
Checkpointing strategies for parallel jobs

Marin Bougeret
ENS Lyon, France

Marin.Bougeret@ens-lyon.fr

Henri Casanova
Univ. of Hawai‘i at Mānoa,

Honolulu, USA
henric@hawaii.edu

Mikael Rabie
ENS Lyon, France

Mikael.Rabie@ens-lyon.fr

Yves Robert∗
ENS Lyon, France

Yves.Robert@ens-lyon.fr

Frédéric Vivien
INRIA, Lyon, France

Frederic.Vivien@inria.fr

ABSTRACT
This work provides an analysis of checkpointing strategies
for minimizing expected job execution times in an environ-
ment that is subject to processor failures. In the case of
both sequential and parallel jobs, we give the optimal solu-
tion for exponentially distributed failure inter-arrival times,
which, to the best of our knowledge, is the first rigorous
proof that periodic checkpointing is optimal. For non-ex-
ponentially distributed failures, we develop a dynamic pro-
gramming algorithm to maximize the amount of work com-
pleted before the next failure, which provides a good heuris-
tic for minimizing the expected execution time. Our work
considers various models of job parallelism and of parallel
checkpointing overhead. We first perform extensive simula-
tion experiments assuming that failures follow Exponential
or Weibull distributions, the latter being more representa-
tive of real-world systems. The obtained results not only
corroborate our theoretical findings, but also show that our
dynamic programming algorithm significantly outperforms
previously proposed solutions in the case of Weibull fail-
ures. We then discuss results from simulation experiments
that use failure logs from production clusters. These results
confirm that our dynamic programming algorithm signifi-
cantly outperforms existing solutions for real-world clusters.

Keywords: Fault-tolerance, checkpointing, sequential job,
parallel job.

1. INTRODUCTION
Resilience is a key challenge for post-petascale high-per-

formance computing (HPC) systems [10, 22] since failures
are increasingly likely to occur during the execution of paral-
lel jobs that enroll increasingly large numbers of processors.

∗Yves Robert is with the Institut Universitaire de France.
This work was supported in part by the ANR StochaGrid
and RESCUE projects, and by the INRIA-Illinois Joint Lab-
oratory for Petascale Computing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

For instance, the 45,208-processor Jaguar platform is re-
ported to experience on the order of 1 failure per day [19, 2].
Faults that cannot be automatically detected and corrected
in hardware lead to failures. In this case, rollback recov-
ery is used to resume job execution from a previously saved
fault-free execution state, or checkpoint. Rollback recovery
implies frequent (usually periodic) checkpointing events at
which the job state is saved to resilient storage. More fre-
quent checkpoints lead to higher overhead during fault-free
execution, but less frequent checkpoints lead to a larger loss
when a failure occurs. The design of efficient checkpointing
strategies, which specify when checkpoints should be taken,
is thus key to high performance.

We study the problem of finding a checkpointing strategy
that minimizes the expectation of a job’s execution time, or
expected makespan. In this context, our novel contributions
are as follows. For sequential jobs, we provide the optimal
solution for exponential failures and an accurate dynamic
programming algorithm for general failures. The optimal
solution for exponential failures, i.e., periodic checkpoint-
ing, is widely known in the “folklore” but, to the best of
our knowledge, we provide the first rigorous proof. Our dy-
namic programming algorithm provides the first accurate
solution of the expected makespan minimization problem
with Weibull failures, which are representative of the be-
havior of real-world platforms [11, 23, 18]. For parallel jobs,
we consider a variety of execution scenarios with different
models of job parallelism (embarrassingly parallel jobs, jobs
that follow Amdahl’s law, and typical numerical kernels such
as matrix product or LU decomposition), and with different
models of the overhead of checkpointing a parallel job (which
may or may not depend on the total number of processors
in use). In the case of Exponential failures we provide the
optimal solution. In the case of general failures, since min-
imizing the expected makespan is computationally difficult,
we instead provide a dynamic programming algorithm to
maximize the amount of work successfully completed before
the next failure. This approach turns out to provide a good
heuristic solution to the expected makespan minimization
problem. In particular, it significantly outperforms previ-
ously proposed solutions in the case of Weibull failures.

Sections 2 and 3 give theoretical results for sequential and
parallel jobs, respectively. Section 4 presents our simulation
methodology. Sections 5 and 6 discuss simulation results
when using synthetic failure distributions and when using
real-world failure data, respectively. Section 7 reviews re-
lated work. Finally, Section 8 concludes the paper with a
summary of findings and a discussion of future directions.

Due to lack of space, all technical proofs are omitted but
available in a companion research report [5].

2. SEQUENTIAL JOBS

2.1 Problem statement
We consider an application, or job, that executes on one

processor. We use the term processor to indicate any indi-
vidually scheduled compute resource (a core, a multi-core
processor, a cluster node) so that our work is agnostic to
the granularity of the platform. The job must complete W
units of (divisible) work, which can be split arbitrarily into
separate chunks. The job state is checkpointed after the ex-
ecution of every chunk. Defining the sequence of chunk sizes
is therefore equivalent to defining the checkpointing dates.
We use C to denote the time needed to perform a check-
point. The processor is subject to failures, each causing a
downtime period, of duration D, followed by a recovery pe-
riod, of duration R. The downtime accounts for software
rejuvenation (i.e., rebooting [14, 8]) or for the replacement
of the failed processor by a spare. Regardless, we assume
that after a downtime the processor is fault-free and begins
a new lifetime at the beginning of the recovery period. This
period corresponds to the time needed to restore the last
checkpoint. Finally, we assume that failures can happen
during recovery or checkpointing, but not during a down-
time (otherwise, the downtime period could be considered
part of the recovery period).

We study two optimization problems:
• Makespan: Minimize the job’s expected makespan;
• NextFailure: Maximize the expected amount of work

completed before the next failure.
Solving Makespan is our main goal. NextFailure amounts
to optimizing the makespan on a “failure-by-failure” basis,
selecting the next chunk size as if the next failure were to im-
ply termination of the execution. Intuitively, solving Next-
Failure should lead to a good approximation of the solution
to Makespan, at least for large job sizes W. Therefore, we
use the solution of NextFailure in cases for which we are
unable to solve Makespan directly. We give formal defini-
tions for both problems in the next section.

2.2 Formal problem definitions
We consider the processor from time t0 onward. We do

not assume that the failure stochastic process is memoryless.
Failures occur at times (tn)n≥1, with tn = t0 +

Pn
m=1Xm,

where the random variables (Xm)m≥1 are iid (independent
and identically distributed). Given a current time t > t0, we
define n(t) = min{n|tn ≥ t}, so that Xn(t) corresponds to
the inter-failure interval in which t falls. We use Psuc(x|τ)
to denote the probability that the processor does not fail
for the next x units of time, knowing that the last failure
occurred τ units of time ago. In other words, if X = Xn(t)

denotes the current inter-arrival failure interval,

Psuc(x|τ) = P(X ≥ τ + x | X ≥ τ) .

For both problems stated in the previous section, a solu-
tion is fully defined by a function f(ω|τ) that returns the size
of the next chunk to execute given the amount of work ω that
has not yet been executed successfully (f(ω|τ) ≤ ω ≤ W)
and the amount of time τ elapsed since the last failure. f is
invoked at each decision point, i.e., after each checkpoint or

recovery. Our goal is to determine a function f that opti-
mally solves the considered problem. Assuming a unit-speed
processor without loss of generality, the time needed to ex-
ecute a chunk of size ω is ω + C if no failure occurs.

Definition of Makespan– For a given amount of work ω, a
time elapsed since the last failure τ , and a function f , let
ω1 = f(ω|τ) denote the size of the first chunk, and let T (ω|τ)
be the random variable that quantifies the time needed for
successfully executing ω units of work. We can write the
following recursion:

T (0|τ) = 0
T (ω|τ) =8>>>>><>>>>>:

ω1 + C + T (ω − ω1|τ + ω1 + C)

if the processor does not fail during

the next ω1 + C units of time,

Twasted(ω1 + C|τ) + T (ω|R)

otherwise.

(1)

The two cases above are explained as follows:
• If the processor does not fail during the execution and

checkpointing of the first chunk (i.e., for ω1 + C time
units), there remains to execute a work of size ω − ω1

and the time since the last failure is τ + ω1 + C;
• If the processor fails before successfully completing

the first chunk and its checkpoint, then some addi-
tional delays are incurred, as captured by the variable
Twasted(ω1+C|τ). The time wasted corresponds to the
execution up to the failure, a downtime, and a recov-
ery during which a failure may happen. We compute
Twasted in the next section. Regardless, once a suc-
cessful recovery has been completed, there still remain
ω units of work to execute, and the time since the last
failure is simply R.

We define Makespan formally as: find f that minimizes

E(T (W|τ0)), where E(X) denotes the expectation of the ran-
dom variable X, and τ0 the time elapsed since the last failure
before t0.

Definition of NextFailure– For a given amount of work
ω, a time elapsed since the last failure τ , and a function f ,
let ω1 = f(ω|τ) denote the size of the first chunk, and let
W (ω|τ) be the random variable that quantifies the amount
of work successfully executed before the next failure. We
can write the following recursion:

W (0|τ) = 0
W (ω|τ) =8>>><>>>:

ω1 +W (ω − ω1|τ + ω1 + C)

if the processor does not fail during

the next ω1 + C units of time,

0 otherwise.

(2)

This recursion is simpler than the one for Makespan be-
cause a failure during the computation of the first chunk
means that no work (i.e., no fraction of ω) will have been suc-
cessfully executed before the next failure. We define Next-
Failure formally as: find f that maximizes E(W (W|τ0)).

2.3 Solving Makespan

A challenge for solving Makespan is the computation of
Twasted(ω1 +C|τ). We rely on the following decomposition:

Twasted(ω1 + C|τ)=Tlost(ω1 + C|τ) + Trec , where

• Tlost(x|τ) is the amount of time spent computing be-
fore a failure, knowing that the next failure occurs
within the next x units of time, and that the last fail-
ure has occurred τ units of time ago.
• Trec is the amount of time needed by the system to

recover from the failure (accounting for the fact that
other failures may occur during recovery).

Proposition 1. The Makespan problem is equivalent to
finding a function f minimizing the following quantity:

E(T (W|τ)) =

Psuc(ω1 + C|τ)
“
ω1+C +E(T (W−ω1|τ+ω1+ C))

”
+(1− Psuc(ω1 + C|τ))

“
E(Tlost(ω1 + C|τ))

+ E(Trec) + E(T (W|R))
” (3)

where ω1 = f(W|τ) and where E(Trec) is given by

E(Trec) = D +R+
1− Psuc(R|0)

Psuc(R|0)
(D + E(Tlost(R|0))).

2.3.1 Results for the Exponential distribution
In this section we assume that the failure inter-arrival

times follow an Exponential distribution with parameter λ,
i.e., each Xn = X has probability density fX(t) = λe−λtdt
and cumulative distribution FX(t) = 1 − e−λt for all t ≥ 0.
The advantage of the Exponential distribution, exploited
time and again in the literature, is its “memoryless” prop-
erty: the time at which the next failure occurs does not
depend on the time elapsed since the last failure occurred.
Therefore, in this section, we simply write T (ω), Tlost(ω),
and Psuc(ω) instead of T (ω|τ), Tlost(ω|τ), and Psuc(ω|τ).

Lemma 1. With the Exponential distribution:

E(Tlost(ω)) =
1

λ
− ω

eλω − 1
and

E(Trec) = D +R+
1− e−λR

e−λR
(D+E(Tlost(R))).

The memoryless property makes it possible to solve the
Makespan problem analytically:

Theorem 1. Let W be the amount of work to execute
on a processor with failure inter-arrival times that follow
an Exponential distribution with parameter λ. Let K0 =

λW
1+L(−e−λC−1)

where L, the Lambert function, is defined as

L(z)eL(z) = z. Then the optimal strategy to minimize the
expected makespan is to split W into K∗ = max(1, bK0c) or
K∗ = dK0e same-size chunks, whichever leads to the smaller
value. The optimal expectation of the makespan is:

E(T ∗(W)) = K∗
„
eλR

„
1

λ
+D

««“
eλ(W

K∗ +C)−1
”
.

Although periodic checkpoints have been widely used in
the literature, Theorem 1 is, to the best of our knowledge,
the first proof that the optimal deterministic strategy uses
a finite number of chunks and is periodic. The proof (fully
detailed in [5]) is technical and proceeds along the following
steps:
• all possible executions for any given f use the same

sequence of chunk sizes;
• the optimal strategy uses only a finite number of chunk

sizes;

Algorithm 1: DPMakespan (x,b,y,τ0)

if x = 0 then
return 0

if solution[x][b][y] = unknown then
best←∞
τ ← bτ0 + yu
for i = 1 to x do

exp succ ← first(DPMakespan(x−i, b, y+i+ C
u
, τ0))

exp fail ← first(DPMakespan(x, 0, R
u
, τ0))

cur ← Psuc(iu+ C|τ)(iu+ C + exp succ)

+(1− Psuc(iu+ C|τ))
“

E(Tlost(iu+ C, τ))

+ E(Trec) + exp fail
”

if cur < best then
best← cur; chunksize ← i

solution[x][b][y]← (best , chunksize)
return solution[x][b][y]

• by a convexity argument, the expected makespan is
minimized when all these chunk sizes are equal; and
• the optimization problem is solved by differentiating

the objective function.
Note that the checkpointing strategy in Theorem 1 can be
shown to be optimal among all deterministic and non-deter-
ministic strategies, as a consequence of Proposition 4.4.3
in [21].

2.3.2 Results for arbitrary distributions
Solving the Makespan problem for arbitrary distributions

is difficult because, unlike in the memoryless case, there is no
reason for the optimal solution to use a single chunk size [24].
In fact, the optimal solution is very likely to use chunk sizes
that depend on additional information that becomes avail-
able during the execution (i.e., failure occurrences to date).
Using Proposition 1, we can write

E(T ∗(W|τ)) =

min
0<ω1≤W

0B@ Psuc(ω1 + C|τ)
“
ω1+C+E(T ∗(W−ω1|τ+ω1+C))

”
+(1− Psuc(ω1 + C|τ))×

(E(Tlost(ω1 + C|τ))+E(Trec)+E(T ∗(W|R))

which can be solved via dynamic programming. We intro-
duce a time quantum u, meaning that all chunk sizes ωi are
integer multiples of u. This restricts the search for an op-
timal execution to a finite set of possible executions. The
trade-off is that a smaller value of u leads to a more accu-
rate solution, but also to a higher number of states in the
algorithm, hence to a higher compute time.

Proposition 2. Using a time quantum u, and for any
failure inter-arrival time distribution, DPMakespan (Algo-
rithm 1) computes an optimal solution to Makespan in time

O(W
u

3
(1 + C

u
)a), where a is an upper bound on the time

needed to compute E(Tlost(ω|t)), for any ω and t.

Algorithm 1 provides an approximation of the optimal
solution to the Makespan problem. We evaluate this ap-
proximation experimentally in Section 5, including a direct
comparison with the optimal solution in the case of Expo-
nential failures (in which case the optimal can be computed
via Theorem 1).

2.4 Solving NextFailure

Algorithm 2: DPNextFailure (x,n,τ0)

if x = 0 then
return 0

if solution[x][n] = unknown then
best←∞
τ ← τ0 + (W − xu) + nC
for i = 1 to x do

work = first(DPNextFailure(x− i, n+ 1, τ0))
cur ← Psuc(iu+ C|τ)× (iu+ work)
if cur < best then

best← cur; chunksize ← i
solution[x][n]← (best, chunksize)

return solution[x][n]

Weighting the two cases in Equation 2 by their probabil-
ities of occurrence, we obtain the expected amount of work
successfully computed before the next failure:

E(W (ω|τ))=Psuc(ω1 +C|τ)(ω1 +E(W (ω−ω1|τ+ω1 +C))).

Here, unlike for Makespan, the objective function to be
maximized can easily be written as a closed form, even for ar-
bitrary distributions. Developing the expression above leads
to the following result:

Proposition 3. The NextFailure problem is equiva-
lent to maximizing the following quantity:

E(W (W|τ0)) =

KX
i=1

ωi ×
iY

j=1

Psuc(ωj + C|tj) ,

where tj = τ0 +
Pj−1
`=1(ω` + C) is the total time elapsed

(without failure) before the start of the execution of chunk
ωj, and K is the (unknown) target number of chunks.

Unfortunately, there does not seem to be an exact solu-
tion to this problem. However, just as for the Makespan
problem, the recursive definition of E(W (W|τ)) lends itself
naturally to a dynamic programming algorithm. The dy-
namic programming scheme is simpler because the size of
the i-th chunk is only needed when no failure has occurred
during the execution of the first i − 1 chunks, regardless of
the value of the τ parameter. More formally:

Proposition 4. Using a time quantum u, and for any
failure inter-arrival time distribution, DPNextFailure (Al-
gorithm 2) computes an optimal solution to NextFailure

in time O(W
u

3
).

3. PARALLEL JOBS

3.1 Problem statement
We now turn to parallel jobs that can execute on any

number of processors, p. We consider the following relevant
scenarios for checkpointing/recovery overheads and for par-
allel execution times.

Checkpointing/recovery overheads – Checkpoints are
synchronized over all processors. We use C(p) and R(p) to
denote the time for saving a checkpoint and for recovering
from a checkpoint on p processors, respectively (we assume
that the downtime D does not depend on p). Assuming that
the application’s memory footprint is V bytes, with each
processor holding V/p bytes, we consider two scenarios:

• Proportional overhead: C(p) = R(p) = αV/p for some
constant α. This is representative of cases in which
the bandwidth of the outgoing communication link of
each processor is the I/O bottleneck.
• Constant overhead: C(p) = R(p) = αV , which is rep-

resentative of cases in which the incoming bandwidth
of the resilient storage system is the I/O bottleneck.

Parallel work – LetW(p) be the time required for a failure-
free execution on p processors. We use three models:
• Embarrassingly parallel jobs: W(p) =W/p.
• Amdahl parallel jobs: W(p) = W/p + γW. As in

Amdahl’s law [1], γ < 1 is the fraction of the work
that is inherently sequential.
• Numerical kernels: W(p) = W/p + γW2/3/

√
p. This

is representative of a matrix product or a LU/QR fac-
torization of size N on a 2D-processor grid, where
W = O(N3). In the algorithm in [3], p = q2 and
each processor receives 2q blocks of size N2/q2. Here
γ is the communication-to-computation ratio of the
platform.

We assume that the parallel job is tightly coupled, mean-
ing that all p processors operate synchronously through-
out the job execution. These processors execute the same
amount of work W(p) in parallel, chunk by chunk. The to-
tal time (on one processor) to execute a chunk of size ω,
and then checkpointing it, is ω + C(p). For the Makespan
and NextFailure problems, we aim at computing a func-
tion f such that f(ω|τ1, . . . , τp) is the size of the next chunk
that should be executed on every processor given a remain-
ing amount of work ω ≤ W(p) and given a system state
(τ1, . . . , τp), where τi denotes the time elapsed since the last
failure of the i-th processor. We assume that failure arrivals
at all processors are iid .

An important remark on rejuvenation.
Two options are possible for recovering after a failure.

Assume that a processor, say P1, fails at time t. A first
option found in the literature [6, 25] is to rejuvenate all
processors together with P1, from time t to t+D (e.g., via
rebooting in case of software failure). Then all processors are
available at time t+D at which point they start executing
the recovery simultaneously. In the second option, only P1

is rejuvenated and the other processors are kept idle from
time t to t+D. With this option any processor other than
P1 may fail between t and t + D and thus may be itself in
the process of being rejuvenated at time t+D.

Let us consider a platform with p processors that experi-
ence iid failures according to a Weibull distribution with
scale parameter λ and shape parameter k, i.e., with cu-

mulative distribution F (t) = 1 − e
− tk

λk , and mean is µ =
λΓ(1 + 1

k
). Define a platform failure as the occurrence of a

failure at any of the processors. When rejuvenating all pro-
cessors after each failure, platform failures are distributed
according to a Weibull distribution with scale parameter
λ

p1/k
and shape parameter k. The MTBF for the platform is

thus D+ µ

p1/k
(note that the processor-level MTBF is D+µ).

When rejuvenating only the processor that failed, the plat-
form MTBF is simply D+µ

p
. If k = 1, which corresponds

to an Exponential distribution, rejuvenating all processors
leads to a higher platform MTBF and is beneficial. How-
ever, if k < 1, rejuvenating all processors leads to a lower
platform MTBF than rejuvenating only the processor that

26 21222 2202142824 218210 216

number of processors

10

15

20

25

30

lo
g

2
(M

T
B

F
fo

r
th

e
w

h
ol

e
p
la

tf
or

m
) Weibull law with rejuvenation

Weibull law without rejuvenation

Figure 1: Impact of the two rejunevation options on
the platform MTBF for a Weibull distribution with
shape parameter 0.70, a processor-level MTBF of 125
years, and a downtime of 60 seconds.

failed because D � µ
p

in practical settings. This is shown on
an example in Figure 1, which plots the platform MTBF vs.
the number of processors. This behavior is easily explained:
for a Weibull distribution with shape parameter k < 1, the
probability P(X > t + x|X > t) strictly increases with t.
In other words, a processor is less likely to fail the longer it
remains in a fault-free state. It turns out that failure inter-
arrival times for real-life systems have been modeled well
by Weibull distributions whose shape parameter are strictly
lower than 1 (either 0.7 or 0.78 in [11], 0.50944 in [18], be-
tween 0.33 and 0.49 in [23]). The overall conclusion is then
that rejuvenating all processors after a failure, albeit com-
monly used in the literature, is likely not appropriate for
large-scale platforms. Furthermore, even for Exponential
distributions, rejuvenating all processors is not meaningful
for hardware failures. Therefore, in the rest of this paper
we assume that after a failure only the failed processor is
rejuvenated1.

3.2 Solving Makespan

In the case of the Exponential distribution, due to the
memoryless property, the p processors used for a job can
be conceptually aggregated into a virtual “macro-processor”
with the following characteristics:
• Failure inter-arrival times follow an Exponential dis-

tribution of parameter λ′ = pλ;
• The checkpoint and recovery overheads are C(p) and
R(p), respectively.

A direct application of Theorem 1 yields the optimal solution
of the Makespan problem for parallel jobs:

Proposition 5. Let W(p) be the amount of work to exe-
cute on p processors whose failure inter-arrival times follow
iid Exponential distributions with parameter λ. Let K0 =

pλW(p)

1+L(−e−pλC(p)−1)
. Then the optimal strategy to minimize

the expected makespan time is to split W(p) into K∗ =
max(1, bK0c) or K∗ = dK0e same-size chunks, whichever

minimizes ψ(K∗) = K∗(epλ(
W(p)
K∗ +C(p)) − 1).

Interestingly, although we know the optimal solution with
p processors, we are not able to compute the optimal ex-
pected makespan analytically. Indeed, E(Trec), for which
1For the sake of completeness, we consider both rejuvenation
options for Exponential failures in the companion research
report [5]. We observe similar results for both options.

we had a closed form in the case of sequential jobs, becomes
quite intricate in the case of parallel jobs. This is because
during the downtime of a given processor another proces-
sor may fail. During the downtime of that processor, yet
another processor may fail, and so on. We would need to
compute the expected duration of these “cascading” failures
until all processors are simultaneously available.

For arbitrary distributions, i.e., distributions without the
memoryless property, we cannot (tractably) extend the dy-
namic programming algorithm DPMakespan. This is be-
cause one would have to memorize the evolution of the time
elapsed since the last failure for all possible failure scenarios
for each processor, leading to a number of states exponen-
tial in p. Fortunately, the dynamic programming approach
for solving NextFailure can be extended to the case of a
parallel job, as seen in Section 3.3. This was our motiva-
tion for studying NextFailure in the first place, and in
the case of non-exponential failures, we use the solution to
NextFailure as a heuristic solution for Makespan.

3.3 Solving NextFailure

For solving NextFailure using dynamic programming,
there is no need to keep for each processor the time elapsed
since its last failure as parameter of the recursive calls. This
is because the τ variables of all processors evolve identi-
cally: recursive calls only correspond to cases in which no
failure has occurred. Formally, the goal is to find a func-
tion f(ω|τ) = ω1 maximizing E(W (ω|τ1, . . . , τp)), where

E(W (0|τ1, . . . , τp)) = 0 and

E(W (ω|τ1, . . . , τp)) =8>><>>:
ω1+E(W (ω−ω1|τ1+ ω1 + C(p), . . . , τp+ω1 + C(p))

if no processor fails during the next ω1+C(p)
units of time

0 otherwise.
Using a straightforward adaptation of DPNextFailure,

which computes the probability of success

Psuc(x|τ1, . . . , τp) =

pY
i=1

P(X ≥ x+ τi|X ≥ τi),

we obtain:

Proposition 6. Using a time quantum u, for any failure
inter-arrival time distribution, DPNextFailure computes
an optimal solution to NextFailure with p processors in

time O(pW
u

3
).

Even if a linear dependency in p, due to the computation
of Psuc, seems a small price to pay, the above computational
complexity is not tractable. Typical platforms in the scope
of this paper (Jaguar [4], Exascale platforms) consist of tens
of thousands of processors. The DPNextFailure algorithm
is thus unusable, especially since it must be invoked after
each failure. In what follows we propose a method to reduce
its computational complexity.

Rather than working with the set of all p τi values, we ap-
proximate this set. With distributions such as the Weibull
distribution, the smallest τi’s have the highest impact on
the overall probability of success. Therefore, we keep in the
set the exact nexact smallest τi values. Then we approxi-
mate the p − nexact remaining τi values using only napprox

“reference” values τ≈1 , ..., τ≈napprox . To each processor Pi
whose τi value is not one of the nexact smallest τi values,
we associate one of the reference values. We can then sim-
ply keep track of how many processors are associated to each

reference value, thereby vastly reducing computational com-
plexity. We pick the reference values as follows. τ≈1 is the
smallest of the remaining p − nexact exact τi values, while
τ≈napprox is the largest. (Note that if processor Pi has never

failed to date then τi = τ≈napprox .) The remaining napprox−2
reference values are chosen based on the distribution of the
(iid) failure inter-arrival times. Assuming that X is a ran-
dom variable distributed according to this distribution, then,
for i ∈ [2, napprox − 1], we compute τ≈i as

τ≈i = quantile

„
X,

napprox − i
napprox − 1

P(X ≥ τ≈1)

+
i− 1

napprox − 1
P(X ≥ τ≈napprox)

«
.

We have implemented DPNextFailure with nexact = 10
and napprox = 100. For the simulation scenario detailed in
Section 5.2.2, we have studied the precision of this approxi-
mation by evaluating the relative error incurred when com-
puting the probability using the approximated state rather
than the exact one, for chunks of size 2−i times the MTBF of
the platform, with i ∈ {0..6} and failure inter-arrival times
following a Weibull distribution. It turns out that the larger
the chunk size, the less accurate the approximation. Over
the whole execution of a job in the settings of Section 5.2.2
(i.e., for 45,208 processors), the worst relative error is lower
than 0.2% for a chunk of duration equal to the MTBF of the
platform. In practice, the chunks used by DPNextFailure
are far smaller, and the approximation of their probabilities
of success is thus far more accurate.

The running time of DPNextFailure is proportional to
the work size W. If W is significantly larger than the plat-
form MTBF, which is very likely in practice, then with high
probability a failure occurs before the last chunks of the solu-
tion produced by DPNextFailure are even considered for
execution. In other words, a significant portion of the solu-
tion produced by DPNextFailure is unused, and can thus
be discarded without a significant impact on the quality of
the end result. In order to further boost the execution time
of DPNextFailure, rather than invoking it on the size of
the remaining work ω, we invoke it for a work size equal to
min(ω, 2 × MTBF/p), where MTBF is the processor-level
mean time between failure (MTBF/p is thus the platform
mean time between failure). We use only the first half of the
chunks in the solution produced by DPNextFailure so as
to avoid any side effects due the truncated ω.

With all these optimizations, DPNextFailure runs in a
few seconds even on the largest platforms. In all the ap-
plication execution times reported in Sections 5 and 6 the
execution time of DPNextFailure is taken into account.

4. SIMULATION FRAMEWORK
In this section we detail our simulation methodology. We

use both synthetic and log-based failure distributions. The
source code and all simulation results are publicly available
at: http://graal.ens-lyon.fr/~fvivien/checkpoint.

4.1 Heuristics
Our simulator implements the following eight checkpoint-

ing policies (recall that MTBF/p is the mean time between
failures of the whole platform):
• Young is the periodic checkpointing policy of periodq

2× C(p)× MTBF
p

given in [27].

• DalyLow is the first order approximation given in [9].
This is a periodic policy of period:q

2× C(p)× (MTBF
p

+D +R(p)).

• DalyHigh is the periodic policy (high order approxi-
mation) given in [9].
• Bouguerra is the periodic policy given in [6].
• Liu is the non-periodic policy given in [18].
• OptExp is the periodic policy whose period is given

in Proposition 5.
• DPNextFailure is the dynamic programming algo-

rithm that maximizes the expectation of the amount
of work completed before the next failure occurs.
• DPMakespan is the dynamic programming algorithm

that minimizes the expectation of the makespan. For
parallel jobs, DPMakespan makes the false assump-
tion that all processors are rejuvenated after each fail-
ure (without this assumption this heuristic cannot be
used).

Our simulator also implements LowerBound, an omni-
scient algorithm that knows when the next failure will hap-
pen and checkpoints just in time, i.e., C(p) time units be-
fore the failure. The makespan of LowerBound is thus an
absolute lower bound on the makespan achievable by any
policy. Note that LowerBound is unattainable in practice.
Along the same line, the simulator implements PeriodLB,
which implements a numerical search for the optimal period
by evaluating each target period on 1,000 randomly gen-
erated scenarios (which would have a prohibitive computa-
tional cost in practice). The period computed by OptExp
is multiplied and divided by 1+0.05× i with i ∈ {1, ..., 180},
and by 1.1j with j ∈ {1, ..., 60}. PeriodLB corresponds to
the periodic policy that uses the best period found by the
search.

We point out that DalyLow, DalyHigh, and OptExp
compute the checkpointing period based solely on the MTBF,
which comes from the implicit assumption that failures are
exponentially distributed. For the sake of completeness we
nevertheless include them in all our simulations, simply us-
ing the MTBF value even when failures follow a Weibull
distribution.

Performance evaluation. We compare heuristics using
average makespan degradation, defined as follows. Given an
experimental scenario (i.e., parameter values for failure dis-
tribution and platform configuration), we generate a setX =
{tr1, . . . , tr600} of 600 traces. For each trace tri and each of
the heuristics heur j , we compute the achieved makespan,
res(i,j). The makespan degradation for heuristic heur j on
trace tri is defined as v(i,j) = res(i,j)/minj 6=0{res(i,j)} (where
heur0 is LowerBound). Finally, we compute the average
degradation for heuristic heur j as

P600
i=1 v(i,j)/600. Standard

deviations are small and thus not plotted on figures (see the
companion research report [5] where standard deviations are
reported).

4.2 Platforms
We target two types of platforms: Petascale and Exascale.

For Petascale we choose as reference the Jaguar supercom-
puter [4], which contains ptotal = 45, 208 processors. We
consider jobs that use between 1,024 and 45,208 processors.
We then corroborate the Petascale results by running sim-
ulations of Exascale platforms with ptotal = 220 processors.
For both platform types, we determine the job size W so

ptotal D C,R MTBF W
1-proc 1 60 s 600 s 1 h, 1 d, 1 w 20 d
Peta 45, 208 60 s 600 s 125 y, 500 y 1, 000 y

Exa 220 60 s 600 s 1250 y 10, 000 y

Table 1: Parameters used in the simulations (C, R
and D chosen according to [12, 7]). The first line
corresponds to one-processor platforms, the second
to Petascale platforms, and the third to Exascale
platforms.

that a job using the whole platform would use it for a signif-
icant amount of time in the absence of failures, namely ≈ 8
days for Petascale platforms and ≈ 3.5 days for Exascale
platforms. The parameters are listed in Table 1.

4.3 Generation of failure scenarios
Synthetic failure distributions

To choose failure distribution parameters that are repre-
sentative of realistic systems, we use failure statistics from
the Jaguar platform. Jaguar is said to experience on the or-
der of 1 failure per day [19, 2]. Assuming a 1-day platform
MTBF gives us a processor MTBF equal to ptotal

365
≈ 125

years, where ptotal = 45, 208 is the number of processors of
the Jaguar platform. To verify that our results are consistent
over a range of processor MTBF values, we also consider a
processor MTBF of 500 years. We then compute the param-
eters of Exponential and Weibull distributions so that they
lead to this MTBF value (recall that MTBF = µ+D ≈ µ,
where µ is the mean of the underlying distribution). Namely,
for the Exponential distribution we set λ = 1

MTBF
and for

the Weibull distribution, which requires two parameters k
and λ, we set λ = MTBF/Γ(1 + 1/k). We first fix k = 0.7
based on the results of [23], and then vary it between 0.1
and 1.0.

Log-based failure distributions
We also consider failure distributions based on failure logs

from production clusters. We used logs from Los Alamos Na-
tional Laboratory [23], i.e., the logs for the largest clusters
among the preprocessed logs in the Failure trace archive [15].
In these logs, each failure is tagged by the node —and not
just the processor— on which the failure occurred. Among
the 26 possible clusters, we opted for the logs of the only two
clusters with more than 1,000 nodes. The motivation is that
we need a sample history sufficiently large to simulate plat-
forms with more than ten thousand nodes. The two chosen
logs are for clusters 18 and 19 in the archive (referred to as
7 and 8 in [23]). For each log, we record the setS of avail-
ability intervals. The discrete failure distribution for the
simulation is generated as follows: the conditional probabil-
ity P(X ≥ t | X ≥ τ) that a node stays up for a duration t,
knowing that it had been up for a duration τ , is set equal to
the ratio of the number of availability durations in S greater
than or equal to t, over the number of availability durations
in Sx greater than or equal to τ .

Scenario generation
Given a p-processor job, a failure trace is a set of failure

dates for each processor over a fixed time horizon h. In the
one-processor case, h is set to 1 year. In all the other cases, h
is set to 11 years and the job start time, t0, is assumed to be
one-year to avoid side-effects related to the synchronous ini-
tialization of all nodes/processors. Given the distribution of

inter-arrival times at a processor, for each processor we gen-
erate a trace via independent sampling until the target time
horizon is reached. Finally, for simulations where the only
varying parameter is the number of processors a ≤ p ≤ b, we
first generate traces for b processors. For experiments with
p processors we then simply select the first p traces. This
ensures that simulation results are coherent when varying p.

The two clusters used for computing our log-based failure
distribution consist of 4-processor nodes. Hence, to simu-
late a 45,208-processor platform we generate 11,302 failure
traces, one for each four-processor node.

5. SIMULATIONS WITH SYNTHETIC FAIL-
URES

5.1 Single processor jobs
For a single processor, we cannot use a 125-year MTBF,

as a job would have to run for centuries in order to need
a few checkpoints. Hence we study scenarios with smaller
values of the MTBF, from one hour to one week. This study,
while unrealistic, allows us to compare the performance of
DPNextFailure with that of DPMakespan.

5.1.1 Exponential failures
Table 2 shows the average makespan degradation for the

eight heuristics and the two lower bounds, in the case of
exponentially distributed failure inter-arrival times. Un-
surprisingly, LowerBound is significantly better than all
heuristics, especially for a small MTBF. At first glance it
may seem surprising that PeriodLB achieves results close
but not equal to 1. This is because although the expected
optimal solution is periodic, checkpointing with the optimal
period is not always the best strategy for a given random
scenario.

A first interesting observation is that the performance by
the well-known Young, DalyLow and DalyHigh heuris-
tics is indeed close to optimal. While this result seems widely
accepted, we are not aware of previously published simula-
tion studies that have demonstrated it. Looking more closely
at the results [5] we find that, in the neighborhood of the op-
timal period, the performance of periodic policies is almost
independent of the period. This explains while the Young,
DalyLow and DalyHigh heuristics have near optimal per-
formance even if their periods differ.

In Section 2.4, we claimed that DPNextFailure should
provide a reasonable solution to the Makespan problem.
We observe that, at least in the one-processor case, DP-
NextFailure does lead to solutions that are close to those
computed by DPMakespan and to the optimal.

5.1.2 Weibull failures
Table 3 shows results when failure inter-arrival times fol-

low a Weibull distribution (note that the Liu heuristic was
specifically designed to handle Weibull distributions). Un-
like in the exponential case, the optimal checkpoint policy
may be non-periodic [24]. Results in the table show that
all the heuristics lead to results that are close to the opti-
mal, except Liu when the MTBF is not small. The impli-
cation is that, in the one-processor case, one can safely use
Young, DalyLow, and DalyHigh, which only require the
failure MTBF, even for Weibull failures. In Section 5.2.2
we see that this result does not hold for multi-processor

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.62852 0.90684 0.97870
PeriodLB 1.00743 1.01557 1.02259

Young 1.01746 1.01567 1.02319
DalyLow 1.02801 1.01607 1.02325
DalyHigh 1.00748 1.01569 1.02335
Liu 1.01734 1.05440 1.20767
Bouguerra 1.02640 1.02288 1.02662

OptExp 1.00743 1.01557 1.02259
DPNextFailure 1.00793 1.01666 1.02791
DPMakespan 1.00783 1.01564 1.03425

Table 2: Degradation from best for a single proces-
sor with Exponential failures.

platforms. Note that, just like in the Exponential case,
DPNextFailure leads to solutions that are close to those
computed by DPMakespan.

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.66351 0.91012 0.97612
PeriodLB 1.00991 1.01596 1.02236

Young 1.00981 1.01643 1.02293
DalyLow 1.01182 1.01666 1.02298
DalyHigh 1.01741 1.01625 1.02286
Liu 1.01051 1.07015 1.19324
Bouguerra 1.02843 1.01873 1.02324

OptExp 1.01734 1.01646 1.02236
DPNextFailure 1.01360 1.01654 1.02716
DPMakespan 1.00739 1.01547 1.03459

Table 3: Degradation from best for a single proces-
sor with Weibull failures.

5.2 Parallel jobs
Section 3.1 defines 3 × 2 combinations of parallelism and

checkpointing overhead models. For our experiments we
have instantiated these models as follows: W(p) is equal to

either W
p

, W
p

+ γW with γ ∈ {10−4, 10−6}, or W
p

+ γW
2/3
√
p

with γ ∈ {0.1, 1, 10}; and C(p) = R(p) = 600 seconds or
C(p) = R(p) = 600× ptotal/p seconds. Due to lack of space,
in this paper we only report results for the embarrassingly
parallel applications (W(p) = W/p) with constant check-
point overhead (C(p) = R(p) = 600 seconds). Results for
all other cases lead to the same conclusions regarding the
relative performance of the various checkpointing strategies.
We refer the reader to [5], which contains the comprehensive
set of results for all combinations of parallelism and check-
pointing overhead models.

5.2.1 Exponential failures
Petascale platforms – Figure 2 shows results for Petascale
platforms. The main observation is that, regardless of the
number of processors p, the Young, DalyLow, and Da-
lyHigh heuristics compute an almost optimal solution (i.e.,
with degradation below 1.023) indistinguishable from that
of OptExp and PeriodLB. By contrast, the degradation

of Bouguerra is only slightly higher, and that of Liu2 is
≈ 1.09. We see that DPNextFailure behaves satisfacto-
rily: its degradation is less than 4.2� worse than that for
OptExp for p ≥ 213, and less than 1.85% worse overall. We
also observe that DPNextFailure always performs better
than DPMakespan. This is likely due to the false assump-
tion in DPMakespan that all processors are rejuvenated
after each failure. The same conclusions are reached when
the MTBF per processor is 500 years instead of 125 years
(see [5]).

Exascale platforms – Results for Exascale platforms, shown
in Figure 3, corroborates the results obtained for Petascale
platforms.

5.2.2 Weibull failures

Petascale platforms – A key contribution of this paper
is the comparison between DPNextFailure and all pre-
viously proposed heuristics for the Makespan problem on
platforms whose failure inter-arrival times follow a Weibull
distribution. Existing heuristics provide good solutions for
sequential jobs (see Section 5.1). Figure 4 shows that this is
no longer the case beyond p = 1, 024 processors as demon-
strated by growing gaps between heuristics and PeriodLB
as p increases. For large platforms, only DPNextFailure is
able to bridge this gap. For example with 45, 208 processors,
Young, DalyLow, and DalyHigh are at least 4.3% worse
than DPNextFailure, the latter being only 0.59% worse
than PeriodLB. These poor results of previously proposed
heuristics are partly due to the fact that the optimal solution
is not periodic. For instance, throughout a complete execu-
tion with 45, 208 processors, DPNextFailure changes the
size of inter-checkpoint intervals from 2, 984 seconds up to
6, 108 seconds. Liu, which is specifically designed to han-
dle Weibull failures, has far worse performance than other
heuristics, and fails to compute meaningful checkpoint dates
for large platforms. Bouguerra is also supposed to handle
Weibull failures but has poor performance because it relies
on the assumption that all processors are rejuvenated after
each failure. We conclude that our dynamic programming
approach provides significant improvements over all previ-
ously proposed approaches for solving the Makespan prob-
lem in the case of large platforms. The same conclusions are
reached when the MTBF per processor is 500 years instead
of 125 years (see [5]).

Number of spare processors necessary – In our simu-
lations, for a job running around 10.5 days on a 45,208 pro-
cessor platform, when using DPNextFailure, on average,
38.0 failures occur during a job execution, with a maximum
of 66 failures. This provides some guidance regarding the
number of spare processors necessary so as not to experi-
ence any job interruption, in this case circa 1�.

Impact of the shape parameter k – We report results
from experiments in which we vary the shape parameter k of
the Weibull distribution in a view to assessing the sensitiv-
ity of each heuristic to this parameter. Figure 5 shows av-
erage makespan degradation vs. k. We see that, with small

2On most figures the curve for Liu is incomplete. Liu com-
putes the dates at which the application should be check-
pointed. In several cases the interval between two consecu-
tive dates is smaller than the checkpoint duration, C, which
is nonsensical. In such cases we do not report any result for
Liu and speculate that there may be an error in [18].

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

Figure 2: Evaluation of the dif-
ferent heuristics on a Petascale
platform with Exponential fail-
ures.

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound
PeriodLB

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

Figure 3: Evaluation of the dif-
ferent heuristics on an Exascale
platform with Exponential fail-
ures.

0.9

1

1.1

211 213210 212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh
DalyLow
Young

LowerBound Bouguerra
OptExpPeriodLB

Liu

DPNextFailure

Figure 4: Evaluation of the dif-
ferent heuristics on a Petascale
platform with Weibull failures.

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weibull shape parameter (k)

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

Bouguerra
Liu

DPNextFailure

PeriodLB

OptExp

DalyHigh
DalyLow
Young

LowerBound

Figure 5: Varying the shape pa-
rameter k of the Weibull distri-
bution for a Jaguar-like platform
with 45, 208 processors.

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DalyHigh

DalyLow
Young

LowerBound
PeriodLB Liu

Bouguerra
OptExp
DPNextFailure

Figure 6: Evaluation of the dif-
ferent heuristics on an Exascale
platform with Weibull failures.

1

1.01

1.02

1.03

1.04

1.05

213212 215214

number of processors

av
er

ag
e

m
ak

es
p
an

d
eg

ra
d
at

io
n

DPNextFailure

PeriodLB

OptExp
DalyHigh
DalyLow
Young

Figure 7: Evaluation of the dif-
ferent heuristics on a Petascale
platform with failures based on
the failure log of LANL cluster
19.

values of k, the degradation is small for DPNextFailure
(below 1.033 for k ≥ 0.15, and 1.130 for k = 0.10), while
it is dramatically larger for all other heuristics. DPNext-
Failure achieves the best performance over all heuristics
for the range of k values seen in practice as reported in the
literature (between 0.33 and 0.78 [11, 18, 23]). Liu fails
to compute a solution for k ≤ 0.70. Bouguerra leads to
very poor solutions because it assumes processor rejuvena-
tion, which is only acceptable for k close to 1 (i.e., for nearly
Exponential failures) but becomes increasingly harmful as k
becomes smaller.

Exascale platforms – Figure 6 presents results for Ex-
ascale platforms. The advantage of DPNextFailure over
the other heuristics is even more pronounced than for Petas-
cale platforms. The average degradation from best of DP-
NextFailure for platforms consisting of between 216 and
220 processors is less than 1.028, the reference being defined
by the inaccessible performance of PeriodLB.

6. SIMULATIONS WITH LOG-BASED FAIL-
URES

To fully assess the performance of DPNextFailure, we
also perform simulations using the failure logs of two produc-
tion clusters, following the methodology explained in Sec-
tion 4.3. We compare DPNextFailure to the Young,
DalyLow, DalyHigh, and OptExp heuristics, adapting
them by pretending that the underlying failure distribution
is Exponential with the same MTBF at the empirical MTBF
computed from the log. The same adaptation cannot be
done for Liu, Bouguerra, and DPMakespan, which are

thus not considered in this section.
Simulation results corresponding to one of the produc-

tion cluster (LANL cluster 19, see Section 4.3) are shown
in Figure 7. For the sake of readability, we do not display
LowerBound as it leads to low values ranging from 0.80
to 0.56 as p increases (which underlines the intrinsic diffi-
culty of the problem). As before, DalyHigh and OptExp
achieve similar performance. But their performance, along-
side that of DalyLow, is significantly worse than that of
Young, especially for large p. The performance of all these
heuristics is closer to the performance of PeriodLB than
in the case of Weibull failures. The main difference with
results for synthetic failures is that the performance of DP-
NextFailure is even better than that of PeriodLB. This
is because, for these real-world failure distributions, peri-
odic heuristics are inherently suboptimal. By contrast, DP-
NextFailure keeps adapting the size of the chunks that it
attempts to execute. On a 45,208 processor platform, the
processing time (or size) of the attempted chunks range from
as (surprisingly) low as 60s up to 2280s. These values may
seem extremely low, but the platform MTBF in this case is
only 1,297s (while R+C=1,200s). This is thus a very difficult
problem instance, but DPNextFailure solves it satisfacto-
rily. More concretely, DPNextFailure saves more than
18,000 processor hours when using 45,208 processors, and
more than 262,000 processor hours using 32,768 processors,
compared to PeriodLB.

Simulation results based on the failure log of the other
cluster (cluster 18) are similar, and even more in favor of
DPNextFailure (see [5]).

7. RELATED WORK
In [9], Daly studies periodic checkpointing of applications

executed on platforms where failures inter-arrival times are
exponentially distributed. That study accounts for check-
pointing and recovery overheads (but not for downtimes),
and allows failures to happen during recoveries. Two esti-
mates of the optimal period are proposed. The lower order
estimate is a generalization of Young’s approximation [27],
which takes recovery overheads into account. The higher
order estimate is ill-formed as it relies on an equation that
sums up non-independent probabilities (Equation (13) in [9]).
That work was later extended in [13], which studies the im-
pact of sub-optimal periods on application performance.

In [6], Bouguerra et al. study the design of an opti-
mal checkpointing policy when failures can occur during
checkpointing and recovery, with checkpointing and recovery
overheads depending upon the application progress. They
show that the optimal checkpointing policy is periodic when
checkpointing and recovery overheads are constant, and when
failure inter-arrival times follow either an Exponential or a
Weibull distribution. They also give formulas to compute
the optimal period in both cases. Their results, however,
rely on the unstated assumption that all processors are re-
juvenated after each failure and after each checkpoint. The
work in [25] suffers from the same issue.

In [26], the authors claim to use an “optimal checkpoint
restart model [for] Weibull’s and Exponential distributions”
that they have designed in another paper (referenced as [1]
in [26]). However, this latter paper is not available, and we
were unable to compare our work to their solution. However,
as explained in [26] the “optimal” solution in [1] is found
using the assumption that checkpoint is periodic (even for
Weibull failures). In addition, the authors of [26] partially
address the question of the optimal number of processors
for parallel jobs, presenting experiments for four MPI appli-
cations, using a non-optimal policy, and for up to 35 pro-
cessors. Our approach is radically different since we target
large-scale platforms with up to tens of thousands of pro-
cessors and rely on generic application models for deriving
optimal solutions.

In this work, we solve the NextFailure problem to ob-
tain heuristic solutions to the Makespan problem in the
case of parallel jobs. The NextFailure problem has been
studied by many authors in the literature, often for single-
processor jobs. Maximizing the expected work successfully
completed before the first failure is equivalent to minimiz-
ing the expected wasted time before the first failure, which
is itself a classical problem. Some authors propose analyti-
cal resolution using a“checkpointing frequency function”, for
both infinite (see [17, 18]) and finite time horizons (see [20]).
However, these works use approximations, for example as-
suming that the expected failure occurrence is exactly half-
way between two checkpointing events, which does not hold
for general failure distributions. Approaches that do not rely
on a checkpointing frequency function are used in [24, 16],
but only for infinite time horizons.

8. CONCLUSION
We have studied the problem of scheduling checkpoints

for minimizing the makespan of sequential and parallel jobs
on large-scale and failure-prone platforms, which we have
called Makespan. An auxiliary problem, NextFailure,

was introduced as an approximation of Makespan. Both
problems are defined rigorously in general settings. For ex-
ponential distributions, we have provided a complete ana-
lytical solution of Makespan together with an assessment
of the quality of the NextFailure approximation. We have
also designed dynamic programming solutions for both prob-
lems, that can be applied for any failure distribution.

We have obtained a number of key results via simula-
tion experiments. For Exponential failures, our approach al-
lows us to determine the optimal checkpointing policy. For
Weibull failures, we have demonstrated the importance of
using the “single processor rejuvenation” model. With this
model, we have shown that our dynamic programming al-
gorithm leads to significantly more efficient executions than
all previously proposed algorithms with an average decrease
in the application makespan of at least 4.38% for our largest
simulated Petascale platforms, and of at least 30.7% for
our largest simulated Exascale platforms. We have also
considered failures from empirical failure distributions ex-
tracted from failure logs of two production clusters. In
this settings, once again our dynamic programming algo-
rithm leads to significantly more efficient executions than
all previously proposed algorithms. Given that our results
also hold across our various application and checkpoint sce-
narios, we claim that our dynamic programming approach
provides a key step for the effective use of next-generation
large-scale platforms. Furthermore, our dynamic program-
ming approach can be easily extended to settings in which
the checkpoint and restart costs are not constants but de-
pends on the progress of the application execution.

There are several promising avenues for future work. In-
teresting questions relate to computing the optimal number
of processors for executing a parallel job. On a fault-free
machine, and for all the scenarios considered in the paper
(embarrassingly parallel, Amdahl law, numerical kernels),
the execution time of the job decreases with the number
of enrolled resources, and hence is minimal when the whole
platform is used. In the presence of failures, this is no longer
true (see the companion report [5] for examples), and the
expected makespan may be smaller when using fewer pro-
cessors than ptotal. This leads to the idea of replicating the
execution of a given job on say, both halves of the plat-
form, i.e., with ptotal/2 processors each. This could be done
independently, or better, by synchronizing the execution af-
ter each checkpoint. The question of which is the optimal
strategy is open. Another research direction is provided by
recognizing that the (expected) makespan is not the only
worthwhile or relevant objective. Because of the enormous
energy cost incurred by large-scale platforms, along with en-
vironmental concerns, a crucial direction for future work is
the design of checkpointing strategies that can trade off a
longer execution time for a reduced energy consumption.

It is reasonable to expect that parallel jobs will be de-
ployed successfully on exascale platforms only by using mul-
tiple techniques together (checkpointing, migration, replica-
tion, self-tolerant algorithms). While checkpointing is only
part of the solution, it is an important part. This paper has
evidenced the intrinsic difficulty of designing efficient check-
pointing strategies, but it has also given promising results
that greatly improve state-of-the art approaches.

9. REFERENCES
[1] G. Amdahl. The validity of the single processor

approach to achieving large scale computing
capabilities. In AFIPS Conference Proceedings,
volume 30, pages 483–485. AFIPS Press, 1967.

[2] L. Bautista Gomez, A. Nukada, N. Maruyama,
F. Cappello, and S. Matsuoka. Transparent
low-overhead checkpoint for GPU-accelerated clusters.
https://wiki.ncsa.illinois.edu/download/

attachments/17630761/INRIA-UIUC-WS4-lbautista.

pdf?version=1&modificationDate=1290470402000.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

[4] A. Bland, R. Kendall, D. Kothe, J. Rogers, and
G. Shipman. Jaguar: The World’s Most Powerful
Computer. In GUC’2009, 2009.

[5] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and
F. Vivien. Checkpointing strategies for parallel jobs.
Research Report 7520, INRIA, France, Jan. 2011.
Available at http://graal.ens-lyon.fr/~fvivien/.

[6] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M.
Vincent. A flexible checkpoint/restart model in
distributed systems. In PPAM, volume 6067 of LNCS,
pages 206–215, 2010.

[7] F. Cappello, H. Casanova, and Y. Robert.
Checkpointing vs. migration for post-petascale
supercomputers. In ICPP’2010. IEEE Computer
Society Press, 2010.

[8] V. Castelli, R. E. Harper, P. Heidelberger, S. W.
Hunter, K. S. Trivedi, K. Vaidyanathan, and W. P.
Zeggert. Proactive management of software aging.
IBM J. Res. Dev., 45(2):311–332, 2001.

[9] J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future
Generation Computer Systems, 22(3):303–312, 2004.

[10] J. Dongarra, P. Beckman, P. Aerts, F. Cappello,
T. Lippert, S. Matsuoka, P. Messina, T. Moore,
R. Stevens, A. Trefethen, and M. Valero. The
international exascale software project: a call to
cooperative action by the global high-performance
community. Int. J. High Perform. Comput. Appl.,
23(4):309–322, 2009.

[11] T. Heath, R. P. Martin, and T. D. Nguyen. Improving
cluster availability using workstation validation.
SIGMETRICS Perf. Eval. Rev., 30(1):217–227, 2002.

[12] J. Ho, C. Wang, and F. Lau. Scalable group-based
checkpoint/restart for large-scale message-passing
systems. In Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on,
pages 1–12. IEEE, 2008.

[13] W. Jones, J. Daly, and N. DeBardeleben. Impact of
sub-optimal checkpoint intervals on application
efficiency in computational clusters. In HPDC’10,
pages 276–279. ACM, 2010.

[14] N. Kolettis and N. D. Fulton. Software rejuvenation:
Analysis, module and applications. In FTCS ’95, page
381, Washington, DC, USA, 1995. IEEE CS.

[15] D. Kondo, B. Javadi, A. Iosup, and D. Epema. The
failure trace archive: Enabling comparative analysis of
failures in diverse distributed systems. Cluster

Computing and the Grid, IEEE International
Symposium on, 0:398–407, 2010.

[16] P. L’Ecuyer and J. Malenfant. Computing optimal
checkpointing strategies for rollback and recovery
systems. IEEE Transactions on computers,
37(4):491–496, 2002.

[17] Y. Ling, J. Mi, and X. Lin. A variational calculus
approach to optimal checkpoint placement. IEEE
Transactions on computers, pages 699–708, 2001.

[18] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon,
M. Paun, and S. Scott. An optimal checkpoint/restart
model for a large scale high performance computing
system. In IPDPS 2008, pages 1–9. IEEE, 2008.

[19] E. Meneses. Clustering Parallel Applications to
Enhance Message Logging Protocols.
https://wiki.ncsa.illinois.edu/download/

attachments/17630761/INRIA-UIUC-WS4-emenese.

pdf?version=1&modificationDate=1290466786000.

[20] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio.
Distribution-free checkpoint placement algorithms
based on min-max principle. IEEE TDSC, pages
130–140, 2006.

[21] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, 2005.

[22] V. Sarkar and others. Exascale software study:
Software challenges in extreme scale systems, 2009.
White paper available at: http://users.ece.gatech.

edu/mrichard/ExascaleComputingStudyReports/

ECSS%20report%20101909.pdf.

[23] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. In
Proc. of DSN, pages 249–258, 2006.

[24] A. Tantawi and M. Ruschitzka. Performance analysis
of checkpointing strategies. ACM TOCS,
2(2):123–144, 1984.

[25] S. Toueg and O. Babaoglu. On the optimum
checkpoint selection problem. SIAM J. Computing,
13(3):630–649, 1984.

[26] K. Venkatesh. Analysis of Dependencies of Checkpoint
Cost and Checkpoint Interval of Fault Tolerant MPI
Applications. Analysis, 2(08):2690–2697, 2010.

[27] J. W. Young. A first order approximation to the
optimum checkpoint interval. Communications of the
ACM, 17(9):530–531, 1974.

