
Clustering Gene Expression Series with Prior

Knowledge

Laurent Bréhélin

Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier
161, rue Ada, 34392 Montpellier Cédex 5, France

brehelin@lirmm.fr

Abstract. Microarrays allow monitoring of thousands of genes over
time periods. Recently, gene clustering approaches specially adapted to
deal with the time dependences of these data have been proposed. Ac-
cording to these methods, we investigate here how to use prior knowledge
about the approximate profile of some classes to improve the classifica-
tion result. We propose a Bayesian approach to this problem. A mixture
model is used to describe and classify the data. The parameters of this
model are constrained by a prior distribution defined with a new type
of model that can express both our prior knowledge about the profile of
classes of interest and the temporal nature of the data. Then, an EM
algorithm estimates the parameters of the mixture model by maximizing
its posterior probability.
Supplementary Material:

http://www.lirmm.fr/~brehelin/WABI05.pdf

1 Introduction

Technological advances such as microarrays allow us to simultaneously measure
the level of expression of thousands of genes in a given tissue over time —for
example along the cell cycle [1]. In the following, such a series of gene expression
measurements is called an expression series. One common problem of gene ex-
pression data analysis is the identification of co-regulated genes. This problem
naturally turns into a gene clustering problem. Until recently, expression series
have been analyzed with methods that do not take the time dependences into ac-
count. Such methods include hierarchical clustering with Euclidean distance [2],
k-means approaches [3, 4] and the Self Organizing Maps [5, 6]. Since these meth-
ods are unable to explicitly deal with the data order, permuting two or more time
points in all series does not change the clustering result. A few methods specially
adapted to expression series have recently been proposed. These methods involve
probabilistic modeling of the data. For example, [7] use autoregressive models
of order p. [8] use cubic splines with a probabilistic component to model the
classes, while [9] model each class of gene with Hidden Markov Models (HMMs)
[10].

Our aim here is to investigate how to explicitly use rough prior knowledge
about the general shape of interesting classes. By general shape, we mean ele-
mentary and potentially incomplete information about the evolution of the mean

expression level of the classes over time. This can, for example, be knowledge
like: “Classes with increasing expression level”, “Classes with bell curve shapes”,

“Classes with high expression level in the beginning of the series”, etc. Of course
we do not know the profile of all the gene classes, but sometimes we are more
concerned with one or more classes. For example, in the study of [1] on the
Yeast cell cycle, the authors are interested in finding the cycle-regulated genes,
and thus look for sinusoidal shape classes. In a similar way, we sometimes search
for genes which tend to be quickly over- (or under-) expressed at the beginning
of the series —in response to a given treatment, for example. A problem of im-
portance that arises when the awaited classes are sparse —i.e., there are few
interesting genes with regards to all the other ones— is that standard methods
can completely omit these classes. This results in a final clustering where the
interesting genes are lost among many other genes, in one or more classes that
do not show the desired profile.

The approach we propose here tackles this problem. When information about
one or several class shapes are available, these are directly integrated into the
model, thus favoring classes with the desired profiles, and putting the other genes
in separate classes. On the other hand, when no a priori information is avail-
able, the method allows a classical clustering of the series that deals with the
temporal nature of the data in a very intuitive way.We use a Bayesian approach
for this purpose. The approach involves two types of models. The first one is a
probabilistic mixture model used to describe and classify the expression series.
Parameters of this model are unknown and have to be estimated for the cluster-
ing. A second model, close to the HMMs and called HPM —for Hidden Phase

Model—, is used to express our a priori knowledge (or simply the temporal fea-
ture of the data). We define two types of HPMs which can be used according to
the situation: probabilistic and non-probabilistic HPMs. These models are com-
pletely specified by the user, and their parameters do not have to be estimated.
They are used to define a prior probability distribution over the parameters of
the mixture model. These parameters are estimated by maximizing the posterior
probability of the model through an EM algorithm [11].

The next section presents our method, the mixture model, the two types of
HPMs and the learning algorithm. In Section 3 we evaluate our method. We
conclude in Section 4.

2 Method

2.1 Principle

Let X be a set of N expression series of length T . We assume that the data
arise from a mixture model [12] with C components. We denote πc as the prior

probability of component c, and we have
∑C

c=1 πc = 1. We assume that con-
ditionally to component c, expression values at each time t ∈ [1, T] are in-
dependent and follow a Gaussian distribution of mean µct and variance σ2

ct.
The shape of component c is defined by the sequence of means µc1 . . . µcT .

We then have a probabilistic model of parameters Θ = (π1, . . . , πC , θ1, . . . , θC)
with θc = (µc1, . . . , µcT , σ2

c1, . . . , σ
2
cT

). The probability of an expression series
X = x1 . . . xT in this model is

P (X |Θ) =

C
∑

c=1

πc

T
∏

t=1

P (xt|µct, σ
2
ct),

with P (xt|µct, σ
2
ct) = N (xt; µct, σ

2
ct). Under the assumption that series of X are

independent, the likelihood of Θ is given by

L(Θ|X) = P (X|Θ) =
∏

X∈X

P (X |Θ). (1)

In a clustering task, the standard approach to classify a set of expression se-
ries X involves estimating parameters Θ that maximize Formula (1) (Maximum
Likelihood Principle), and then assigning the most probable component cMAP

(MAP stands for maximum a posteriori) to each series X ∈ X :

cMAP = argmax
c=1...C

P (c|X, Θ) = argmax
c=1...C

πcP (X |c, Θ) (2)

Note that finding parameters Θ that maximize (1) is a difficult task. However,
approximate solutions can be inferred with EM algorithms [11].

The above mixture model does not explicitly take into account the potential
dependences between times, nor any prior knowledge about the profile of the
most interesting classes. Our aim is to constraint one or some components to
follow a given profile, while leaving the other components free of constraints so
that they can “collect” the expression series that do not have the desired profile.
For example, if we are looking for classes with bell curves, we would build a 10
component model, with 5 bell-constrained and 5 unconstrained components. We
thus propose to use a Bayesian approach, which introduces knowledge by way
of a prior distribution of Θ —see for example [13] for a general introduction
to Bayesian theory. Simply speaking, our idea is to define a prior distribution
P (Θ) which is merely the product of the prior probability of the sequences of
means µc1 . . . µcT associated with each component. Moreover, we want the prior
probability of a given mean sequence for component c as follows: (i) the more
the sequence agrees with the constraints associated with c, the higher its prior
probability; (ii) sequences that disagree with the constraints have probability
zero.

With a prior, we can write the posterior probability of Θ as

P (Θ|X) =
P (X|Θ)P (Θ)

P (X)
∝ P (X|Θ)P (Θ). (3)

In this Bayesian framework, parameters Θ are estimated by maximizing the pos-
terior probability —Equation (3)— instead of the likelihood —Expression (1).
However, maximizing the posterior probability is generally more difficult than
maximizing the likelihood. For example, the classical re-estimation formulae of

the EM algorithm do not directly apply and, depending on the form of the chosen
prior distribution, it may be hard to perform the task in reasonable time.

In our case, we first discretize the space of the means µct in order to be able to
introduce various bits of knowledge and constraints about the profiles, as well as
to efficiently estimate the parameters of the model. Since we know the maximal
and minimal expression values taken by the series in X (say xmax and xmin),
we already know an upper and lower bound of the space of the means. Now
we discretize this space in M equidistant steps, so that the lower and higher
steps are equal to xmin and xmax, respectively. Of course M is chosen to be
sufficiently large (e.g. M = 30) to allow accurate representation of the data.
Steps are named by their number, so M is the highest step. In this discretized
mean space, our probabilistic model is re-defined as Θ = (π1, . . . , πC , θ1, . . . , θC)
with θc = (lc1, . . . , lcT , σ2

c1, . . . , σ
2
cT

), with lct ∈ {1, . . . , M}. We denote m :
{1, . . . , M} → [xmin, xmax] as the map function that associates step l with its
expression level. The probability of an expression series X ∈ X is rewritten as

P (X |Θ) =

C
∑

c=1

πc

T
∏

t=1

P (xt|lct, σ
2
ct),

with P (xt|lct, σ
2
ct) = N (xt; m(lct), σ

2
ct) that follows a Gaussian distribution of

mean equal to the level of expression associated with step lct, and variance σ2
ct.

In the following, the step sequence lc1 . . . lcT associated with class c —and which
defines its shape— is denoted as Lc. Note finally that the discretization only
involves the means of the model, and not the space of the expression levels of
the data. These, as well as the model variances σ2

ct, remain in a continuous space.

2.2 Defining the prior distribution

Fist we define a new type of model called Hidden Phase Models (or HPMs),
close to models like HMMs and finite automata [14]. These HPMs are used to
express the desired profiles of the components, and each component c is then
associated with a given HPM Hc. We define two types of HPMs: probabilistic
and non-probabilistic HPMs. We next show how to derive the prior distribution
of Θ from the HPMs.

Hidden Phase Models The general assumption behind HPMs is that the
genes of a given component pass through phases or biological states over the
time. This means that, for a given component, we assume that some ranges of
consecutive times actually correspond to the same biological state. These phases
are hidden, but they affect the mean expression level evolution of the component.
For example, some phases induce an increase in the mean level expression level
while others tend to decrease or stabilize the level. In the same manner, the
increase (or decrease) can be high for some phases and low for others, etc.

A (non-probabilistic) HPM is defined by a quadruplet (S, δ, ǫ, τ), where

– S is a set of states representing the different phases; S contains two special
states, start and end, which are used to initiate and conclude a sequence,
respectively.

– δ : S×S 7→ {0, 1} is a function describing the authorized transitions between
states. We denote Out(s) as the set of states that can be reached from s.

– ǫ is a function that associates each state s ∈ S with an interval of integers
defining the minimal and maximal differences of steps that can be observed
between times t and t − 1 when genes are in state s at time t. For example,
if ǫ(s) = [1, 3], this means that if the genes of the component are in phase s
at time t then the step difference (lt − lt−1) is between 1 and 3 (so phase s
increases the expression level).

– τ is a function that associates each state s ∈ S with the interval of time the
state can be reached. For example, if τ(s) = [3, 5] then the genes can be in
state s between times 3 and 5 included.

An HPM example is depicted in Figure 1.

start end

A S D

[+1, +M]
[1, 7]

[0, 0]
[4, 7]

[−M,−1]
[4, 9]

Fig. 1: An HPM for clustering 9-time expression series. In each state, upper and lower
intervals represent the step-difference and time intervals associated with the state,
respectively. This HPM induces bell curve shapes.

Now we can see how to express our prior knowledge with an HPM. Actually
an HPM defines a set of compatible step sequences. We say that a step sequence
L = l1 . . . lT is compatible with an HPM H if there is a state sequence s0 . . . sT+1

—with s0 = start and sT+1 = end— in H , which is compatible with L. And
we say that a state sequence s0 . . . sT+1 is compatible with L iff for each time
1 ≤ t ≤ T we have: i) t included in the time interval τ(st); ii) ∀t ≥ 2, (lt − lt−1)
included in ǫ(st) —for t = 1, as we do not know l0, the genes can be in any phase
so s1 can be any state. Considering the step sequence on the top of Figure 2, a
compatible phase sequence in the HPM of Figure 1 is, for example, start− A−
A − A − A − S − D − D − D − D − end. For the step sequence on the right,
there is no compatible phase sequence in this HPM. In brief, building an HPM
involves designing an HPM such that the compatible sequences have the desired
profile. For example, the HPM of Figure 1 is well suited for the discovery of bell
curve classes.

Probabilistic HPMs Non probabilistic HPMs can be used to express strong
constraints. They are generally sufficient to express knowledge about simple or
well defined profiles. For more complex knowledge, or when we do not have any
information about profiles and just want to express the fact that we are dealing
with series data, these models can be unsuitable. Then probabilistic HPMs can
be more suitable.

A probabilistic HPM is defined by a quintuplet (S, δ, ǫ, τ, w), where S, δ, ǫ,
and τ are the same as for non-probabilistic HPMs, and w : S × S 7→ R

+ is
a function associating a weight with each authorized transition. These weights
are used to compute the transition probabilities from state to state. Due to the
time constraints associated with the states by way of the τ function, transition
probabilities are time dependent, so we cannot simply label transitions with a
probability as is done for classical HMMs. In contrast, the probability, denoted
as P (s|s′, t), to reach state s from state s′ at time t is computed as follows:

P (s|s′, t) =

{

0 if t /∈ τ(s);

w(s)/
(

∑

s′′∈Out(s′) | t∈τ(s′′) w(s′′)
)

else.
(4)

One example of probabilistic HPM is depicted in Figure 2.

1

1

1

1 1

1
1

10

10

10

1

1

1

1

start end

[−M,−1]
[1, T]

[+1, +M]
[1, T]

[0, 0]
[1, T]

I

S

D

1
1

M

T

11

M

T

Fig. 2: Left, a probabilistic HPM for clustering expression series without prior knowl-
edge about the form of the profiles. Right, two examples of step sequences.

Probabilistic HPMs also define compatible step sequences. Moreover, all com-
patible sequences do not have the same probability. Let H be a probabilistic
HPM and S = s0, s1 . . . sT , sT+1 a state sequence in this HPM. The probability
of this sequence given H is defined by

P (S|H) =

T+1
∏

t=1

P (st|st−1, t). (5)

This model enables us to introduce more knowledge about the desired classes.
For example, when we do not have any information about interesting profiles,
the only thing we know is that we have to classify expression series. This means
that we are seeking relatively “regular” profiles, in contrast to chaotic spiky
profiles as that depicted on the bottom of Figure 2. This knowledge can be
easily expressed with the probabilistic three-states HPM of Figure 2: one state
(I) induces increasing steps, one (D) induces a decrease, and the last (S) induces
stability. Moreover, it is assumed that, at each time, the probability of staying
in the same state is higher than the probability of departure from it (weights
on loops are higher than on other transitions). This HPM is compatible with

any step sequence of length 9. However all sequences do not have the same
probability, and spiky sequences involving many state changes are not favored.

Note that given a step sequence L, there are potentially many state sequences
compatible with L. In reference to the HMM literature, the sequence of phases
compatible with L which has the highest probability is called the Viterbi sequence

of L [10], and is denoted as V L = vL
0 . . . vL

T+1. For example, the Viterbi sequences
of the two step sequences of Figure 2 in the HPM of Figure 2, are start− I − I−
I−I−S−D−D−D−D−end and start−I−I−D−I−D−S−I−D−I−end,
respectively.

Defining prior with HPMs First we assume that prior probabilities of pa-
rameters πc, Lc and σ2

ct are independent, as well as the C sets of parameters Lc

and (σ2
c1, . . . , σ

2
cT

), i.e., the probability distribution can be written as:

P (Θ) = P (π1, . . . , πC)
C
∏

c=1

P (Lc)
C
∏

c=1

P (σ2
c1, . . . , σ

2
cT).

Next we assume that distributions P (π1, . . . , πC) and P (σ2
c1, . . . , σ

2
cT

) are un-
informative and that probabilities P (Lc) are the only ones that express our
knowledge.

Let c be a component and Hc a non probabilistic HPM associated with
this class. A prior distribution of parameters Lc can be defined with Hc by
assuming that the step sequences incompatible with Hc have probability zero
while compatible sequences have all the same probability, i.e.,

P (L|Hc) =

{

0 if L is incompatible with Hc;
Kc else,

(6)

with Kc such that
∑

L∈LT
P (L) = 1, with LT being the set of length T sequences.

For probabilistic HPM, we want the prior probability of a step sequence L
to be proportional to the Viterbi sequence of L in Hc. Then, we set

P (L|Hc) =

{

0 if L is incompatible with Hc;
K ′

c · P (V L|Hc) else,
(7)

with K ′
c such that

∑

L∈LT
P (L) = 1. For example, for the HPM of Figure 2, the

prior probabilities of the two step sequences are proportional to 1/3 · .7 · .7 · .7 ·
.1 · .1 · .7 · .7 · .7 · .1 ∼ 3.9 · 10−5 and 1/3 · .7 · .1 · .1 · .1 · .1 · .1 · .1 · .1 · .1 ∼ 2.3 · 10−10,
respectively. The spiky sequence is then less likely than the other one, which
agrees with our prior intuition.

A prior distribution of the step sequences of length T can then be defined with
a probabilistic or a non-probabilistic HPM. In practice, one or more components
can be associated with a given HPM (e.g. that of Figure 1), and the other ones
with a less informative HPM like that of Figure 2. We then have

P (Θ) ∝

C
∏

c=1

P (Lc|Hc). (8)

2.3 Learning

Here we briefly describe the learning algorithm used to estimate parameters Θ
of the mixture model. A more detailed version can be found in the supplemen-
tary information material1. It is an EM algorithm that searches for parameters
that maximize Expression (3). We only give the algorithm used for probabilistic
HPMs, since that for non-probabilistic ones can be easily adapted.

Let us first define the complete-data likelihood. Likelihood of Expression (1)
is actually the incomplete-data likelihood, since the real components of series
X ∈ X are unknown. Under the assumption that this set of components C =
{cX ∈ {1, . . . , C}, ∀X ∈ X} is known, the complete-data likelihood can be
written as

L(Θ|X , C) = P (X , C|Θ) =
∏

X∈X

πcX

T
∏

t=1

P (xt; lcXt, σ
2
cXt).

The EM algorithm is an iterative algorithm that starts from an initial set of
parameters Θ(0), and iteratively reestimates the parameters at each step of the
process. Let Q(Θ, Θ(i)) denote the expectation, on the space of the hidden vari-
ables C, of the logarithm of the complete-data likelihood, given the observed
data X and parameters Θ(i) at step i:

Q(Θ, Θ(i)) =
∑

C∈C

log P (X , C|Θ)P (C|X , Θ(i)),

with C being the space of values C can take. From [11], one can maximize
Expression (3) by searching at each step of the algorithm for parameters π∗

c , L∗
c

and σ2
ct

∗
that maximize the quantity

Q(Θ, Θ(i)) + log P (Θ). (9)

Since P (Θ) is not related to the parameters πc, after some calculus, an expression
can be derived for π∗

c that maximizes Expression (9):

π∗
c =

1

|X |

∑

X∈X

P (c|X, Θ(i)). (10)

Now, due to our independence assumptions, one can estimate the Lc and σ2
ct

that maximize Expression (9) for each component c independently. As for pa-
rameters πc, σ2

ct are not involved in the expression of P (Θ). Moreover, since the
σ2

ct associated with time t is independent of all the other times, the expression
of σ2

ct

∗
that maximizes (9) depends solely on the step l∗ct in L∗

c :

σ2
ct

∗
=

∑

X∈X (xt − m(l∗ct))
2P (c|X, Θ(i))

∑

X∈X P (c|X, Θ(i))
. (11)

1 http://www.lirmm.fr/~brehelin/WABI05.pdf

For Lc the situation is quite different since it is involved in the expression of
P (Θ). The Lc that maximizes Expression (9) depends both on the data and
on its Viterbi path in Hc and hence the different steps l∗ct of L∗

c cannot be
estimated independently. However, the step space is of finite size, so the space
of the step sequences of length T is also finite. One way to compute the new Lc

would be to enumerate all possible step sequences and then select the one that
maximizes Expression (9). However, as the total number of length T sequences
is equal to MT , enumerating them all is clearly not suitable. Instead, we use
a dynamic programming approach that iteratively computes the best sequence
without enumerating all the solutions. Briefly, for each step l and each time t,
we compute iteratively, from t = 1 to T , the best sequence —with regard to
Expression(9)— that ends on step l at time t. At each iteration and for each
step l, this best sequence is computed using the results of the previous iteration,
and at the end of the process the best sequence L∗

c has thus been computed in
polynomial time.

The learning algorithm is depicted in Figure 3. When no better solution
is available, the initial parameter values can be set randomly. Thanks to the
EM properties, the posterior probability P (Θ|X) —and hence P (X|Θ)P (Θ)—
increases at each loop of the algorithm, until a local optimum is reach. Then it
continues to increase but to a much lesser extent. A practical way to detect the
convergence is to check the increase at each loop and to stop the algorithm when
this value goes under a given boundary.

Set parameters to initial values1

repeat2

for c = 1 to C do3

compute π∗

c with Formula (10)4

Find the optimal step sequence L∗

c = l∗c1 . . . l∗cT with the dynamic5

programming algorithm
foreach time t do compute σ2

ct

∗

from l∗ct with Formula (11)6

Compute P (X|Θ)P (Θ)7

until convergence8

Fig. 3: Learning algorithm

The total time complexity of the learning algorithm is O(BCTM2R2N) —see
supplementary information for details—, with B, C, T , M , R and N the maximal
number of loops of the EM algorithm, the number of components of the mixture
model, the number of time points of the data, the size of the step space, the
maximal number of states of the HPMs, and the number of expression series to
classify, respectively. In practice, N is potentially high (some thousands), T and
R are relatively low (ten or less), M is around thirty, and less than one hundred
loops are generally sufficient to ensure convergence. For the experiments in the
next section for example, computing times on a 2 GHz Pentium 4, range from
20 seconds to 3 minutes according to the dataset, the type of HPMs and the
number of components.

3 Experiments

In order to quantify the advantages of using prior knowledge to recover a partic-
ular class of genes, we first conducted some experiments on a dataset made up of
the original Fibroblast dataset of [15] (see Supplementary Information for more
details), along with some additional synthetic series that form a new artificial
class. Briefly, we use a probabilistic model involving two Gaussian distributions
to generate the expression levels of the artificial expression series: one Gaussian
distribution is used to independently generate the gene expression levels of the
first three times, while the other is used for the last nine times of the series.
The mean of the first one is higher than the second, so the shape of the artifi-
cial class looks like a descending step. Figure 4 shows an example of synthetic
series generated with this model. We conducted several experiments to recover
the synthetic class among all other series, with the proportion of synthetic data
ranging from 2% to 16% of the total data.

We use two quantities to measure the ability to recover the artificial class in
the final clustering: Recall is the highest proportion of this class that can be found
in a single cluster —so a recall of 100% is achieved when all the artificial series are
in the same cluster—, and precision represents the proportion of artificial series
in this cluster —so a precision of 100% indicates that all the series in the cluster
containing most artificial series are actually artificial. For each proportion of
synthetic data, we run a clustering of 11 components with two different methods.
The first one does not use any prior knowledge about the class of interest, i.e.,
its components are completely unconstrained —this method can be viewed as
a kind of k-means clustering. The second method makes use of the HPM of
Figure 4 to constrain the first class, leaving the 10 others unconstrained. The
experiments were repeated 100 times for each proportion of synthetic data and
the results are reported in Figure 5.

Both methods achieve quite good recall, even when the proportion of the
class of interest is low. Using prior knowledge gives only slightly better results.
Concerning the precision, however, there is a clear difference between the two
methods, and we can see that the lower the proportion of interesting class, the
higher the benefit of our method. When the proportion is 2%, for example, the
precision achieved with no prior knowledge is only about 21% —vs. 65% when
using prior knowledge—, so the interesting series are lost among many other
series, leading to a class that does not show the desired profile.

Next we investigated the sensitivity of the method to the number of com-
ponents. Determining the number of clusters is a difficult task for all clustering
methods. However, when the aim is to recover a particular class of genes rather
than to infer a global clustering of the data, the problem is less acute. To il-
lustrate this, we computed, in 100 runs, the precision and recall achieved with
various numbers of constrained and unconstrained components, with the pro-
portion of synthetic data ranging from 2% to 16% of the total data. We tried 1
constrained with 8, 10, 12 and 15 unconstrained components, and 2 constrained
with 10 unconstrained components. All trials gave recall of up to 80% for all
proportions of synthetic data (data not shown), and quite good precision —

 2 4 6 8 10 12

start end
[−0, +0]

[1, 3]
[−M,−10]

[4, 4]
[−0, +0]

[5, 12]

Fig. 4: Left, examples of synthetic expression series added to the fibroblast dataset.
Right, the HPM designed to find the synthetic class among the ”real” biological classes
in the fibroblast dataset.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16

1 constrained + 8 unconstrained
1 constrained + 10 unconstrained
1 constrained + 12 unconstrained
1 constrained + 15 unconstrained
2 constrained + 10 unconstrained

Fig. 5: Recall (left) and precision (middle) achieved with (solid lines) and without
(dashed lines) prior knowledge about the class of interest. The x-axes denote the propor-
tion (in percent) of this class among all the expression series. Right, precision achieved
using different number of components.

see the right hand curves in Figure 4. Actually the best results are achieved
with the highest numbers of components, so giving a sufficiently high number
of components seems to be a good strategy to efficiently recover the clusters of
interest.

Experiments to find ”real” classes have also been carried out. We used the
datasets of [15] and [1] with the aim to uncover classes that show a quick over-
expression at the beginning of the series and classes with sinusoidal shape, re-
spectively. Due to space limitations, these experiments have been included in
Supplementary Material.

4 Conclusions

We proposed a Bayesian approach for the clustering of gene expression series.
This approach allows the user to easily integrate prior knowledge about the
general profile of the classes of interest.

We experimentally observed on a mixture of natural and synthetic data that
the benefit of the method increases when the number of expression series com-
posing the classes of interest decreases with regard to the total number of series,
and that it can be really interesting when this number is very low.

Many improvements seem possible on this basis. Indeed, other knowledge
can be integrated in the HPMs. For example, knowledge about the desired mean

expression level —and not about the evolution of the expression has it is done—
could be easily added. Another improvement would be to introduce long-range
dependences, i.e., to constrain differences of expression not only between consec-
utive times but also between separate times. For example, this would allow us
to stipulate that the profiles should achieve their maximum at a specific time t.

Acknowledgements

I thank Olivier Martin, Gilles Caraux and Olivier Gascuel for their help and
comments on this work.

References

1. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Mol Biol Cell 9 (1998) 3273–3297

2. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95 (1998)
14863–14868

3. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Info. Theory IT-2

(1982) 129–137
4. Herwig, R., Poustka, A.J., Muller, C., Bull, C., Lehrach, H., O’Brien, J.: Large-

scale clustering of cDNA-fingerprinting data. Genome Res 9 (1999) 1093–105
5. Kohonen, T.: Self-Organizing Maps. Springer (1997)
6. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E.,

Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-
organizing maps: methods and application to hematopoietic differentiation. Proc
Natl Acad Sci U S A 96 (1999) 2907–2912

7. Ramoni, M.F., Sebastiani, P., Kohane, I.S.: Cluster analysis of gene expression
dynamics. Proc Natl Acad Sci USA 99 (2002) 9121–9126

8. Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T.S., Simon, I.: Continuous
representations of time-series gene expression data. J Comput Biol 10 (2003) 341–
356

9. Schliep, A., Schonhuth, A., Steinhoff, C.: Using hidden markov models to analyze
gene expression time course data. Bioinformatics 19 Suppl 1 (2003) 255–263

10. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77 (1989) 257–285

11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Royal Stat. Soc. B 39 (1977) 1–38

12. McLachlan, G., Krishnan, T.: Finite mixture models. John Wiley (2000)
13. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley (2001)
14. Casacuberta, F.: Some relations among stochastic finite state networks used in

automatic speech recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 12 (1990) 691–695

15. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M.,
Staudt, L.M., Hudson, J.J., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D.,
Brown, P.O.: The transcriptional program in the response of human fibroblasts to
serum. Science 283 (1999) 83–87

