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ABSTRACTMicroarrays allow monitoring of thousands of genes ovegtpariods. However, due
to the low number of time points of the gene expression seaieag the temporal dependences
into account when clustering the data is an hard task. Moegotlasses very interesting for
the biologist, but sparse with regard to all the other genezm be completely omitted by the
standard approaches. We propose a Bayesian approach fermptisblem. A mixture model
is used to describe and classify the data. The parametetsi®ofrtodel are constrained by a
prior distribution defined with a new type of model that esges our prior knowledge. These
knowledge allow to take the temporal dependences into atdownatural way, as well as to
express rough temporal profiles about classes of interest.

RESUME.Des technologies récentes telles quertésroarrayspermettent de mesurer le niveau
d’expression de milliers de génes au cours du temps. Cepéridanombre de points réduit de
ces séries temporelles rend difficile la prise en compte dpsntlances entre les temps par les
algorithmes de classification. De plus, certaines des ekafss plus intéressantes pour le biolo-
giste peuvent étre totalement omises par les algorithmessicjues du fait du faible nombre de
genes qui les composent. Nous proposons une approche érayésie ce probléme. Un modéle
de mélange est utilisé pour décrire et classer les données parametres de ce modéle sont
contraints par une distributioa prioridéfinie grace a un nouveau type de modeles qui exprime
les connaissances priori dont on dispose. Ces connaissances permettent de trasteléleen-
dances temporelles d’'une maniére tres naturelle, et dedveean compte des connaissances
approximatives concernant les profils temporels les pltéy@ssants.

KEYWORDStime series, clustering, EM algorithm, bioinformaticsngeexpression data.

MOTS-CLES séries temporelles, classification non supervisée, digme EM, bioinformatique,
données d’expression de genes.
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1. Introduction

Technological advances such as microarrays allow us tolsimeously measure
the level of expression of thousands of genes in a givendisswa given moment.
These measurements can be repeated on different tisstiesemti biological organ-
isms, or at different times during the life of the same organio constitute a collec-
tion of gene expression measurements. These collectiena anique material for
understanding various cellular regulation mechanismsesé&tcollections are either
ordered or non-ordered. A non-ordered collection may, xangple, be a set of mea-
surements on different patients with a given form of canédorf et al, 1999), or on
plants growing on different substrates. Ordered collestigenerally consist of series
of gene expressions measured over a time course —for exaioplg the cell cycle
(Spellmanet al, 1998). The order is generally defined by time, but it may &lso
induced by other numerical features. In (Hertzbetrrgl, 2001) for example, the ex-
pression levels are measured at different depths of the stqroplar trees. In other
studies, measurements are obtained on cells exposed éagircg concentrations of a
given factor (light, chemical product, etc). In the followj, such a series of gene ex-
pression measurements is calleceapression serieand we speak about the different
time pointsof the series, even if the order is not temporal.

One common problem of gene expression data analysis isehéfidation of co-
regulated genes. This problem naturally turns into a gemstaling problem. Until
recently, expression series have been analyzed with methatido not take the time
dependences into account. Such methods include hieratdficstering with Eu-
clidean distance (Eisegt al., 1998), k-means approaches (Lloyd, 1982) and the Self
Organizing Maps (Kohonen, 1997; Tamagbal, 1999). Since these methods are
unable to explicitly deal with the data order, permuting twvanore time points in all
series does not change the clustering result.

A few methods specially adapted to expression series haeetlg been proposed.
These methods generally involve probabilistic modelinghef data. For example,
(Ramoniet al, 2002) use autoregressive models of ondeBriefly, they assume that
the value of an expression series at titris a linear function —with a probabilistic
component— of the values taken at fhprevious times. (Bar-Joseghal., 2003) use
cubic splines with a probabilistic component to model trasses, while (Schliept
al., 2003) model each class of gene with Hidden Markov Models k##)I(Rabiner,
1989). However, the great majority of the expression seféta have a low number
of time points (10 or less), and, as stressed in (Eehst., 2005), all these methods
involve high number of parameters and then are not appredoashort time series.
In (Ernstet al, 2005) authors propose a non parametric approach to thdepmob
The method involves enumerating a set of authorized profilad then associates
each series with its most likely. The set of profiles is defibhg@ parameter which
represents the amount of change a gene can exhibit betweeassive time points.
Thus, the time dependence is controlled by way of this pat@me
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Our aim in this paper is twofold. First we are looking for a lpabilistic method
able to take the time dependences of these short time sat@sdécount. Second
we investigate how to explicitly ugseughprior knowledge about the general shape of
interesting classes. Byeneral shapave mean elementary and potentially incomplete
information about the evolution of the mean expressionllef/the classes over time.
This can, for example, be knowledge liK€lasses with increasing expression level”,
“Classes with bell curve shapes”, “Classes with high exgies level in the beginning
of the series; etc. Of course we do not know the profileaf the gene classes, but
sometimes we are more concerned with one or more classesx&wople, in the study
of (Spellmaret al, 1998) on the Yeast cell cycle, the authors are interestédding
the cycle-regulated genes, and thus look for sinusoidg@eshiasses. In a similar way,
we sometimes search for genes which tend to be quickly coeur(der-) expressed at
the beginning of the series —in response to a given treatrf@rdxample. Our idea
is that incorporating such (even rough) knowledge can imgtbe clustering result,
especially when the classes of interest are very sparseregifrd to all the other
genes. A problem of importance that arises when the expetasdes are sparse —
i.e., there are few interesting genes with regards to albther ones— is that standard
methods can completely omit these classes. This resultsrialalustering where the
interesting genes are lost among many other genes, in onerergiasses that do not
show the desired profile.

The approach we propose here tackles these problems. Wloemation about
one or several class shapes are available, these areyirgefjrated into the model,
thus favoring classes with the desired profiles, and puthiegpther genes in separate
classes. On the other hand, when no a priori information &lable, the method
allows a classical clustering of the series. This is donexpji@tly dealing with the
temporal nature of the data, in a very intuitive way and witthemy assumption about
a predetermined analytical form which can be difficult tareate with low number of
time points.

We use a Bayesian approach for this purpose. The approadhésviwo types of
models. The first one is a probabilistic mixture model useddscribe and classify
the expression series. Parameters of this model are unkawesvhave to be estimated
for the clustering. A second model, close to the HMMs ancecdiPM —for Hidden
Phase Model-, is used to express our a priori knowledge or simply the tanalp
feature of the data. We define two types of HPMs which can bd aseording to
the situation: probabilistic and non-probabilistic HPM$iese models are completely
specified by the user, and their parameters do not have tdibeagsd. They are used
to define a prior probability distribution over the paranngtef the mixture model.
These parameters are estimated by maximizing the posprnbability of the model
through an EM algorithm (Dempstet al,, 1977).

The next section presents our method, the mixture modetwihaypes of HPMs
and the learning algorithm. In Section 3 we evaluate and rixgat our method on
two datasets. We conclude and propose future work directioBection 4.
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2. Method
2.1. Principle

Let X be a set ofV expression series of lengih We assume that the data arise
from a mixture model (McLachlaat al, 2000) withC' components. We denote.
as the prior probability of component and we haveZcC:1 m. = 1. We assume
that conditionally to componen{ expression values at each ties [1, 7] are in-
dependent and follow a Gaussian distribution of mganand variancer?,. The
shape of componentis defined by the sequence of means ... u.r. We then
have a probabilistic model of paramet@s= (m,...,7¢,01,...,0c) with 6, =
(Bety - - s fery 02, ..., 027). The probability of an expressmn serIKs_ T1...TT

in this model is
C T
P(X10) =Y m [ Plxilpet, 02)
c=1 t=1

with P (x| pter, 0%) = N(z; pet, 0%). Under the assumption that seriesbfare
independent, the likelihood @ is given by

L(®lx)=Px[e) = [] P(x]®). [1]

XeXx

In a clustering task, the standard approach to classify afsexpression serief’
involves estimating parametegsthat maximize Formula (1) (Maximum Likelihood
Principle), and then assigning the most probable compaong®t (MAP stands for
maximum a posterioyito each serieX € X

emap = argmax P(c|X, 0) = argmach P(X]c,©) [2]
c=1...C c=1...C

Note that finding paramete&that maximize (1) is a difficult task. However, approx-

imate solutions can be inferred with EM algorithms (Dempstel., 1977).

The above mixture model does not explicitly take into ac¢dha potential de-
pendences between times, nor any prior knowledge aboutdfitepf the most inter-
esting classes. When such knowledge are available, we Vikaltb constraint one
or some components to follow a given profile, while leaving tther components
free of constraints so that they can “collect” the exprassieries that do not have
the desired profile. For example, if we are looking for classéh bell curves, we
would build a 10 component model, with 5 bell-constrained &ninconstrained com-
ponents. We thus propose to use a Bayesian approach, whicHuoes knowledge
by way of a prior distribution 0® —see for example (Dudet al., 2001) for a general
introduction to Bayesian theory. Simply speaking, our ideto define a prior dis-
tribution P(©) which is merely the product of the prior probability of theysences
of meansu,; . .. u.r associated with each component. Moreover, we want the prior
probability of a given mean sequence for componeas follows: (i) the more the
sequence agrees with the constraints associated:yihk higher its prior probability;
(ii) sequences that disagree with the constraints haveapitity zero.
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With a prior, we can write the posterior probability ®fas

P(X|©)P(©)
~ Ty« PXIO)PO) 3]

In this Bayesian framework, parameté¥sire estimated by maximizing the posterior
probability —Equation (3)— instead of the likelihood —E®gsion (1). However,
maximizing the posterior probability is generally morefidiflt than maximizing the
likelihood. For example, the classical re-estimation folae of the EM algorithm do
not directly apply and, depending on the form of the chosér giistribution, it may
be hard to perform the task in reasonable time.

P(O]X) =

In our case, we first discretize the space of the meapdn order to be able to
introduce various bits of knowledge and constraints abloaifprofiles, as well as to
efficiently estimate the parameters of the model. Since wmvkie maximal and
minimal expression values taken by the seriegifsay xmax andxmin), we already
know an upper and lower bound of the space of the means. Nowiseeetize this
space inM equidistant steps, so that the lower and higher steps agd &qti,, and
Tmax respectively. Of cours@/ is chosen to be sufficiently large (edf = 30) to
allow accurate representation of the data. Steps are naynibetio number, sa\f is
the highest step. In this discretized mean space, our pilat@imodel is re-defined
aso = (7‘1’1, oo, mo, 0, . .,90) with 6, = (lcl, .. .,lcT7O'zl, ey cT) with [.; €
{1,..., M}. We denoten as the map function that associates step{1,..., M}
with its expression level in the intervitmin, max]. The probability of an expression
seriesX € X is rewritten as

C
P(X|0) = Z?Tc

c=1 t

P $t|lct703t)a

:jﬂ

1

with P(x|let, 0%) = N(z;m(let), 0%) that follows a Gaussian distribution of mean
equal to the level of expression associated with $tgpand variancer?,. In the
following, the step sequenég ... [.r associated with clags—and which defines its
shape— is denoted ds.. Note finally that the discretization only involves the mgan
of the model, and not the space of the expression levels afdatee These, as well as
the model variances?,, remain in a continuous space.

ct?

In the next section, we show how to define the prior distrinutf parametere.
Section 2.3 details the EM algorithm used to estimate thasmpeters in maximizing
Expression (3).

2.2. Defining the prior distribution

First we define a new type of model calléidden Phase Modeléor HPMs),
close to models like HMMs and finite automata. These HPMs se€ to express the
desired profiles of the components, and each companinthen associated with a
given HPM H,.. We define two types of HPMs: probabilistic and non-prohstidl
HPMs. We next show how to derive the prior distributionafrom the HPMs.
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Figure 1. An HPM for clustering 9-time expression series. In eachestapper and
lower intervals represent the step-difference and timerirgtls associated with the
state, respectively. For example, stdtallows increasing expression levels, and can
be reached between time 1 and 7. This HPM induces bell cuagesh

2.2.1. Hidden Phase Models

The general assumption behind HPMs is that the genes of a giveponent pass
throughphase®r biological state®ver time. This means that, for a given component,
we assume that some ranges of consecutive times actuatigspond to the same
biological state. These phases are hidden, but they affeatniean expression level
evolution of the component. For example, some phases irafuiterease in the mean
level expression level while others tend to decrease oiligekhe level. In the same
manner, the increase (or decrease) can be high for somespliaddow for others,
etc.

A (non-probabilistic) HPM is defined by a quadruplét ¢, €, 7), where

— Sis a set of states representing the different phaSesntains two special states,
start andend, which are used to initiate and conclude a sequence, réspgct

-6 :8 xS — {0,1} is a function describing the authorized transitions betwee
states. We denot@ut(s) as the set of states that can be reached ffohote that if
s € Out(s) then there is a loop on state

— e is a function that associates each stateS with an interval of integers defin-
ing the minimal and maximal differences of steps that cardserved between times
andt — 1 when genes are in stateat timet. For example, i£(s) = [1, 3], this means
that if the genes of the component are in phasa timet then the step difference
(I; — l;—1) is between 1 and 3 (so phaséncreases the expression level).

— 7 is a function that associates each stateS with the interval of time the state
can be reached. For exampler{fs) = [3, 5] then the genes can be in statketween
times 3 and 5 included.

An HPM example is depicted in Figure 1.

Now we can see how to express our prior knowledge with an HP&tu&lly an
HPM defines a set afompatiblestep sequences. We say that a step sequenee
Iy ...lp is compatible with an HPM{ if there is a state sequengg. . . sp1 —with
sg = start andsp1 = end— in H, which is compatible with.. And we say that a
state sequencs . . . s is compatible withl. iff for each timel < ¢ < T we have:
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1) ¢t included in the time intervat(s;);

2)Vt > 2, (I; — l;—1) included ine(s;); for t = 1, as we do not knowy, the genes
can be in any phase s can be any state.

Considering the step sequence on the top of Figure 2, a cdrtgophase sequence in
the HPM of Figure 1is, for exampletart—I —[—[—1—S—D—D—D— D —end.
For the step sequence on the bottom, there is no compatibepdequence in this
HPM. In brief, building an HPM involves designing an HPM suhkht the compatible
sequences have the desired profile. For example, the HPMjofd-1 is well suited
for the discovery of bell curve classes.

2.2.2. Probabilistic HPMs

Non probabilistic HPMs can be used to express strong cantsrénat describe
an expected profile. For more complex knowledge, and whenaowveod have any
information about profiles and just want to express the faat we are dealing with
time series data, these models can be unsuitable. Thenhplistie HPMs can be
more suitable.

A probabilistic HPM is defined by a quintuplé$, ¢, ¢, 7, w), whereS, 4, ¢, andr
are the same as for non-probabilistic HPMs, andS x S — R is a function asso-
ciating a weight with each authorized transition. Thesegies are used to compute
the transition probabilities from state to state. Due totilme constraints associated
with the states by way of thefunction, transition probabilities are time dependent, so
we cannot simply label transitions with a probability as éd for classical HMMs.
In contrast, the probability, denoted Bés|s’, t), to reach state from states’ at time
t is computed as follows:

0ift ¢ 7(s);

w(s)/ (Zs”eOut(S/)|t€T(S//)w(S//)) else [4]

P(s|s',t) = {

One example of probabilistic HPM is depicted in Figure 2.

Probabilistic HPMs also define compatible step sequenceseder, all compat-
ible sequences do not have the same probability. .dte a probabilistic HPM and
S = sg,s1...587, 741 a state sequence in this HPM. The probability of this seqaenc

given H is defined by
T+1

P(S|H) = [ P(stlsi—1,t). [5]

t=1

How can probabilistic HMPs be used to take time dependem¢esccount? In-
formally speaking, taking these dependences into accoaahmthat we are seeking
relatively “regular” profiles, in contrast to chaotic spigyofiles as that depicted on
the bottom of Figure 2. This knowledge can be easily expressth the probabilistic
three-states HPM of Figure 2: one staigifiduces increasing steps, ong)(induces
a decrease, and the last)(induces stability. Moreover, it is assumed that, at each
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Ly T

Figure 2. Left, a probabilistic HPM for clustering expression seriwghout prior
knowledge about the form of the profiles. Right, two exanyfletep sequences

time, the probability of staying in the same state is highantthe probability of leav-
ing (weights on loops are higher than on other transitiombjs HPM is compatible
with any step sequence of length 9. However all sequencestdwme the same prob-
ability, and spiky sequences involving many state changesat favored. Of course
many variants and refinements are possible by changing tightaessociated with
transitions, or using additional states.

Note that given a step sequenicethere are potentially many state sequences com-
patible with L. In reference to the HMM literature, the sequence of phases c
patible with L which has the highest probability is called thféerbi sequencef
L (Rabiner, 1989), and is denoted B$ = v§ ...v%, ;. For example, the Viterbi
sequences —and, in this example, sole compatible sequenctthe two step se-
guences of Figure 2 in the HPM of Figure 2, atert — [ —I -1 -1 —-S—-D—D —
D—D—endandstart —I — I —D—1—D—S—1—D—1I— end, respectively.

2.2.3. Defining prior with HPMs

First we assume that prior probabilities of parameters.. ando?, are indepen-
dent, as well as th€' sets of parameters, and(c?,...,02;), i.e., the probability
distribution can be written as:

c c
P(©) = P(m,...,mc) [[ P(Le) [[ P(o2).- .. o2,
c=1 c=1
Next we assume that distributiod¥71, ..., 7c) and P(c?,,..., %) are uninfor-

mative and that probabilitieB(L..) are the only ones that express our knowledge.

Letc be acomponentand, a non probabilistic HPM associated with this class. A
prior distribution of parameterk,. can be defined witli/, by assuming that the step
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sequences incompatible witti, have probability zero while compatible sequences
have all the same probability, i.e.,

0 if L is incompatible withH ;

P(L|H,) = { P

(6]
with K. such thatZLeLT P(L|H.) = 1, with L1 being the set of lengti” se-
guences.

For probabilistic HPM, we want the prior probability of a gteequencd. to be
proportional to the Viterbi sequence bfin H,.. Then, we set

__ | 0if Lisincompatible withH ;
P(LIH) = { K/ P(VL|H,) else [7]

with K/ suchthad ;. P(L|H.) = 1. For example, for the HPM of Figure 2, the
prior probabilities of the two step sequences are propuatito1/3 - 10/13 - 10/13 -
10/13-1/13-1/13-10/13-10/13-10/13-1/13 ~ 3-1075 and1/3-10/13-1/13-
1/13-1/13-1/13-1/13-1/13-1/13 - 1/13 ~ 3 - 10719, respectively. The spiky
sequence is then less likely than the other one, which agrigesur prior intuition.

A prior distribution of the step sequences of lenfftitan then be defined with a
probabilistic or a non-probabilistic HPM. In practice, arranore components can be
associated with a given HPM (e.g. that of Figure 1), and therbtnes with a less
informative HPM like that of Figure 2. We then have

C
P(©) o [T P(Le|He). [8]

c=1

2.3. Learning

Here we describe the learning algorithm used to estimatenpeterso© of the
mixture model. It is an EM algorithm that searches for par@nsethat maximize
Expression (3). We only give the algorithm used for prohstiil HPMs, since that
for non-probabilistic ones can be easily adapted.

Let us first define theomplete-datdikelihood. Likelihood of Expression (1) is
actually the incomplete-data likelihood, since the reahponents of serieX’ € X
are unknown. Under the assumption that this set of compsrént {cx €
{1,...,C}, VX € X} is known, the complete-data likelihood can be written as

T
L(©]X,C) = P(X,C|0) = [ mex [[P(xt;lext, 02y)-

Xex t=1

The EM algorithm is an iterative algorithm that starts fromiaitial set of parame-
ters©(©), and iteratively reestimates the parameters at each st girocess. Let
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Q(©,0) denote the expectation, on the space of the hidden variébtéshe loga-
rithm of the complete-data likelihood, given the observathd’ and parameter® ()
at stepi:

Q(0,09) = E[1og P(¥,C|0)|x,00]

= ) log P(X,C|®)P(C|X,01),
ceC

with C being the space of valu€scan take.(Dempstet al., 1977) show that one can
maximize Expression (3) by searching for, at each step odldp@rithm, the parame-
ters that maximize the quantity

Q(0,09) +1og P(O). [9]

After some calculus —see for example (Bilmes, 1997) for itketa this expression
can be rewritten as

Q(©,09) +1og P(© Z Z log me P(c|X,0@)+

c=1XeXx

C
> > log P(X|e,©) Pc|X,0%) + log P(O).

c=1XeX

Integrating Expressions (8), (7) and (5), and noting tRatare independent a®,
maximizing the above expression involves maximizing

c
Z Z log meP(¢| X, 0™+

c=1XeX
T

C
SIS D tog Plailler, o) Plel X, 00)+

c=1[t=1 XeX

T+1
ZlogP(vfﬂvfﬁ,t) , [10]

t=1

with vy . ’UT+1 the Viterbi sequence of the step sequehgén the HPMH.,.. Since
the two terms of this expression are not related, themeean be estimated by maxi-
mizing the first term. Using Lagrange multiplier we get:

T = leZ (c|X,0). [11]

XeXx
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For thef., we maximize the second term of Expression (10). This ire®mdepen-
dently maximizing, for each componeantthe quantity

T T
> D log Plarller, 02 P(cl X, 00) + 3 log Py [viy, 1) [12]
Xex t=1 t=1
Note that, due to the independence assumptions betwees) fion@ach time, given
a ste, one can easily compute thé, that maximizes the above quantity: it is simply

thes?,, denoted as?,, that maximizes the sum

> log P(ax|l,07,)P(c|X,0W),
XeXx

Taking the derivative of this expression with respectfpand setting it at zero, we
get:

a?tl = ZXGX(xt - m(l))QP(c|lX7®(i))
ZXEX P(ClX’ 9(1))

(13]

For L. the situation is quite different since itis involved in thepeession ofP(©).
The L. that maximizes Expression (10) depends both on the datamitd Witerbi
path in H, and hence the different steffs of L cannot be estimated independently.
However, the step space is of finite size, so the space ofdpessfjuences of length
T is also finite. One way to compute the néy would be to enumerate all possible
step sequences and then select the one that maximizes EwxpréK)). This involves
searching for the step sequence= [}, ...![%, that maximizes

Ze(L=11...17) = Y [log P(oFofy, 1)+
t=1

> log P(aily, 02, ) Pc| X, 09) |, [14]
XeXx

with C’fut computed with Formula (13). However, as the total numbeeofthT
sequences is equal fad”', enumerating them all is clearly not suitable. We give here
a polynomial solution to this problem. It is a dynamic pragraing algorithm that
makes use of the variable; (!, s), defined as the best scafe(l; ...[;) —related to
expression (14)— that can be achieved with a step sequerergih; that ends on
stepl and states at timej :

J
dei(l,s) = max max log P(s¢|st—1,t)+
- lj. €L | ;=1 Sq...8;=s

and(1;—1;_1)€e(s) t=1

> P(c|X,09)log P(xlls, 07,,) |
Xex
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By induction we have

Ocj+1(ls) = max  maxde (I s) +log P(s]s’, j + 1)+
(1-1")ee(s)

Z P(C|X7 6(1)) log P(ijrl |Cv lv UgljJrl)' [15]

Xex
With Formula (15) we can iteratively compute, fram= 1 to¢ = T, the best score
Z(l1...lr) that can be achieved with a lendgthsequence. Moreover, in order to be
able to retrieve, at the end of the iterations, the sequédrateactually achieves this
score, one has to keep track of the stepnd states’ that maximize (15) at each step
of the process. This is done by way of the variables(l, s) and®.;(l, s). One can
then write the complete algorithm (see algorithm 1).

Algorithm 1: Research of the optimal step sequence

1 foreachstepl do

computes?,; with Formula (13)

foreachstates do

Se1(l,s) = log P(s|start, 1) + Y~ P(c|X,0W)log P(x1]c, 1, 07)
Xex

2 fort=2toTdo

foreachstepl do

computer?;, with Formula (13)

foreachand states do

0et(l,8) = max max&ct 1(I',8") + log P(s]s’,t) +

1<l/'<M | s'eS
(I—1")€e(s)

> P(c|X,09)log P(ale, 1, 02,)

Xex

U.(l,s) = argmax maxéct 1(I',8") +log P(s]s’, t) +
s'€S

1<U/<M |
(I—1")€e(s)

Z P(c|X, 09D log P(z4c,1,0%,)
Xex
D.4(1, 9) = argmax max Set—1(l',8") + log P(s|s’, t) +

1<lU/<M |
s'€S (1—1")ee(s)

Z P(c|X, 09D log P(z4e,1,0%,)
| xex

I%r = argmaxmax d.r(l, s)
1<IKM s€S

Sep = arsgégaxlgﬁ% der(l, 8)
sfort=T—-1to1do
L Lot = Verr1(Lgg1s Ser1)

t - (I)Ct+1(lct+1a ct+1)
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The loop of line 1 initializes variable®. (I, s) at time 1. The loop of line 2 is the
recursion step. Lines 3 and 4 search for the step and thetlstdtmaximize the score
at time 7', in order to initiate the backtracking step of loop 5.

Let us study the time complexity of this algorithm. The ialization step takes
O(MRN) computing time, withM, R and N being the number of steps of the
discretized mean space, the number of states of the HPM andutmber of series
in the data, respectively. In the recursion stél{M/ RN) operations are done at
each time and for each step-state pair. The total time codtplef this step is then
O(TM?R2N). Lines 3 and 4 tak&(M R) computing time, and the backtracking is
in O(T). The total time complexity of the algorithm is théT M2R>N).

Algorithm 2 : Learning algorithm
Set parameters to initial values
repeat

for c=1toC do
computer’ with Formula (11)

foreachtime ¢t and steg do
| computes?, with Formula (13)
Find the optimal step sequent¢ = [, . .. %, with the dynamic
programming algorithm
ComputeP(X|©)P(0)
until convergence

One can now write the complete learning algorithm —see Allgoer 2. When no
better solution is available, the initial parameter valoas be set randomly. Thanks
to the EM properties, the posterior probabilfy©|x) —and hence?(X'|©) P(©)—
increases at each loop, and the algorithm converges towamhboptimum. A prac-
tical way to detect the convergence is to check the incretasach loop and to stop
the algorithm when this value goes under a given boundarg.tifine complexity of
the the complete learning proceduréiéBCT M2 R2N), with B being the maximal
number of loops of the EM algorithm.

3. Evaluation and experiments

When applied to a given dataset, our method provides a neixhodel, i.e. a set
of profiles (the step sequences) with the variangesassociated with each time and
the prior probabilitiesr.. Moreover, it provides the probability membership of each
gene for each class, and groups the genes according to thetrprobable compo-
nents into clusters. Features of the mixture model are Lisefccess the pertinence
of the clusters. Indeed, sometimes one constrained compomeay fail to collect
“good” genes. This occurs when no gene agrees Withor when the desired genes
are collected by another component with similar constsaifihen, two different sit-
uations can arise. First, the component does not collecgang and its probability
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m. = 0. Second, the component collects some series, but these Havethe desired
profile: the measures, are far fromm(l.;) at one or several time points (there is a
gap between the series ahd) and the variance is high at these points. This situation
can be merely detected by visual inspection, or by checKitiggivalue ofo2, is not
higher than a given threshold.

3.1. Recovering a known class of genes

In order to quantify the advantages of using prior knowlettgecover a particu-
lar class of genes, we first conducted some experiments otaaetanade up of the
original Fibroblast dataset (see Section 3.3 for more Wgtalong with some addi-
tional synthetic series that form a new artificial class.eByi we use a probabilistic
model involving two Gaussian distributions to generatestkigression levels of the ar-
tificial expression series: one Gaussian distribution exus independently generate
the gene expression levels of the first three times, whilether is used for the last
nine times of the series. The mean of the first one is higher tha second, so the
shape of the artificial class looks like a descending stegurEi3 shows an example
of synthetic series generated with this model. We condusgsédral experiments to
recover the synthetic class among all other series, witpitheortion of synthetic data
ranging from 2% to 16% of the total data.

We use two quantities to measure the ability to recover thiicaal class in the
final clustering:recall is the highest proportion of this class that can be found in a
single cluster —so a recall of 100% is achieved when all thiéaal series are in the
same cluster—, angrecisionrepresents the proportion of artificial series in this clus-
ter —so a precision of 100% indicates that all the seriesércthster containing most
artificial series are actually artificial. For each propmmtof synthetic data, we run a
clustering of 11 components with two different methods. Titet one does not use
any prior knowledge about the class of interest, i.e., itagonents are completely un-
constrained —this method can be viewed as a kind of k-measteting. The second
method makes use of the HPM of Figure 3 to constrain the fiestsclleaving the 10
others unconstrained. The experiments were repeated @8 for each proportion
of synthetic data and the results are reported in Figure 4.

Both methods achieve quite good recall, even when the ptiopasf the class of
interest is low. Using prior knowledge gives only slightlgtter results. Concerning
the precision, however, there is a clear difference betvtleertwo methods, and we
can see that the lower the proportion of interesting cldss,higher the benefit of
our method. When the proportion is 2%, for example, the pregiachieved with no
prior knowledge is only about 21% —vs. 65% when using pricowledge—, so the
interesting series are lost among many other series, lgddia class that does not
show the desired profile.
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Figure 3. Left, examples of synthetic expression series added tdtloblfst dataset.
Right, the HPM designed to find the synthetic class amongéia“biological classes
in the fibroblast dataset
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Figure 4. Up: recall (left) and precision (middle) achieved with (sidines) and with-
out (dashed lines) prior knowledge about the class of ister€he x-axes denote the
proportion (in percent) of this class among all the expressieries. Bottom: preci-
sion achieved using different number of components
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Figure 6. Fibroblast dataset. Two profiles obtained with the help ef HPM of Fig-
ure 5

3.2. Number of components

Next we investigated the sensitivity of the method to the henof components.
Determining the number of clusters is a difficult task forchlistering methods. How-
ever, when the aim is to recover a particular class of gertesrthan to infer a global
clustering of the data, the problem is less acute. To ilstthis, we computed, in
100 runs, the precision and recall achieved with variousbemnof constrained and
unconstrained components, with the proportion of synttadta ranging from 2% to
16% of the total data. We tried 1 constrained with 8, 10, 12%&dnconstrained com-
ponents, and 2 constrained with 10 unconstrained compsnaiittrials gave recall
of up to 80% for all proportions of synthetic data (data natveh), and quite good
precision —see bottom of Figure 4. Actually the best resafesachieved with the
highest numbers of components, so giving a sufficiently migimber of components
seems to be a good strategy to efficiently recover the chisfanterest.

3.3. Fibroblast dataset

Next, some experiments to find "real" classes in the Fibstliataset have been
carried out. This is the dataset of (lyetral, 1999). Authors study the response of
human fibroblasts to serum. The expression level of 8613gjeaee been measured
at 12 times, ranging from 15 min to 24 hours after serum sttioh. The authors
selected a subset of 517 genes whose expression changéainsiallg in response
to serum. The same subset, centered and reduced on genesl ibars. First we
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[10,18)

Figure 7. An HPM to find out sinusoidal profiles

clusterized the original data in 10 classes, using only kadge about their temporal
feature, i.e., by constraining all the components with atvVHIRe that of Figure 2.
This clustering leads to 10 profiles relatively similar tosk that (lyeet al,, 1999)
defined by hand after a hierarchical clustering. While méshese classes are well-
defined, within them it is hard to identify genes that show &kjuesponse to the
serum. Only one jumbled class seems to present this feafygedesigned an HPM
specially adapted to such class (see Figure 5). The Statethis HPM models a
potential and short —until time 2, at maximum— delay phadefesover-expression.
Next, 3 states are used to model the increasing phase: thisecquite moderate (at
least 5 steps) during 2 times at least (stateand 12), or heavy (at least 10 steps)
during 1 time (statd3). In both cases, the aim is to observe marked over-expressio
before time 5. The last state models the remainder of the elad is not constrained
—all increases and decreases are allowed. We use a 10 compomi&ture model,
with 3 components constrained with this special HPM, andripgmnents constrained
with an HPM like that of Figure 2.

Classes with the desired profile have been uncovered by thikad. Figure 6
shows the mean profile of two classes. The third class hasyahigi variance at
time 2, and a visual inspection shows that the collecte@settually diverge from
the profile at this point, so the class is not interesting. e classes of Figure 6
differ by the time when genes reach their maximal over-esgiosn —times 3-4 and
times 4-5. Note that these classes show a second increasststs is not specified
in the HPM we used. This illustrates the ability of the methodncover the desired
classes even when their profiles are not completely specified

3.4. Yeast dataset

This is the dataset published in (Spellmetral,, 1998). Authors measure the ex-
pression level of 6178 genes 18 times during slightly moaa ttwo full cell cycles.
We use the same normalization method as in (Spelletah, 1998): the logarithms
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Figure 8. Yeast dataset. Four classes uncovered with the help of thé bffFigure 7

Figure 9. Yeast dataset. Superimposition of the four mean profileseotlasses of
Figure 8

of the data are centered and reduced on the genes, and gahds thot show any
time points higher than 2 or lower than -2 are removed. Tlaidddo a dataset of 1044
expression series. The main aim of the study was to find odéeeggulated genes.
So we look for classes showing a two-time repeat of the sartterpgsince series
span two cell cycles), i.e., classes with sinusoidal sh@pe.HPM of Figure 7 is de-
signed for this purpose. It detects profiles that show whethgper part of the HPM)
2 concave patterns —a concave pattern being an increasevéallby a decreasing
phase— eventually with a third increasing phase, or (lovager @f the HPM) 2 convex
patterns eventually followed by a third decreasing phasehlncrease or decrease
can be followed by a short (one time) stability phase, andithe constraints of the
7 functions require the convex or concave patterns to be Bogiatributed between
first nine and last nine times.

A 20 component mixture model has been used for the clustefing 10 first com-
ponents have been constrained with HPM of Figure 7, while.thether components
were not constrained to sinusoidal profiles but by the pridistib HPM of Figure 2.
Many classes that seem to be regulated by the cell cycle heame tncovered in this
way. Figure 8 shows four of theses classes. These four diffahe times genes
are over- or under-expressed. When superimposing the niefilep of these classes
on the same graph (see Figure 9), shifts between the diffemgrima and maxima
achieved can be seen.
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4. Conclusions

We proposed a Bayesian approach for the clustering of shuoetderies. This ap-
proach can be used to integrate prior knowledge about therglgorofile of the classes
of interest, or to deal with the temporal nature of the datamho prior knowledge is
available. It makes use of a new type of model close to HMMsleacall a Hidden
Phase Model. A mixture model is used to model the series, aokd eomponent of
the mixture is associated with a given HPM. This defines tiar probability distri-
bution of the parameters of the class. Then an EM algorithusésl to estimate the
parameters of the mixture in maximizing its posterior piaility.

Applied to two different datasets —(Spellmanal., 1998) et (Ilyeet al., 1999)—,
our method shows good performance and ability to efficiamigover classes of genes
with the desired profiles. In practice, appropriate HPMs lsardesigned easily and
naturally. We experimentally observed on a mixture of reltand synthetic data that
the benefit of the method increases when the number of expnessries composing
the classes of interest decreases with respect to the totaber of series, and that it
can be really interesting when this number is very small.

Many improvements seem possible on this basis. Indeed; kitlogvledge can be
integrated in the HPMs. For example, knowledge about theetbmean expression
level —and not about thevolutionof the expression has it is done— could be easily
added. Another improvement would be to introduce long-eadgpendences, i.e.,
to constrain differences of expression not only betweerseoutive times but also
between separate times. For example, this would allow uiolate that the profiles
should achieve their maximum at a specific titne
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