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Introduction

Why is this interesting ?

— the algorithmic complexity of the PTAS is huge (O(n*3) to
get a ratio of 3)

— our algorithm, based on dual approximation and list technique,
is simple and quick

— a naive implementation of the Gonzalez algorithm leads to
O(nlog(n) + mn) while our algorithm is in
O(nlog(n) + mlog(m) + mnlog (327, pi))
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@ Two classical list algorithms applied on Q|| Cmax
@ Analysis of EFT without sorting the tasks
@ Analysis of EFT with decreasing sort

e Our % approximation for Q|| Cmax
@ The algorithm
@ Proof and tightness of the bound
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Presentation

@ our algorithm uses the dual approximation technique :

o(l) Cmax < %W
I /
—
Algorithm
— \
w (guess)
error error = w < C

@ the ratio is tight

o the complexity is O(nlog(n) + mlog(m) + mnlog(>-7_, pi))
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machines
A w
@ et Cl-l : completion time of machine i at the '
end of phase 1 slow | 1
@ et C’-2 : completion time of machine i at the 2
end of phase 2
— m 1.,
@ wy = Ei:1 C:' s;
O Wa=YjcLeft Piob;
Q@ W=Ww;+ W,
m-1
fast| m
>~
time
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Notice that we could modify the phase 2 of our algorithm to avoid this case, but ...
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Conclusion

Conclusion

For the problem Q||Cpax,

@ there is a fast % approximation
o there is the PTAS of Hochbaum and Shmoys [SIAM JoC 88]

Thank you for your attention !
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