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ABSTRACT.Microarrays allow monitoring of thousands of genes over time periods. However, due
to the low number of time points of the gene expression series, taking the temporal dependences
into account when clustering the data is an hard task. Moreover, classes very interesting for
the biologist, but sparse with regard to all the other genes,can be completely omitted by the
standard approaches. We propose a Bayesian approach for this problem. A mixture model
is used to describe and classify the data. The parameters of this model are constrained by a
prior distribution defined with a new type of model that expresses our prior knowledge. These
knowledge allow to take the temporal dependences into account in natural way, as well as to
express rough temporal profiles about classes of interest.

RÉSUMÉ.Des technologies récentes telles que lesmicroarrayspermettent de mesurer le niveau
d’expression de milliers de gènes au cours du temps. Cependant, le nombre de points réduit de
ces séries temporelles rend difficile la prise en compte des dépendances entre les temps par les
algorithmes de classification. De plus, certaines des classes les plus intéressantes pour le biolo-
giste peuvent être totalement omises par les algorithmes classiques du fait du faible nombre de
gènes qui les composent. Nous proposons une approche bayésienne de ce problème. Un modèle
de mélange est utilisé pour décrire et classer les données. Les paramètres de ce modèle sont
contraints par une distributiona prioridéfinie grâce à un nouveau type de modèles qui exprime
les connaissancesa priori dont on dispose. Ces connaissances permettent de traiter les dépen-
dances temporelles d’une manière très naturelle, et de prendre en compte des connaissances
approximatives concernant les profils temporels les plus intéressants.

KEYWORDS:time series, clustering, EM algorithm, bioinformatics, gene expression data.

MOTS-CLÉS :séries temporelles, classification non supervisée, algorithme EM, bioinformatique,
données d’expression de gènes.
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1. Introduction

Technological advances such as microarrays allow us to simultaneously measure
the level of expression of thousands of genes in a given tissue at a given moment.
These measurements can be repeated on different tissues, different biological organ-
isms, or at different times during the life of the same organism to constitute a collec-
tion of gene expression measurements. These collections are a unique material for
understanding various cellular regulation mechanisms. These collections are either
ordered or non-ordered. A non-ordered collection may, for example, be a set of mea-
surements on different patients with a given form of cancer (Alon et al., 1999), or on
plants growing on different substrates. Ordered collections generally consist of series
of gene expressions measured over a time course —for examplealong the cell cycle
(Spellmanet al., 1998). The order is generally defined by time, but it may alsobe
induced by other numerical features. In (Hertzberget al., 2001) for example, the ex-
pression levels are measured at different depths of the stemof poplar trees. In other
studies, measurements are obtained on cells exposed to increasing concentrations of a
given factor (light, chemical product, etc). In the following, such a series of gene ex-
pression measurements is called anexpression series, and we speak about the different
time pointsof the series, even if the order is not temporal.

One common problem of gene expression data analysis is the identification of co-
regulated genes. This problem naturally turns into a gene clustering problem. Until
recently, expression series have been analyzed with methods that do not take the time
dependences into account. Such methods include hierarchical clustering with Eu-
clidean distance (Eisenet al., 1998), k-means approaches (Lloyd, 1982) and the Self
Organizing Maps (Kohonen, 1997; Tamayoet al., 1999). Since these methods are
unable to explicitly deal with the data order, permuting twoor more time points in all
series does not change the clustering result.

A few methods specially adapted to expression series have recently been proposed.
These methods generally involve probabilistic modeling ofthe data. For example,
(Ramoniet al., 2002) use autoregressive models of orderp. Briefly, they assume that
the value of an expression series at timet is a linear function —with a probabilistic
component— of the values taken at thep previous times. (Bar-Josephet al., 2003) use
cubic splines with a probabilistic component to model the classes, while (Schliepet
al., 2003) model each class of gene with Hidden Markov Models (HMMs) (Rabiner,
1989). However, the great majority of the expression seriesdata have a low number
of time points (10 or less), and, as stressed in (Ernstet al., 2005), all these methods
involve high number of parameters and then are not appropriate for short time series.
In (Ernstet al., 2005) authors propose a non parametric approach to the problem.
The method involves enumerating a set of authorized profiles, and then associates
each series with its most likely. The set of profiles is definedby a parameterc which
represents the amount of change a gene can exhibit between successive time points.
Thus, the time dependence is controlled by way of this parameter.
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Our aim in this paper is twofold. First we are looking for a probabilistic method
able to take the time dependences of these short time series into account. Second
we investigate how to explicitly useroughprior knowledge about the general shape of
interesting classes. Bygeneral shape, we mean elementary and potentially incomplete
information about the evolution of the mean expression level of the classes over time.
This can, for example, be knowledge like:“Classes with increasing expression level”,
“Classes with bell curve shapes”, “Classes with high expression level in the beginning
of the series”, etc. Of course we do not know the profile ofall the gene classes, but
sometimes we are more concerned with one or more classes. Forexample, in the study
of (Spellmanet al., 1998) on the Yeast cell cycle, the authors are interested infinding
the cycle-regulated genes, and thus look for sinusoidal shape classes. In a similar way,
we sometimes search for genes which tend to be quickly over- (or under-) expressed at
the beginning of the series —in response to a given treatment, for example. Our idea
is that incorporating such (even rough) knowledge can improve the clustering result,
especially when the classes of interest are very sparse withregard to all the other
genes. A problem of importance that arises when the expectedclasses are sparse —
i.e., there are few interesting genes with regards to all theother ones— is that standard
methods can completely omit these classes. This results in afinal clustering where the
interesting genes are lost among many other genes, in one or more classes that do not
show the desired profile.

The approach we propose here tackles these problems. When information about
one or several class shapes are available, these are directly integrated into the model,
thus favoring classes with the desired profiles, and puttingthe other genes in separate
classes. On the other hand, when no a priori information is available, the method
allows a classical clustering of the series. This is done by explicitly dealing with the
temporal nature of the data, in a very intuitive way and without any assumption about
a predetermined analytical form which can be difficult to estimate with low number of
time points.

We use a Bayesian approach for this purpose. The approach involves two types of
models. The first one is a probabilistic mixture model used todescribe and classify
the expression series. Parameters of this model are unknownand have to be estimated
for the clustering. A second model, close to the HMMs and calledHPM —for Hidden
Phase Model—, is used to express our a priori knowledge or simply the temporal
feature of the data. We define two types of HPMs which can be used according to
the situation: probabilistic and non-probabilistic HPMs.These models are completely
specified by the user, and their parameters do not have to be estimated. They are used
to define a prior probability distribution over the parameters of the mixture model.
These parameters are estimated by maximizing the posteriorprobability of the model
through an EM algorithm (Dempsteret al., 1977).

The next section presents our method, the mixture model, thetwo types of HPMs
and the learning algorithm. In Section 3 we evaluate and experiment our method on
two datasets. We conclude and propose future work directions in Section 4.
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2. Method

2.1. Principle

Let X be a set ofN expression series of lengthT . We assume that the data arise
from a mixture model (McLachlanet al., 2000) withC components. We denoteπc

as the prior probability of componentc, and we have
∑C

c=1 πc = 1. We assume
that conditionally to componentc, expression values at each timet ∈ [1, T ] are in-
dependent and follow a Gaussian distribution of meanµct and varianceσ2

ct. The
shape of componentc is defined by the sequence of meansµc1 . . . µcT . We then
have a probabilistic model of parametersΘ = (π1, . . . , πC , θ1, . . . , θC) with θc =
(µc1, . . . , µcT , σ2

c1, . . . , σ
2
cT ). The probability of an expression seriesX = x1 . . . xT

in this model is

P (X |Θ) =
C

∑

c=1

πc

T
∏

t=1

P (xt|µct, σ
2
ct),

with P (xt|µct, σ
2
ct) = N (xt; µct, σ

2
ct). Under the assumption that series ofX are

independent, the likelihood ofΘ is given by

L(Θ|X ) = P (X|Θ) =
∏

X∈X

P (X |Θ). [1]

In a clustering task, the standard approach to classify a setof expression seriesX
involves estimating parametersΘ that maximize Formula (1) (Maximum Likelihood
Principle), and then assigning the most probable componentcMAP (MAP stands for
maximum a posteriori) to each seriesX ∈ X :

cMAP = argmax
c=1...C

P (c|X, Θ) = argmax
c=1...C

πcP (X |c, Θ) [2]

Note that finding parametersΘ that maximize (1) is a difficult task. However, approx-
imate solutions can be inferred with EM algorithms (Dempster et al., 1977).

The above mixture model does not explicitly take into account the potential de-
pendences between times, nor any prior knowledge about the profile of the most inter-
esting classes. When such knowledge are available, we wouldlike to constraint one
or some components to follow a given profile, while leaving the other components
free of constraints so that they can “collect” the expression series that do not have
the desired profile. For example, if we are looking for classes with bell curves, we
would build a 10 component model, with 5 bell-constrained and 5 unconstrained com-
ponents. We thus propose to use a Bayesian approach, which introduces knowledge
by way of a prior distribution ofΘ —see for example (Dudaet al., 2001) for a general
introduction to Bayesian theory. Simply speaking, our ideais to define a prior dis-
tribution P (Θ) which is merely the product of the prior probability of the sequences
of meansµc1 . . . µcT associated with each component. Moreover, we want the prior
probability of a given mean sequence for componentc as follows: (i) the more the
sequence agrees with the constraints associated withc, the higher its prior probability;
(ii) sequences that disagree with the constraints have probability zero.
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With a prior, we can write the posterior probability ofΘ as

P (Θ|X ) =
P (X|Θ)P (Θ)

P (X )
∝ P (X|Θ)P (Θ). [3]

In this Bayesian framework, parametersΘ are estimated by maximizing the posterior
probability —Equation (3)— instead of the likelihood —Expression (1). However,
maximizing the posterior probability is generally more difficult than maximizing the
likelihood. For example, the classical re-estimation formulae of the EM algorithm do
not directly apply and, depending on the form of the chosen prior distribution, it may
be hard to perform the task in reasonable time.

In our case, we first discretize the space of the meansµct in order to be able to
introduce various bits of knowledge and constraints about the profiles, as well as to
efficiently estimate the parameters of the model. Since we know the maximal and
minimal expression values taken by the series inX (sayxmax andxmin), we already
know an upper and lower bound of the space of the means. Now we discretize this
space inM equidistant steps, so that the lower and higher steps are equal to xmin and
xmax, respectively. Of courseM is chosen to be sufficiently large (e.g.M = 30) to
allow accurate representation of the data. Steps are named by their number, soM is
the highest step. In this discretized mean space, our probabilistic model is re-defined
asΘ = (π1, . . . , πC , θ1, . . . , θC) with θc = (lc1, . . . , lcT , σ2

c1, . . . , σ
2
cT ), with lct ∈

{1, . . . , M}. We denotem as the map function that associates stepl ∈ {1, . . . , M}
with its expression level in the interval[xmin, xmax]. The probability of an expression
seriesX ∈ X is rewritten as

P (X |Θ) =

C
∑

c=1

πc

T
∏

t=1

P (xt|lct, σ
2
ct),

with P (xt|lct, σ
2
ct) = N (xt; m(lct), σ

2
ct) that follows a Gaussian distribution of mean

equal to the level of expression associated with steplct, and varianceσ2
ct. In the

following, the step sequencelc1 . . . lcT associated with classc —and which defines its
shape— is denoted asLc. Note finally that the discretization only involves the means
of the model, and not the space of the expression levels of thedata. These, as well as
the model variancesσ2

ct, remain in a continuous space.

In the next section, we show how to define the prior distribution of parametersΘ.
Section 2.3 details the EM algorithm used to estimate these parameters in maximizing
Expression (3).

2.2. Defining the prior distribution

First we define a new type of model calledHidden Phase Models(or HPMs),
close to models like HMMs and finite automata. These HPMs are used to express the
desired profiles of the components, and each componentc is then associated with a
given HPMHc. We define two types of HPMs: probabilistic and non-probabilistic
HPMs. We next show how to derive the prior distribution ofΘ from the HPMs.
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start end

I S D

[+1, +M ]

[1, 7]

[0, 0]

[4, 7]
[−M,−1]

[4, 9]

Figure 1. An HPM for clustering 9-time expression series. In each state, upper and
lower intervals represent the step-difference and time intervals associated with the
state, respectively. For example, stateI allows increasing expression levels, and can
be reached between time 1 and 7. This HPM induces bell curve shapes

2.2.1. Hidden Phase Models

The general assumption behind HPMs is that the genes of a given component pass
throughphasesor biological statesover time. This means that, for a given component,
we assume that some ranges of consecutive times actually correspond to the same
biological state. These phases are hidden, but they affect the mean expression level
evolution of the component. For example, some phases inducean increase in the mean
level expression level while others tend to decrease or stabilize the level. In the same
manner, the increase (or decrease) can be high for some phases and low for others,
etc.

A (non-probabilistic) HPM is defined by a quadruplet(S, δ, ǫ, τ), where

– S is a set of states representing the different phases;S contains two special states,
start andend, which are used to initiate and conclude a sequence, respectively.

– δ : S × S 7→ {0, 1} is a function describing the authorized transitions between
states. We denoteOut(s) as the set of states that can be reached froms. Note that if
s ∈ Out(s) then there is a loop on states.

– ǫ is a function that associates each states ∈ S with an interval of integers defin-
ing the minimal and maximal differences of steps that can be observed between timest
andt− 1 when genes are in states at timet. For example, ifǫ(s) = [1, 3], this means
that if the genes of the component are in phases at time t then the step difference
(lt − lt−1) is between 1 and 3 (so phases increases the expression level).

– τ is a function that associates each states ∈ S with the interval of time the state
can be reached. For example, ifτ(s) = [3, 5] then the genes can be in states between
times 3 and 5 included.

An HPM example is depicted in Figure 1.

Now we can see how to express our prior knowledge with an HPM. Actually an
HPM defines a set ofcompatiblestep sequences. We say that a step sequenceL =
l1 . . . lT is compatible with an HPMH if there is a state sequences0 . . . sT+1 —with
s0 = start andsT+1 = end— in H , which is compatible withL. And we say that a
state sequences0 . . . sT+1 is compatible withL iff for each time1 ≤ t ≤ T we have:
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1) t included in the time intervalτ(st);

2) ∀t ≥ 2, (lt − lt−1) included inǫ(st); for t = 1, as we do not knowl0, the genes
can be in any phase sos1 can be any state.

Considering the step sequence on the top of Figure 2, a compatible phase sequence in
the HPM of Figure 1 is, for example,start−I−I−I−I−S−D−D−D−D−end.
For the step sequence on the bottom, there is no compatible phase sequence in this
HPM. In brief, building an HPM involves designing an HPM suchthat the compatible
sequences have the desired profile. For example, the HPM of Figure 1 is well suited
for the discovery of bell curve classes.

2.2.2. Probabilistic HPMs

Non probabilistic HPMs can be used to express strong constraints that describe
an expected profile. For more complex knowledge, and when we do not have any
information about profiles and just want to express the fact that we are dealing with
time series data, these models can be unsuitable. Then probabilistic HPMs can be
more suitable.

A probabilistic HPM is defined by a quintuplet(S, δ, ǫ, τ, w), whereS, δ, ǫ, andτ
are the same as for non-probabilistic HPMs, andw : S × S 7→ R

+ is a function asso-
ciating a weight with each authorized transition. These weights are used to compute
the transition probabilities from state to state. Due to thetime constraints associated
with the states by way of theτ function, transition probabilities are time dependent, so
we cannot simply label transitions with a probability as is done for classical HMMs.
In contrast, the probability, denoted asP (s|s′, t), to reach states from states′ at time
t is computed as follows:

P (s|s′, t) =

{

0 if t /∈ τ(s);

w(s)/
(

∑

s′′∈Out(s′) | t∈τ(s′′) w(s′′)
)

else.
[4]

One example of probabilistic HPM is depicted in Figure 2.

Probabilistic HPMs also define compatible step sequences. Moreover, all compat-
ible sequences do not have the same probability. LetH be a probabilistic HPM and
S = s0, s1 . . . sT , sT+1 a state sequence in this HPM. The probability of this sequence
givenH is defined by

P (S|H) =

T+1
∏

t=1

P (st|st−1, t). [5]

How can probabilistic HMPs be used to take time dependences into account? In-
formally speaking, taking these dependences into account means that we are seeking
relatively “regular” profiles, in contrast to chaotic spikyprofiles as that depicted on
the bottom of Figure 2. This knowledge can be easily expressed with the probabilistic
three-states HPM of Figure 2: one state (I) induces increasing steps, one (D) induces
a decrease, and the last (S) induces stability. Moreover, it is assumed that, at each
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Figure 2. Left, a probabilistic HPM for clustering expression serieswithout prior
knowledge about the form of the profiles. Right, two examplesof step sequences

time, the probability of staying in the same state is higher than the probability of leav-
ing (weights on loops are higher than on other transitions).This HPM is compatible
with any step sequence of length 9. However all sequences do not have the same prob-
ability, and spiky sequences involving many state changes are not favored. Of course
many variants and refinements are possible by changing the weight associated with
transitions, or using additional states.

Note that given a step sequenceL, there are potentially many state sequences com-
patible with L. In reference to the HMM literature, the sequence of phases com-
patible with L which has the highest probability is called theViterbi sequenceof
L (Rabiner, 1989), and is denoted asV L = vL

0 . . . vL
T+1. For example, the Viterbi

sequences —and, in this example, sole compatible sequences— of the two step se-
quences of Figure 2 in the HPM of Figure 2, arestart− I − I − I − I −S−D−D−
D −D− end andstart− I − I −D− I −D − S − I −D − I − end, respectively.

2.2.3. Defining prior with HPMs

First we assume that prior probabilities of parametersπc, Lc andσ2
ct are indepen-

dent, as well as theC sets of parametersLc and(σ2
c1, . . . , σ

2
cT ), i.e., the probability

distribution can be written as:

P (Θ) = P (π1, . . . , πC)

C
∏

c=1

P (Lc)

C
∏

c=1

P (σ2
c1, . . . , σ

2
cT ).

Next we assume that distributionsP (π1, . . . , πC) andP (σ2
c1, . . . , σ

2
cT ) are uninfor-

mative and that probabilitiesP (Lc) are the only ones that express our knowledge.

Let c be a component andHc a non probabilistic HPM associated with this class. A
prior distribution of parametersLc can be defined withHc by assuming that the step
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sequences incompatible withHc have probability zero while compatible sequences
have all the same probability, i.e.,

P (L|Hc) =

{

0 if L is incompatible withHc;
Kc else,

[6]

with Kc such that
∑

L∈LT
P (L|Hc) = 1, with LT being the set of lengthT se-

quences.

For probabilistic HPM, we want the prior probability of a step sequenceL to be
proportional to the Viterbi sequence ofL in Hc. Then, we set

P (L|Hc) =

{

0 if L is incompatible withHc;
K ′

c · P (V L|Hc) else,
[7]

with K ′
c such that

∑

L∈LT
P (L|Hc) = 1. For example, for the HPM of Figure 2, the

prior probabilities of the two step sequences are proportional to1/3 · 10/13 · 10/13 ·
10/13 · 1/13 · 1/13 · 10/13 · 10/13 · 10/13 · 1/13 ∼ 3 · 10−5 and1/3 · 10/13 · 1/13 ·
1/13 · 1/13 · 1/13 · 1/13 · 1/13 · 1/13 · 1/13 ∼ 3 · 10−10, respectively. The spiky
sequence is then less likely than the other one, which agreeswith our prior intuition.

A prior distribution of the step sequences of lengthT can then be defined with a
probabilistic or a non-probabilistic HPM. In practice, oneor more components can be
associated with a given HPM (e.g. that of Figure 1), and the other ones with a less
informative HPM like that of Figure 2. We then have

P (Θ) ∝

C
∏

c=1

P (Lc|Hc). [8]

2.3. Learning

Here we describe the learning algorithm used to estimate parametersΘ of the
mixture model. It is an EM algorithm that searches for parameters that maximize
Expression (3). We only give the algorithm used for probabilistic HPMs, since that
for non-probabilistic ones can be easily adapted.

Let us first define thecomplete-datalikelihood. Likelihood of Expression (1) is
actually the incomplete-data likelihood, since the real components of seriesX ∈ X
are unknown. Under the assumption that this set of components C = {cX ∈
{1, . . . , C}, ∀X ∈ X} is known, the complete-data likelihood can be written as

L(Θ|X , C) = P (X , C|Θ) =
∏

X∈X

πcX

T
∏

t=1

P (xt; lcXt, σ
2
cX t).

The EM algorithm is an iterative algorithm that starts from an initial set of parame-
tersΘ(0), and iteratively reestimates the parameters at each step ofthe process. Let
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Q(Θ, Θ(i)) denote the expectation, on the space of the hidden variablesC, of the loga-
rithm of the complete-data likelihood, given the observed dataX and parametersΘ(i)

at stepi:

Q(Θ, Θ(i)) = E
[

log P (X , C|Θ)|X , Θ(i)
]

=
∑

C∈C

log P (X , C|Θ)P (C|X , Θ(i)),

with C being the space of valuesC can take.(Dempsteret al., 1977) show that one can
maximize Expression (3) by searching for, at each step of thealgorithm, the parame-
ters that maximize the quantity

Q(Θ, Θ(i)) + log P (Θ). [9]

After some calculus —see for example (Bilmes, 1997) for details— this expression
can be rewritten as

Q(Θ, Θ(i)) + log P (Θ) =
C

∑

c=1

∑

X∈X

log πc P (c|X, Θ(i))+

C
∑

c=1

∑

X∈X

log P (X |c, Θ) P (c|X, Θ(i)) + log P (Θ).

Integrating Expressions (8), (7) and (5), and noting thatK ′
c are independent ofΘ,

maximizing the above expression involves maximizing

C
∑

c=1

∑

X∈X

log πcP (c|X, Θ(i))+

C
∑

c=1

[

T
∑

t=1

∑

X∈X

log P (xt|lct, σ
2
ct)P (c|X, Θ(i))+

T+1
∑

t=1

log P (vLc

t |vLc

t−1, t)

]

, [10]

with vLc

0 . . . vLc

T+1 the Viterbi sequence of the step sequenceLc in the HPMHc. Since
the two terms of this expression are not related, the newπc can be estimated by maxi-
mizing the first term. Using Lagrange multiplier we get:

π∗
c =

1

|X |

∑

X∈X

P (c|X, Θ(i)). [11]
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For theθc, we maximize the second term of Expression (10). This involves indepen-
dently maximizing, for each componentc, the quantity

∑

X∈X

T
∑

t=1

log P (xt|lct, σ
2
ct)P (c|X, Θ(i)) +

T
∑

t=1

log P (vLc

t |vLc

t−1, t) [12]

Note that, due to the independence assumptions between times, for each timet, given
a stepl, one can easily compute theσ2

ct that maximizes the above quantity: it is simply
theσ2

ct, denoted asσ2
ctl, that maximizes the sum

∑

X∈X

log P (xt|l, σ
2
ct)P (c|X, Θ(i)).

Taking the derivative of this expression with respect toσ2
ct and setting it at zero, we

get:

σ2
ctl =

∑

X∈X (xt − m(l))2P (c|X, Θ(i))
∑

X∈X P (c|X, Θ(i))
. [13]

ForLc the situation is quite different since it is involved in the expression ofP (Θ).
TheLc that maximizes Expression (10) depends both on the data and on its Viterbi
path inHc and hence the different stepsl∗ct of L∗

c cannot be estimated independently.
However, the step space is of finite size, so the space of the step sequences of length
T is also finite. One way to compute the newLc would be to enumerate all possible
step sequences and then select the one that maximizes Expression (10). This involves
searching for the step sequenceL∗

c = l∗c1 . . . l∗cT that maximizes

Zc(L = l1 . . . lT ) =
T

∑

t=1

[

log P (vL
t |v

L
t−1, t)+

∑

X∈X

log P (xt|lt, σ
2
ctlt

)P (c|X, Θ(i))
]

, [14]

with σ2
ctlt

computed with Formula (13). However, as the total number of lengthT

sequences is equal toMT , enumerating them all is clearly not suitable. We give here
a polynomial solution to this problem. It is a dynamic programming algorithm that
makes use of the variableδcj(l, s), defined as the best scoreZc(l1 . . . lj) —related to
expression (14)— that can be achieved with a step sequence oflengthj that ends on
stepl and states at timej :

δcj(l, s) = max
l1...lj∈Lj | lj=l

and(lj−lj−1)∈ǫ(s)

max
s0...sj=s

j
∑

t=1

[

log P (st|st−1, t)+

∑

X∈X

P (c|X, Θ(i)) log P (xt|lt, σ
2
cltt)

]

.
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By induction we have

δcj+1(l, s) = max
1≤l′≤M |

(l−l′)∈ǫ(s)

max
s′∈S

δcj(l
′, s′) + log P (s|s′, j + 1)+

∑

X∈X

P (c|X, Θ(i)) log P (xj+1|c, l, σ
2
clj+1). [15]

With Formula (15) we can iteratively compute, fromt = 1 to t = T , the best score
Z(l1 . . . lT ) that can be achieved with a lengthT sequence. Moreover, in order to be
able to retrieve, at the end of the iterations, the sequence that actually achieves this
score, one has to keep track of the stepl′ and states′ that maximize (15) at each step
of the process. This is done by way of the variablesΨcj(l, s) andΦcj(l, s). One can
then write the complete algorithm (see algorithm 1).

Algorithm 1 : Research of the optimal step sequence

foreachstepl do1

computeσ2
cl1 with Formula (13)

foreachstates do
δc1(l, s) = log P (s|start, 1) +

∑

X∈X

P (c|X, Θ(i)) log P (x1|c, l, σ
2
cl1)

for t = 2 to T do2

foreachstepl do
computeσ2

clt with Formula (13)
foreachand states do

δct(l, s) = max
1≤l′≤M |

(l−l′)∈ǫ(s)

max
s′∈S

δct−1(l
′, s′) + log P (s|s′, t) +

∑

X∈X

P (c|X, Θ(i)) log P (xt|c, l, σ
2
clt)

Ψct(l, s) = argmax
1≤l′≤M |

(l−l′)∈ǫ(s)

max
s′∈S

δct−1(l
′, s′) + log P (s|s′, t) +

∑

X∈X

P (c|X, Θ(i)) log P (xt|c, l, σ
2
clt)

Φct(l, s) = argmax
s′∈S

max
1≤l′≤M |

(l−l′)∈ǫ(s)

δct−1(l
′, s′) + log P (s|s′, t) +

∑

X∈X

P (c|X, Θ(i)) log P (xt|c, l, σ
2
clt)

l∗cT = argmax
1≤l≤M

max
s∈S

δcT (l, s)
3

s∗cT = argmax
s∈S

max
1≤l≤M

δcT (l, s)
4

for t = T − 1 to 1 do5

l∗ct = Ψct+1(l
∗
ct+1, s

∗
ct+1)

s∗ct = Φct+1(l
∗
ct+1, s

∗
ct+1)
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The loop of line 1 initializes variablesδct(l, s) at time 1. The loop of line 2 is the
recursion step. Lines 3 and 4 search for the step and the statethat maximize the score
at time T , in order to initiate the backtracking step of loop 5.

Let us study the time complexity of this algorithm. The initialization step takes
O(MRN) computing time, withM , R and N being the number of steps of the
discretized mean space, the number of states of the HPM and the number of series
in the data, respectively. In the recursion step,O(MRN) operations are done at
each time and for each step-state pair. The total time complexity of this step is then
O(TM2R2N). Lines 3 and 4 takeO(MR) computing time, and the backtracking is
in O(T ). The total time complexity of the algorithm is thenO(TM2R2N).

Algorithm 2 : Learning algorithm
Set parameters to initial values
repeat

for c = 1 to C do
computeπ∗

c with Formula (11)
foreach time t and stepl do

computeσ2
ctl with Formula (13)

Find the optimal step sequenceL∗
c = l∗c1 . . . l∗cT with the dynamic

programming algorithm
ComputeP (X|Θ)P (Θ)

until convergence

One can now write the complete learning algorithm —see Algorithm 2. When no
better solution is available, the initial parameter valuescan be set randomly. Thanks
to the EM properties, the posterior probabilityP (Θ|X ) —and henceP (X|Θ)P (Θ)—
increases at each loop, and the algorithm converges toward alocal optimum. A prac-
tical way to detect the convergence is to check the increase at each loop and to stop
the algorithm when this value goes under a given boundary. The time complexity of
the the complete learning procedure isO(BCTM2R2N), with B being the maximal
number of loops of the EM algorithm.

3. Evaluation and experiments

When applied to a given dataset, our method provides a mixture model, i.e. a set
of profiles (the step sequences) with the variancesσ2

ct associated with each time and
the prior probabilitiesπc. Moreover, it provides the probability membership of each
gene for each class, and groups the genes according to their most probable compo-
nents into clusters. Features of the mixture model are useful to access the pertinence
of the clusters. Indeed, sometimes one constrained component c may fail to collect
“good” genes. This occurs when no gene agrees withHc, or when the desired genes
are collected by another component with similar constraints. Then, two different sit-
uations can arise. First, the component does not collect anygene and its probability
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πc = 0. Second, the component collects some series, but these do not have the desired
profile: the measuresxt are far fromm(lct) at one or several time points (there is a
gap between the series andLc) and the variance is high at these points. This situation
can be merely detected by visual inspection, or by checking if the value ofσ2

ct is not
higher than a given threshold.

3.1. Recovering a known class of genes

In order to quantify the advantages of using prior knowledgeto recover a particu-
lar class of genes, we first conducted some experiments on a dataset made up of the
original Fibroblast dataset (see Section 3.3 for more details), along with some addi-
tional synthetic series that form a new artificial class. Briefly, we use a probabilistic
model involving two Gaussian distributions to generate theexpression levels of the ar-
tificial expression series: one Gaussian distribution is used to independently generate
the gene expression levels of the first three times, while theother is used for the last
nine times of the series. The mean of the first one is higher than the second, so the
shape of the artificial class looks like a descending step. Figure 3 shows an example
of synthetic series generated with this model. We conductedseveral experiments to
recover the synthetic class among all other series, with theproportion of synthetic data
ranging from 2% to 16% of the total data.

We use two quantities to measure the ability to recover the artificial class in the
final clustering:recall is the highest proportion of this class that can be found in a
single cluster —so a recall of 100% is achieved when all the artificial series are in the
same cluster—, andprecisionrepresents the proportion of artificial series in this clus-
ter —so a precision of 100% indicates that all the series in the cluster containing most
artificial series are actually artificial. For each proportion of synthetic data, we run a
clustering of 11 components with two different methods. Thefirst one does not use
any prior knowledge about the class of interest, i.e., its components are completely un-
constrained —this method can be viewed as a kind of k-means clustering. The second
method makes use of the HPM of Figure 3 to constrain the first class, leaving the 10
others unconstrained. The experiments were repeated 100 times for each proportion
of synthetic data and the results are reported in Figure 4.

Both methods achieve quite good recall, even when the proportion of the class of
interest is low. Using prior knowledge gives only slightly better results. Concerning
the precision, however, there is a clear difference betweenthe two methods, and we
can see that the lower the proportion of interesting class, the higher the benefit of
our method. When the proportion is 2%, for example, the precision achieved with no
prior knowledge is only about 21% —vs. 65% when using prior knowledge—, so the
interesting series are lost among many other series, leading to a class that does not
show the desired profile.
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[5, 12]

Figure 3. Left, examples of synthetic expression series added to the fibroblast dataset.
Right, the HPM designed to find the synthetic class among the "real" biological classes
in the fibroblast dataset
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Figure 4. Up: recall (left) and precision (middle) achieved with (solid lines) and with-
out (dashed lines) prior knowledge about the class of interest. The x-axes denote the
proportion (in percent) of this class among all the expression series. Bottom: preci-
sion achieved using different number of components
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Figure 5. An HPM to uncover quick over-expression classes
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Figure 6. Fibroblast dataset. Two profiles obtained with the help of the HPM of Fig-
ure 5

3.2. Number of components

Next we investigated the sensitivity of the method to the number of components.
Determining the number of clusters is a difficult task for allclustering methods. How-
ever, when the aim is to recover a particular class of genes rather than to infer a global
clustering of the data, the problem is less acute. To illustrate this, we computed, in
100 runs, the precision and recall achieved with various numbers of constrained and
unconstrained components, with the proportion of synthetic data ranging from 2% to
16% of the total data. We tried 1 constrained with 8, 10, 12 and15 unconstrained com-
ponents, and 2 constrained with 10 unconstrained components. All trials gave recall
of up to 80% for all proportions of synthetic data (data not shown), and quite good
precision —see bottom of Figure 4. Actually the best resultsare achieved with the
highest numbers of components, so giving a sufficiently highnumber of components
seems to be a good strategy to efficiently recover the clusters of interest.

3.3. Fibroblast dataset

Next, some experiments to find "real" classes in the Fibroblast dataset have been
carried out. This is the dataset of (Iyeret al., 1999). Authors study the response of
human fibroblasts to serum. The expression level of 8613 genes have been measured
at 12 times, ranging from 15 min to 24 hours after serum stimulation. The authors
selected a subset of 517 genes whose expression changed substantially in response
to serum. The same subset, centered and reduced on genes is used here. First we
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Figure 7. An HPM to find out sinusoidal profiles

clusterized the original data in 10 classes, using only knowledge about their temporal
feature, i.e., by constraining all the components with an HPM like that of Figure 2.
This clustering leads to 10 profiles relatively similar to those that (Iyeret al., 1999)
defined by hand after a hierarchical clustering. While most of these classes are well-
defined, within them it is hard to identify genes that show a quick response to the
serum. Only one jumbled class seems to present this feature.We designed an HPM
specially adapted to such class (see Figure 5). The stateS of this HPM models a
potential and short —until time 2, at maximum— delay phase before over-expression.
Next, 3 states are used to model the increasing phase: this can be quite moderate (at
least 5 steps) during 2 times at least (statesI1 andI2), or heavy (at least 10 steps)
during 1 time (stateI3). In both cases, the aim is to observe marked over-expression
before time 5. The last state models the remainder of the class and is not constrained
—all increases and decreases are allowed. We use a 10 components mixture model,
with 3 components constrained with this special HPM, and 7 components constrained
with an HPM like that of Figure 2.

Classes with the desired profile have been uncovered by this method. Figure 6
shows the mean profile of two classes. The third class has a very high variance at
time 2, and a visual inspection shows that the collected series actually diverge from
the profile at this point, so the class is not interesting. Thetwo classes of Figure 6
differ by the time when genes reach their maximal over-expression —times 3-4 and
times 4-5. Note that these classes show a second increase step which is not specified
in the HPM we used. This illustrates the ability of the methodto uncover the desired
classes even when their profiles are not completely specified.

3.4. Yeast dataset

This is the dataset published in (Spellmanet al., 1998). Authors measure the ex-
pression level of 6178 genes 18 times during slightly more than two full cell cycles.
We use the same normalization method as in (Spellmanet al., 1998): the logarithms
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Figure 8. Yeast dataset. Four classes uncovered with the help of the HPM of Figure 7
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Figure 9. Yeast dataset. Superimposition of the four mean profiles of the classes of
Figure 8

of the data are centered and reduced on the genes, and genes that do not show any
time points higher than 2 or lower than -2 are removed. This leads to a dataset of 1044
expression series. The main aim of the study was to find out cycle-regulated genes.
So we look for classes showing a two-time repeat of the same pattern (since series
span two cell cycles), i.e., classes with sinusoidal shape.The HPM of Figure 7 is de-
signed for this purpose. It detects profiles that show whether (upper part of the HPM)
2 concave patterns —a concave pattern being an increase followed by a decreasing
phase— eventually with a third increasing phase, or (lower part of the HPM) 2 convex
patterns eventually followed by a third decreasing phase. Each increase or decrease
can be followed by a short (one time) stability phase, and thetime constraints of the
τ functions require the convex or concave patterns to be equally distributed between
first nine and last nine times.

A 20 component mixture model has been used for the clustering. The 10 first com-
ponents have been constrained with HPM of Figure 7, while the10 other components
were not constrained to sinusoidal profiles but by the probabilistic HPM of Figure 2.
Many classes that seem to be regulated by the cell cycle have been uncovered in this
way. Figure 8 shows four of theses classes. These four differby the times genes
are over- or under-expressed. When superimposing the mean profiles of these classes
on the same graph (see Figure 9), shifts between the different minima and maxima
achieved can be seen.
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4. Conclusions

We proposed a Bayesian approach for the clustering of short time series. This ap-
proach can be used to integrate prior knowledge about the general profile of the classes
of interest, or to deal with the temporal nature of the data when no prior knowledge is
available. It makes use of a new type of model close to HMMs that we call a Hidden
Phase Model. A mixture model is used to model the series, and each component of
the mixture is associated with a given HPM. This defines the prior probability distri-
bution of the parameters of the class. Then an EM algorithm isused to estimate the
parameters of the mixture in maximizing its posterior probability.

Applied to two different datasets —(Spellmanet al., 1998) et (Iyeret al., 1999)—,
our method shows good performance and ability to efficientlyuncover classes of genes
with the desired profiles. In practice, appropriate HPMs canbe designed easily and
naturally. We experimentally observed on a mixture of natural and synthetic data that
the benefit of the method increases when the number of expression series composing
the classes of interest decreases with respect to the total number of series, and that it
can be really interesting when this number is very small.

Many improvements seem possible on this basis. Indeed, other knowledge can be
integrated in the HPMs. For example, knowledge about the desired mean expression
level —and not about theevolutionof the expression has it is done— could be easily
added. Another improvement would be to introduce long-range dependences, i.e.,
to constrain differences of expression not only between consecutive times but also
between separate times. For example, this would allow us to stipulate that the profiles
should achieve their maximum at a specific timet.
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