 3 only
occurs if target = v. Thus, we can schedule H̃1

i sequentially on Mi+1.
If H̃1

i ∩ L 6= ∅, then there is one job of Hi ∩ L scheduled on M1, . . . ,Mi.
Moreover, P (H̃1

i \ L) ≤ P (H̃0
i \ L) ≤ 3v

2 as there was not enough jobs to fill
Mi up to 2v. We will prove that pack(i, H̃1

i) can schedule H̃1
i ∩ L on machines

{Mi+1, . . . ,Mk} such that no job (of H̃1
i ∩ L) is scheduled after time v on Mk.

Then, it will be obvious that H̃1
i \ L can be added on Mk between v and 5v

2 .
Let us prove it by contradiction by assuming that there is a job of H̃1

i ∩ L
scheduled on machine Mk after time v (meaning that we stared a second shelf
of jobs of H̃1

i ∩ L on Mk).
For any t ∈ [|1, . . . , k|], let St denote the schedule constructed by FAHS on

machine Mt, and S∗t be the schedule (for a fixed optimal solution) on machine
Mt. Let X = ∪it=1St and X∗ = ∪it=1S

∗
i . We have Q(X∩Hi∩L) ≥ Q(X∗∩Hi∩L)

as in phase 1 we scheduled on machines M1 . . .Mi the i highest jobs of Hi ∩ L
(called the Jjt in the algorithm), and the optimal cannot schedule more than
i jobs of Hi ∩ L on these machines. Moreover, we have Q(St ∩ Hi ∩ L) > mt

for every t in [|i+ 1, k|] as we started a second shelf on each of these machines.
Thus, it means that Q(H̃1

i ∩ L) > Σk
t=i+1mt which is impossible as the optimal

solution had a total height of jobs of Hi

⋂
L greater than Q(H̃1

i ∩L) to schedule
on Mi+1, . . . ,Mk. ut

We can now complete the main proof.

Theorem 2. If v ≥ C∗, FAHS schedules all the jobs with a makespan lower
than 5v

2 .

Proof. If case 3 of phase 3 occurs, then we know according to lemma 3 that
all the remaining jobs are scheduled in 5v

2 . Otherwise, we know that for every
i ∈ [|1, . . . , k|], the FAHS algorithm had a target equal to 2v, or executed case 1
or case 2. This implies by construction that the area scheduled on Mi is greater
than (and in this case exactly equal to) miv. Thus, there can not be unscheduled
jobs at the end.ut

5 Concluding remarks

In this paper, we presented a new algorithm for scheduling a set of clairvoyant
rigid jobs in a hierarchical parallel platform, assuming that every job fits in any
machine. A sophisticated analysis proved that it is a 5

2 -approximation, improving
the best existing algorithm. There exists for this problem a lower bound equal
to 2.

We now explain how to adapt the algorithms and the proofs to the MSP prob-
lem where jobs, called rectangles, must be allocated on contiguous processors.
The only adaptation needed is in Lemma 2, where HF can be directly replaced by

A fast 5/2-approximation algorithm for hierarchical scheduling 11

Steinberg’s algorithm (see Section 2.3). Phase 1, pack and add build contiguous
schedule (and thus a valid schedule for rectangles), and proofs of Lemma 1 and
3 still hold for the contiguous case. Thus, we get a 5

2−approximation algorithm
for MSP that runs O(log(npmax)knlog2(n)/log(log(n)).

We describe now how to achieve a 2 + ε ratio for this problem at the price
of a much higher algorithm complexity. This result is an extension of the result
in [4] that was established for the regular case.

Remark 4. There is a 2+2ε-approximation that runs inO(nlog2(n)/log(log(n))f(k, n, ε))
where f(k, n, ε) is the complexity of any 1+ε algorithm for the Q||Cmax problem
with k machines and n jobs (for example f(ε) = O(kn

10
ε2) using [9]).

Proof. We follow here the same idea as in [4]. Let I denote the instance of the
irregular hierarchical problem (where every job fits everywhere). We define an
instance I ′ of the Q||Cmax problem as follows. For each job JJ of I we associate
a job J ′j of I ′ of processing time p′j = wj . For each machine Mi of I ′ we associate
a machine M ′i of I ′ whose speed is mi. Then, we apply a PTAS (and get a
schedule S′ ≤ (1 + ε)Opt(I ′)) on I ′. The schedule gives a partition of the jobs of
I among the different machines. Let X ′i denote the set of jobs scheduled on M ′i
in S′, and let Xi denote the corresponding set of jobs (meaning the jobs of same
index) in I. Let c′i denote the completion time on M ′i . We create the schedule S
of I as follows. According to the Steinberg’s theorem (see Section 2.3), we know
that for each i the set Xi can be scheduled in a “box” (created on machine Mi)
of size mi × 2c′i as c′i = W (X′

i)
mi

= W (Xi)
mi

. Thus, the makespan of S is lower than
2maxic′i ≤ 2(1 + ε)Opt(I ′) ≤ 2(1 + ε)Opt(I).

A natural (but hard) question is to fill the gap between the new approxima-
tion ratio 5

2 and the lower bound with a low cost algorithm.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of High Performance Computing Ap-
plications 15(3) (2001) 200

2. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: JSSPP. (1997) 1–34

3. Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete
Mathematics and Applications 16(1) (2006) 73–85

4. Ye, D., Han, X., Zhang, G.: On-Line Multiple-Strip Packing. In: Proceedings of
the 3rd International Conference on Combinatorial Optimization and Applications
(COCOA), Springer (2009) 165

5. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximation
algorithm for multiple strip packing. In: Proceedings of the 7th Workshop on Ap-
proximation and Online Algorithms (WAOA). (2009)

6. Pascual, F., Rzadca, K., Trystram, D.: Cooperation in multi-organization schedul-
ing. In: Proceedings of the 13th International European Conference on Parallel and
Distributed Computing (EUROPAR). (2007)

12 Bougeret, Dutot, Jansen, Otte, Trystram

7. Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.: Online scheduling in grids.
In: IEEE International Symposium on Parallel and Distributed Processing, 2008.
IPDPS 2008. (2008) 1–10

8. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing 26 (1997) 401

9. Hochbaum, D., Shmoys, D.: A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM J. Comput.
17(3) (1988) 539–551

