
Explaining Multivariate Decision Trees: Characterising Tractable
Languages

CLÉMENT CARBONNEL, CNRS, University of Montpellier, France
MARTIN C. COOPER∗, IRIT, University of Toulouse, France
EMMANUEL HEBRARD, LAAS CNRS, France
DANY MORALES, IRIT, University of Toulouse, France
JOÃO MARQUES-SILVA, ICREA, University of Lleida, Spain

We study multivariate decision trees (MDTs), in particular, classes of MDTs determined by the language of relations that can
be used to split feature space. An abductive explanation (AXp) of the classification of a particular instance, viewed as a set of
feature-value assignments, is a minimal subset of the instance which is sufficient to lead to the same decision. We investigate
when finding a single AXp is tractable. We identify tractable languages for real, integer and boolean features. Indeed, in the
case of boolean languages, we provide a P/NP-hard dichotomy. We extend this dichotomy to languages defined by formulas
whose literals correspond to splits of ordered domains of arbitrary finite size. Experiments indicate that MDTs can provide
more compact models than classical decision trees while conserving accuracy and explainability.

JAIR Associate Editor: Stefan Szeider

JAIR Reference Format:
Clément Carbonnel, Martin C. Cooper, Emmanuel Hebrard, Dany Morales, and João Marques-Silva. 2026. Explaining Mul-
tivariate Decision Trees: Characterising Tractable Languages. Journal of Artificial Intelligence Research 0, Article 0 (2026),
26 pages. doi: 10.1613/jair.1.xxxxx

1 Background
Decision trees (DTs) are a classical family ofMLmodels. Due to their relative simplicity, DTs are often considered to
be interpretable (with the implicit assumption that they are shallow enough to allow each decision to be explained
by the values of a small number of features). There is considerable interest in their multivariate extension (MDTs)
in which feature-space is split according to conditions on several features rather than on a single feature (Brodley
and Utgoff 1995; Cañete-Sifuentes et al. 2021; Good et al. 2023; Kairgeldin and Carreira-Perpiñán 2024; Zhu et al.
2020). For example, in oblique DTs these conditions are linear inequalities (Barros et al. 2014; Carreira-Perpiñán
and Tavallali 2018; Hada et al. 2024; Heath et al. 1993; Murthy et al. 1994; Rodrigo et al. 2024; Wickramarachchi
et al. 2016). Some authors have extended oblique DTs by building DTs with non-linear conditions (Dhebar et al.
2024) whereas others have limited the linear conditions to at most two features (Bollwein and Westphal 2021). In
this paper we study families of MDTs, parameterized by the language of possible multivariate conditions, from
the point of view of the tractability of explaining decisions.
∗Corresponding Author.

Authors’ Contact Information: Clément Carbonnel, orcid: 0000-0003-2312-2687, clement.carbonnel@lirmm.fr, CNRS, University of
Montpellier, France; Martin C. Cooper, orcid: 0000-0003-4853-053X, cooper@irit.fr, IRIT, University of Toulouse, France; Emmanuel Hebrard,
orcid: 0000-0003-3131-0709, hebrard@laas.fr, LAAS CNRS, Toulouse, France; Dany Morales, IRIT, University of Toulouse, France; João
Marques-Silva, orcid: 0000-0002-6632-3086, jpms@icrea.cat, ICREA, University of Lleida, Spain.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2026 Copyright held by the owner/author(s).
doi: 10.1613/jair.1.xxxxx

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

https://doi.org/10.1613/jair.1.xxxxx
https://orcid.org/0000-0003-2312-2687
https://orcid.org/0000-0003-4853-053X
https://orcid.org/0000-0003-3131-0709
https://orcid.org/0000-0002-6632-3086
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1613/jair.1.xxxxx

0:2 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

𝑏𝑢𝑦 < 𝑣ℎ𝑖𝑔ℎ

safety < 𝑚𝑒𝑑

𝑛𝑜

𝑝𝑒𝑟𝑠𝑜𝑛𝑠 < 3

𝑛𝑜 𝑦𝑒𝑠

𝑚𝑎𝑖𝑛𝑡 < ℎ𝑖𝑔ℎ

safety < ℎ𝑖𝑔ℎ

𝑛𝑜 𝑦𝑒𝑠 𝑛𝑜

Y

Y N

Y N

N

Y

Y N

N

(a) Optimal DT of depth 3

𝑝𝑒𝑟𝑠𝑜𝑛𝑠 < 3 ∨ safety < 𝑚𝑒𝑑

𝑛𝑜

𝑏𝑢𝑦 < ℎ𝑖𝑔ℎ ∨𝑚𝑎𝑖𝑛𝑡 < ℎ𝑖𝑔ℎ

𝑦𝑒𝑠 𝑛𝑜

Y N

Y N

(b) Optimal 2CNF-MDT of depth 2

Fig. 1. Optimal decision tree of depth 3 and 2CNF-Multivariate decision tree for UCI data set car. Features are ‘buying price’
and ‘maintainance price’ in {‘low’, ’med’, ’high’, ’very high’}; ‘doors’ and ‘persons’ in {2, 3, 4,≥ 5}; ‘luggage boot‘ in {‘small’,
’med’, ’big’}; and ‘safety’ in {‘low’, ’med’, ’high’}. The classification task is to decide whether we should purchase the car.

A (possibly multivariate) DT is a binary tree such that each leaf is labelled by a class and each internal node
has two child nodes. At each internal node, the two edges to its child nodes are labelled by a boolean condition 𝐶
and its complement ¬𝐶 . In classical DTs, conditions are univariate, i.e. 𝑥𝑖 ∈ 𝑆 for some feature 𝑥𝑖 and some subset
𝑆 of the domain of feature 𝑥𝑖 . Indeed, for simplicity of learning algorithms, it is often assumed that the domains
are totally ordered and the only conditions are splits of the form 𝑥𝑖 ≥ 𝑎 for constants 𝑎.

We suppose a set of features 𝑥1, . . . , 𝑥𝑛 and a set of classes C. Feature space, denoted F is the cartesian product
of the feature domains. An instance (feature-vector) is an element of F and a classifier is a function 𝜅 : F→ C.

A multivariate condition can be seen as a constraint which can be decomposed into its scope (a list ℓ of features)
and its relation of arity |ℓ |. This allows us to study multivariate decision trees according to the language of
possible constraint relations. For simplicity of presentation, we assume a unique domain 𝐷 for all features. A
relation of arity 𝑘 is a subset of 𝐷𝑘 . A relational language L is simply a set of relations.

Definition 1. Amultivariate decision tree is a decision tree in which the condition tested at a node is a constraint
on any number of features. An L-DT is a multivariate decision tree in which the constraint relations belong to the
language L.

A multivariate DT may be exponentially smaller than a DT. Consider the case of a parity function 𝜅 on 𝑛

boolean features: trivially an L-DT of depth one can capture this function provided the relation corresponding to
the constraint 𝜅 (𝑥) = 1 belongs to the language L, whereas a classical DT would necessarily be of exponential
size. For instance, we give in Figure 1 an optimal decision tree of depth 3 and an optimal multivariate decision of
depth 2 (restricted to disjunctions of two features) for UCI’s data set “car”1. Both have similar accuracies (the test
accuracy of a depth-2 2CNF-MDT is in average 1% higher than that of a depth-3 DTs on this data set). However,
the MDT is shorter and arguably easier to interpret. In particular, it makes it very clear that the most important
features are safety and number of passengers.
Tractable constraint languages have been investigated in the context of the Constraint Satisfaction Problem

(CSP). A CSP instance consists of a set of 𝑛 variables, each with its domain, together with a set of constraints,
where each constraint is defined by its scope (a list of variables) and the relation that must hold on the variables
in this scope. The decision version of the CSP consists in determining whether there exists some assignment

1https://archive.ics.uci.edu/dataset/19/car+evaluation

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

https://archive.ics.uci.edu/dataset/19/car+evaluation

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:3

to all 𝑛 variables in the cartesian product of the domains that satisfies all the constraints. Given a language L
of relations, CSP(L) is the subproblem of the decision version of the CSP in which all relations belong to the
language L. The languages L we consider are, as is classical in CSPs, arbitrary sets of relations that can apply to
any variables/features.

As we will see later, testing whether a subset of the feature assignments comprising the instance is sufficient
to explain the decision involves solving a constraint satisfaction problem consisting of the conditions along
each path to a leaf corresponding to a different decision. In classical DT’s these conditions are unary and the
resulting CSP is trivial, but for multivariate conditions, the resulting CSP is, in general, NP-hard. We will see the
close relationship between tractability of explaining L-DTs and the tractability of CSP(L). However, there is
an important difference. In an MDT, for each edge corresponding to the satisfaction of a relation 𝑅 there is an
alternate edge corresponding to its complement relation ¬𝑅. It follows that in the context of MDTs, it is important
to study languages closed under complement: languages L such that 𝑅 ∈ L ⇒ ¬𝑅 ∈ L. There is large body of
work on the characterisation of languages L for which CSP(L) ∈ P, culminating in a dichotomy theorem in the
finite-domain case (Bulatov 2017; Zhuk 2020). This result implies a similar dichotomy for finite languages closed
under complement, but the dichotomy criterion does not provide an explicit description of the tractable cases.
Although DTs are sometimes considered to be inherently interpretable, it has recently been shown that DT

paths can exhibit significant redundancy, both in theory and in practice, when considered as explanations of
decisions (Izza et al. 2022). In this paper, we therefore study the notion of abductive explanation (AXp) (Ignatiev,
Narodytska, and Marques-Silva 2019; Shih et al. 2018) which can provide a more succinct explanation of a
particular decision than the (M)DT path corresponding to the decision (Izza et al. 2022).

Definition 2. Let 𝜅 be a classifier and v a feature-vector. A weak AXp (weak abductive explanation) of the
decision 𝜅 (v) = 𝑐 is a subset 𝑆 of the features such that any assignment y that agrees with v on the features in 𝑆

satisfies 𝜅 (y) = 𝑐 . An AXp of a decision is a subset-minimal weak AXp.

We study the problem of finding subset-minimal abductive explanations since this is known to be achievable
in polynomial time for DTs whereas finding a minimum-cardinality abductive explanation is NP-hard for
DTs (Barceló et al. 2020). Indeed, this latter problem isW[2]-hard when explanation size is the parameter (Ordyniak
et al. 2024).

A related notion is that of contrastive explanation which explains how to change a decision (Ignatiev, Narodyt-
ska, Asher, et al. 2020).

Definition 3. Let 𝜅 be a classifier and v a feature-vector. A weak CXp (weak contrastive explanation) of the
decision 𝜅 (v) = 𝑐 is a subset 𝑆 of the features such that some assignment y that differs from v only on features in a
subset of 𝑆 satisfies 𝜅 (y) ≠ 𝑐 . A CXp of a decision is a subset-minimal weak CXp.

There is a interesting duality between AXps and CXps of a decision: the AXps are the minimal hitting sets of
the CXps (and vice versa) (Ignatiev, Narodytska, Asher, et al. 2020). Given the close link between the complexity
of finding an AXp or a CXp (Cooper and Marques-Silva 2023), for simplicity of presentation, we will concentrate
on AXps in this paper.

Example 1. Consider the classifier 𝜅 (x) = ¬𝑥1 ∨ (𝑥2 ∧ (¬𝑥3 ∨ 𝑥4)) where 𝑥𝑖 ∈ {0, 1} (𝑖 = 1, . . . , 4) are boolean
features. 𝜅 can be represented by the decision tree in Figure 2. An abductive explanation (AXp) for the decision
𝜅 (1, 1, 1, 1) = 1 is {𝑥2, 𝑥4} since any feature-vector y with𝑦2 = 𝑦4 = 1 satisfies 𝜅 (y) = 1 (but neither𝑦2 = 1 nor𝑦4 = 1
alone is sufficient to guarantee 𝜅 (y) = 1). This AXp is half the length of the path in the DT of Figure 2 corresponding
to this decision (i.e. the leftmost path). To see that {𝑥1, 𝑥4} is a weak AXp it suffices to observe that 𝑥2 = 𝑥4 = 1 is
incompatible with the two paths leading to leaves labelled 0.

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:4 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

1 0

1

0

1

•

••

•

�
�
�

�
�
�

�
�

@
@

@
@

@
@

@
@

𝑥4

𝑥3

𝑥2

𝑥1

¬𝑥4

¬𝑥3

¬𝑥2

¬𝑥1

Fig. 2. A decision tree corresponding to the classifier 𝜅 (x) = ¬𝑥1 ∨ (𝑥2 ∧ (¬𝑥3 ∨ 𝑥4)).

0 1 0 1

1

0

•

•

•

•

•

�
�
�
�
��

���
���

�
�

�
�

�
�
�
�

�
�
�
�@

@
@
@

HHH
HHH

HH

H
HHH

HHHH

HHH
HHH

HH

@
@

@
@

¬𝑥2 ∨ 𝑥4

¬𝑥5 ∨ ¬𝑥6

¬𝑥1 ∨ ¬𝑥4 ∨ 𝑥5

¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3 ∨ 𝑥6

¬𝑥1 ∨ ¬𝑥2𝑥2 ∧ ¬𝑥4

𝑥5 ∧ 𝑥6

𝑥1∧𝑥4∧¬𝑥5

𝑥1∧𝑥2∧𝑥3∧¬𝑥6

𝑥1 ∧ 𝑥2

Fig. 3. A multivariate decision tree corresponding to the classifier 𝜅 (x) = (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3 ∨ 𝑥6) ∧ ((𝑥1 ∧ 𝑥4 ∧ ¬𝑥5) ∨ (𝑥1 ∧
𝑥2 ∧ 𝑥5 ∧ 𝑥6) ∨ (𝑥2 ∧ ¬𝑥4 ∧ (¬𝑥5 ∨ ¬𝑥6))

Example 2. Consider the classifier 𝜅 : {0, 1}6 → {0, 1} defined by the MDT in Figure 3. An abductive explanation
(AXp) for the decision 𝜅 (1, 1, 1, 1, 1, 1) = 1 is {𝑥1, 𝑥2, 𝑥6} since any feature-vector y with 𝑦1 = 𝑦2 = 𝑦6 = 1 satisfies
𝜅 (y) = 1 (but none of 𝑦1 = 𝑦2 = 1 or 𝑦1 = 𝑦6 = 1 or 𝑦2 = 𝑦6 = 1 alone is sufficient to guarantee 𝜅 (y) = 1). This
AXp consists of half the features tested along the path in the MDT of Figure 3 corresponding to this decision i.e.
the path (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3 ∨ 𝑥6), (¬𝑥1 ∨ ¬𝑥4 ∨ 𝑥5), (𝑥5 ∧ 𝑥6), (𝑥1 ∧ 𝑥2). To see that {𝑥1, 𝑥2, 𝑥6} is a weak AXp of
𝜅 (1, 1, 1, 1, 1, 1) = 1, it suffices to verify that 𝑥1 = 𝑥2 = 𝑥6 = 1 is incompatible with the three paths leading to leaves
labelled 0. For example, 𝑥1 = 𝑥2 = 𝑥6 = 1 is incompatible with the leftmost path and this can be verified by unit
propagation since (¬𝑥1 ∨¬𝑥2 ∨¬𝑥3 ∨𝑥6) ∧ (¬𝑥1 ∨¬𝑥4 ∨𝑥5) ∧ (¬𝑥5 ∨¬𝑥6) ∧ (¬𝑥2 ∨𝑥4) ∧𝑥1 ∧𝑥2 ∧𝑥6 is an instance
of HORNSAT.

Example 3. Consider the classifier 𝜅 : {0, 5}5 → {0, 1} defined by the MDT in Figure 4. An abductive explanation
(AXp) for the decision 𝜅 (2, 2, 2, 2, 2) = 1 is {𝑥3, 𝑥4} since any feature-vector y with 𝑦3 = 𝑦4 = 2 satisfies 𝜅 (y) = 1
(but neither 𝑦3 = 2 nor 𝑦4 = 2 alone is sufficient to guarantee 𝜅 (y) = 1). This AXp consists of half the features tested
along the path in the MDT of Figure 4 corresponding to this decision i.e. the path (𝑥1≥3 ∨ 𝑥3<5), (𝑥4≥3 ∨ 𝑥5<3),

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:5

1 0 0 1

1

0

•

•

•

•

•

�
�
�
�
���

���
��

�
�
�
�
�

�
�
�

�
�

�
�@

@
@
@

HH
HHH

HHH

H
HHH

HHHH

HH
HHHH

HH

@
@
@
@

𝑥2≥2 ∨ 𝑥4<3

𝑥5≥4 ∨ 𝑥1≥3

𝑥4≥3 ∨ 𝑥5<3

𝑥1≥3 ∨ 𝑥3<5

𝑥1≥4 ∨ 𝑥5≥3
𝑥2<2 ∧ 𝑥4≥3

𝑥5<4 ∧ 𝑥1<3

𝑥4<3 ∧ 𝑥5≥3

𝑥1<3 ∧ 𝑥3≥5

𝑥1<4 ∧ 𝑥5<3

Fig. 4. A multivariate decision tree with conditions on pairs of integer variables.

𝑏𝑢𝑦=ℎ𝑖𝑔ℎ ∨ 𝑝𝑒𝑟𝑠𝑜𝑛𝑠<3

𝑝𝑒𝑟𝑠𝑜𝑛𝑠<3 ∨ 𝑏𝑜𝑜𝑡<𝑚𝑒𝑑

𝑝𝑒𝑟𝑠𝑜𝑛𝑠<3 ∨ safety<ℎ𝑖𝑔ℎ

𝑛𝑜 𝑦𝑒𝑠

𝑚𝑎𝑖𝑛𝑡≥𝑣ℎ𝑖𝑔ℎ ∨ safety<𝑚𝑒𝑑

𝑛𝑜 𝑦𝑒𝑠

𝑚𝑎𝑖𝑛𝑡≥ℎ𝑖𝑔ℎ ∨ safety<𝑚𝑒𝑑

𝑏𝑢𝑦≥𝑣ℎ𝑖𝑔ℎ ∨ safety<𝑚𝑒𝑑

𝑛𝑜 𝑦𝑒𝑠 𝑦𝑒𝑠

Y

Y

Y N

N

Y N

N

Y

Y N

N

Fig. 5. A multivariate decision tree of depth 3 for a classifier trained on UCI data set car.

(𝑥5<4 ∧ 𝑥1<3), (𝑥1<4 ∧ 𝑥5<3). To see that {𝑥3, 𝑥4} is a weak AXp of 𝜅 (2, 2, 2, 2, 2) = 1, it suffices to verify that
𝑥3 = 𝑥4 = 2 is incompatible with the three paths leading to leaves labelled 0. We will see in Example 8 that these
incompatibility tests again belong to a tractable class.

Example 4. Consider the MDT classifier 𝜅 depicted in Figure 5. An abductive explanation (AXp) for the decision
𝜅 (𝑏𝑢𝑦 = 𝑙𝑜𝑤,𝑚𝑎𝑖𝑛𝑡 = 𝑚𝑒𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 = 2, safety = 𝑚𝑒𝑑,𝑏𝑜𝑜𝑡 = 𝑚𝑒𝑑) = 𝑛𝑜 is {𝑝𝑒𝑟𝑠𝑜𝑛𝑠} since any car with
only two seats (𝑝𝑒𝑟𝑠𝑜𝑛𝑠 = 2) will follow the leftmost path leading to label ‘𝑛𝑜’. Similarly, an AXp of the decision
𝜅 (𝑏𝑢𝑦 = 𝑙𝑜𝑤,𝑚𝑎𝑖𝑛𝑡 = 𝑚𝑒𝑑, 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 = 4, safety = 𝑙𝑜𝑤,𝑏𝑜𝑜𝑡 = 𝑚𝑒𝑑) = 𝑛𝑜 is {safety} since any instance with
safety = 𝑙𝑜𝑤 leads to a leaf labelled ‘𝑛𝑜’. In both cases, the size of the AXp is one whereas the number of features
tested along the path to the leaf is four. The required tests to verify that these are indeed AXps belong to the tractable
class described in Example 12.

The need to apply formal reasoning to explainable artificial intelligence (XAI), and in particular to decisions
taken by ML models, has been pointed out by many researchers (Amgoud and Ben-Naim 2022; Guidotti et al. 2019;
Marques-Silva 2024; Marques-Silva and Ignatiev 2022; Miller 2019). The computational complexity of finding
abductive explanations is an active field of research in the application of formal reasoning to explaining decisions

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:6 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

taken by classifiers (Arenas et al. 2022; Audemard et al. 2022; Barceló et al. 2020; Bassan et al. 2024; Calautti
et al. 2025; Cooper and Marques-Silva 2023; Huang et al. 2022; Ignatiev, Narodytska, and Marques-Silva 2019;
Wäldchen et al. 2021). Izza et al (Izza et al. 2022) showed that finding an AXp of a decision taken by a DT is in P.
(This corresponds to the case in which all constraints are unary , i.e. of the form 𝑥𝑖 ∈ 𝑆 for some subset 𝑆 of the
domain of 𝑥𝑖). In this paper we explore the tractability of this problem for MDTs parameterised by the constraint
language L. We show that, in general, this problem is NP-hard, but that there are nonetheless many interesting
tractable cases.

Let wAXpDT(L) denote the problem of deciding whether a set of features is a weak AXp for a given decision
taken by a L-DT, where L is a language of constraint relations. As we show in Section 2, whenever wAXpDT(L)
∈ P, there is a polynomial-time algorithm to find an AXp: starting with the set of all features, for each feature test
whether deleting the feature still leaves a weak AXp (Chen and Toda 1995; Cooper and Marques-Silva 2023).

When L is the set of unary constraints, then an L-DT can be viewed as a classical DT. In this case, wAXpDT(L)
is known to be tractable (Izza et al. 2022). After identifying, in Section 2, several languages L for which
wAXpDT(L) is tractable, in Sections 3 and 4, we describe a dichotomy theorem in the case of boolean lan-
guages. In Section 5 we extend this dichotomy to formulas based on literals corresponding to cuts in arbitrary
finite ordered domains. Finally, in Section 6 we report experiments to compare DTs and MDTs. The conference
version of this paper (Carbonnel, Cooper, and Marques-Silva 2023) only covered the dichotomy theorem over
boolean domains.

2 Tractable Explaining of MDT Decisions
We begin by recalling a simple algorithm to find minimal subsets satisfying a monotone property (Chen and
Toda 1995). In this context, a property is a boolean function on the powerset of features. We say that a property
H is monotone if for all sets 𝑆 ⊆ 𝑇 ,H(𝑆) ⇒ H(𝑇).

Lemma 1. Given a monotone propertyH that can be tested in polynomial time and an initial finite set 𝑆0 satisfying
H , a minimal subset 𝑆 of 𝑆0 satisfyingH can be found in polynomial time.

Proof. The following so-called ‘deletion’ algorithm finds a minimal 𝑆 ⊆ 𝑆0 by testing |𝑆0 | times the property
H .

for each element 𝑒 ∈ 𝑆0 :
ifH(𝑆 \ {𝑒}) then 𝑆 ← 𝑆 \ {𝑒}

□

The following corollary follows from the fact that being a weak AXp is a monotone property and that the set
of all features is trivially a weak AXp (and hence can be used as the initial set 𝑆0 in the deletion algorithm).

Corollary 1. For any family of classifiers, finding a single AXp is polytime if testing whether a subset of features
is a weak AXp is in P.

We assume that an L-DT is represented as a binary tree in which each leaf node is labelled by a class and
each internal node is linked to its two child-nodes by edges labelled respectively by a relation 𝑅 ∈ L and its
complement ¬𝑅 ∈ L. The assumption of an explicit representation of ¬𝑅 avoids technical issues related to the
possible large disparity between the sizes of the explicit representation of ¬𝑅 and its implicit representation as
the complement of 𝑅. In the following proposition, we do not impose a fixed representation of relations (as a
table of tuples or as a formula) but we do assume the same representation of relations in CSP(L) and in L-DTs.
Given an MDT, we use the notation path(𝛼) to represent the set of conditions satisfied on the path from the

root to a leaf 𝛼 . Let 𝐴𝑠𝑠𝑡 represent all unary constraints consisting of assignments, i.e. 𝑥𝑖 = 𝑢 for some feature 𝑥𝑖

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:7

and some constant 𝑢. We can view a feature-vector v as a set of literals (i.e. variable-value assignments). For a
fixed feature-vector v, it will be convenient to associate a set 𝑋 of features with the partial assignment v𝑋 , the
set of literals corresponding to the subset of v on these variables.

Proposition 1. Let L be a constraint language such that L is closed under complement. Suppose that L ∪𝐴𝑠𝑠𝑡
⊆ C where CSP(C) ∈ P. Then wAXpDT(L) ∈ P and an AXp of any decision taken by an L-DT can be found in
polynomial time.

Proof. Let 𝜅 be the classifier defined by an L-DT and consider a decision 𝜅 (v) = 𝑐 to be explained. By
Corollary 1, we only need to show that we can test that a set of features 𝑋 is a weak AXp in polynomial
time. Testing whether 𝑋 is a weak AXp can be achieved by testing whether for all leaves 𝛼 corresponding to a
decision different to 𝑐 , v𝑋 is incompatible with the set of constraints path(𝛼). The constraints of path(𝛼) are in L.
Furthermore, the partial assignment v𝑋 can be viewed as a set of constraints in𝐴𝑠𝑠𝑡 , so this test of incompatibility
is a CSP with constraints in L ∪𝐴𝑠𝑠𝑡 , and hence, by the hypotheses L ∪𝐴𝑠𝑠𝑡 ⊆ C and CSP(C) ∈ P, is solvable in
polynomial time. □

In all the following examples (Examples 5-10), L is closed under complement, L ∪𝐴𝑠𝑠𝑡 ⊆ C where CSP(C) ∈
P, and so Proposition 1 applies.

Boolean domains. We begin with examples in which features are boolean. Two well-known boolean languages
C for which CSP(C) is tractable are conjunctions of Horn clauses and conjunctions of 2-clauses.

Example 5. Let L be the class of Horn clauses and their negations. The complement (negation) of a Horn clause is
a conjunction of unary clauses and unary clauses are trivially Horn. C is the class of conjunctions of Horn clauses,
and hence CSP(C) ∈ P since it corresponds to HORNSAT. We can observe that the constraint relations in the MDT of
Figure 3 are all Horn clauses (or their negations) and hence this MDT is an L-DT.

Note that, in general, the complement of a conjunction of Horn clauses is not the conjunction of Horn clauses.
In Section 4.1 we identify the maximal generalisation of the class in Example 5. It consists of a specific form of
conjunctions of Horn clauses.

Example 6. LetL be the class of 2-conjunctions of 2-clauses (i.e. the conjunction of at most two clauses each of which
contains at most two literals) together with the complements of such constraints. The complement of a 2-conjunction of
2-clauses is also the conjunction of 2-clauses, since¬((𝑎∨𝑏)∧(𝑐∨𝑑)) ≡ (¬𝑎∨¬𝑐)∧(¬𝑎∨¬𝑑)∧(¬𝑏∨¬𝑐)∧(¬𝑏∨¬𝑑).
L ∪𝐴𝑠𝑠𝑡 ⊆ C where C is the set of conjunctions of 2-clauses. CSP(C) ∈ P by tractability of 2SAT.

In general, the complement of an arbitrary conjunction of 2-clauses is not the conjunction of 2-clauses. We
identify the maximal generalisation of this example in Section 4.3.

Finite domains. We now consider finite feature-domains of arbitrary size. Define a two-fan constraint to be a
constraint of the form 𝑥𝑖 = 𝑎 ∨ 𝑥 𝑗 = 𝑏, where 𝑎, 𝑏 are constants.

Example 7. Let L be the class of two-fan constraints and their complements, together with all unary constraints
𝑥𝑖 ∈ 𝑆 where 𝑆 is any subset of the domain of 𝑥𝑖 . The complement of the two-fan 𝑥𝑖 = 𝑎 ∨ 𝑥 𝑗 = 𝑏 is the constraint
𝑥𝑖 ≠ 𝑎 ∧ 𝑥 𝑗 ≠ 𝑏 which is the conjunction of two unary constraints. Let maj : 𝐷3 → 𝐷 be the function defined
by maj(𝑎, 𝑏, 𝑐) = 𝑏 if 𝑏 = 𝑐 and maj(𝑎, 𝑏, 𝑐) = 𝑎 if 𝑏 ≠ 𝑐 . It returns the majority value among its arguments,
if it exists, and its first argument otherwise. A binary relation 𝑅 is maj-closed if (𝑎1, 𝑎2), (𝑏1, 𝑏2), (𝑐1, 𝑐2) ∈ 𝑅 ⇒
(maj(𝑎1, 𝑏1, 𝑐1),maj(𝑎2, 𝑏2, 𝑐2)) ∈ 𝑅, and all unary constraints aremaj-closed. All two-fan constraints and conjunctions
of unary constraints are maj-closed. It is well known that CSP(C) ∈ Pwhere C is the set of maj-closed relations (Cooper,
Cohen, et al. 1994; Jeavons, Cohen, and Gyssens 1995).

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:8 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

Now suppose that all domains are totally ordered. Define a unary inequality literal (UI-literal) to be a constraint
of the form 𝑥𝑖 ≥ 𝑎 or 𝑥𝑖 < 𝑎 where 𝑎 is any element of the domain of feature 𝑥𝑖 except the minimum element.

Example 8. Let L be the class of (unary or) binary boolean functions 𝜙 of UI-literals. The complement (negation)
of such a function is also a (unary or) binary boolean function of UI-literals. Let med be the ternary function which
returns the median value among its three arguments. A binary relation 𝑅 is med-closed if whenever (𝑢1, 𝑢2), (𝑣1, 𝑣2),
(𝑤1,𝑤2) ∈ 𝑅, we have (med(𝑢1, 𝑣1,𝑤1),med(𝑢2, 𝑣2,𝑤2)) ∈ 𝑅, and all unary constraints are med-closed. med(𝑢, 𝑣,𝑤)
satisfies a UI-literal ℓ iff the majority of 𝑢, 𝑣,𝑤 satisfy ℓ . It follows that, given two UI-literals (such as ℓ1 (𝑥1) := 𝑥1 ≥ 𝑎

and ℓ2 (𝑥2) := 𝑥2 < 𝑏, for example) and three pairs (𝑢1, 𝑢2), (𝑣1, 𝑣2), (𝑤1,𝑤2), the pair of values (ℓ1 (𝑚1), ℓ2 (𝑚2)) where
(𝑚1,𝑚2) = (med(𝑢1, 𝑣1,𝑤1),med(𝑢2, 𝑣2,𝑤2)) will necessarily coincide with one of (ℓ1 (𝑢1), ℓ2 (𝑢2)), (ℓ1 (𝑣1), ℓ2 (𝑣2))
or (ℓ1 (𝑤1), ℓ2 (𝑤2)). Thus, any boolean function 𝜙 of the literals ℓ1, ℓ2 satisfied by all three pairs (𝑢1, 𝑢2), (𝑣1, 𝑣2),
(𝑤1,𝑤2) will also be satisfied by the pair (med(𝑢1, 𝑣1,𝑤1),med(𝑢2, 𝑣2,𝑤2)). It is well known that CSP(C) ∈ P where
C is the set of med-closed relations (Jeavons, Cohen, and Cooper 1998). All the constraints in the MDT shown in
Figure 4 are binary boolean functions of UI-literals and hence this is an example of an L-DT.

We will consider a generalisation of both Example 7 and Example 8 in Example 12. Indeed, we identify all
tractable languages of boolean functions of UI-literals in Section 5.3.

Infinite domains. We now consider infinite domains, firstly integer domains and then real domains.

Example 9. A unit two variable per inequality (UTVPI) constraint is of the form 𝑎𝑥𝑖 + 𝑏𝑥 𝑗 ≤ 𝑑 where 𝑥𝑖 and 𝑥 𝑗
are integer variables, the coefficients 𝑎, 𝑏 ∈ {−1, 0, 1} and the bound 𝑑 is an integer constant. The negation of such a
constraint is −𝑎𝑥𝑖 − 𝑏𝑥 𝑗 ≤ −(𝑑 + 1) and is hence also an UTVPI constraint. A unary assignment 𝑥𝑖 = 𝑑 is equivalent
to 𝑥𝑖 ≤ 𝑑 ∧ −𝑥𝑖 ≤ −𝑑 , a conjunction of UTVPI constraints. Let L be the set of UTVPI constraints and C the class
of constraints consisting of conjunctions of UTVPI constraints. Then L ∪ 𝐴𝑠𝑠𝑡 ⊆ C and it is known that CSP(C)
∈ P (Lahiri and Musuvathi 2005).

Example 10. Let L be the class of linear inequalities (≤ or <) over the reals. The complement of a linear inequality
is again a linear inequality and assignments 𝑥𝑖 = 𝑢 can be viewed as two linear inequalities (𝑥𝑖 ≤ 𝑢 and −𝑥𝑖 ≤ −𝑢).
C is the set of systems of linear inequalities over R. Hence L ∪𝐴𝑠𝑠𝑡 ⊆ C and it is well known that CSP(C) ∈ P.

Since an oblique decision tree is an MDT in which all conditions are linear inequalities over R, we can deduce
that there is a polynomial-time algorithm to find an AXp of a decision taken by an oblique decision tree. The dual
of an abductive explanation is a contrastive explanation, a minimal set of features that, if changed, changes the
output of the classifier (Definition 3). It has already been observed that an optimal contrastive explanation, known
as a counterfactual explanation or adversarial example, can be found for oblique decision trees in polynomial
time for a linear error function, by reduction to Linear Programming (Carreira-Perpiñán and Hada 2021). It is
important to note that the tractability of finding AXps (or contrastive explanations) for oblique decision trees
depends critically on the assumption that all features are real-valued.
It is known that if a family of classifiers is closed under fixing features, then the tractability of the problem

of finding an AXp or a CXp coincide (Theorem 4 of (Cooper and Marques-Silva 2023)). It follows that, for all
languages given in the examples listed above (Examples 5 to 10), Proposition 1 also implies that a CXp can be
found in polynomial time.

3 Tractable Boolean Languages: The Algebraic Approach
We first study the characterisation of tractable languages L for wAXpDT(L) from an abstract algebraic point of
view, before looking for a detailed characterisation.

The complexity of wAXpDT(L) is closely tied to that of CSP(L) so we will use the same machinery to prove
our results. Let 𝑓 : 𝐷𝑘 → 𝐷 be a function. A relation 𝑅 has 𝑓 as a polymorphism (we say that 𝑅 is closed under 𝑓)

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:9

0 1

1

1

•

•

•

•

�
�

�
�
�

�

@
@

@
@

@
@

𝐶𝑒

𝐶2

𝐶1

¬𝐶𝑒

¬𝐶2

¬𝐶1

Fig. 6. A decision tree 𝑇𝐼 which has a non-empty AXp if and only if the constraints 𝐶1, . . . ,𝐶𝑒 are simultaneously satisfiable.

if ∀𝑡1, . . . , 𝑡𝑘 ∈ 𝑅, the tuple 𝑓 (𝑡1, . . . , 𝑡𝑘) obtained by applying 𝑓 componentwise to the 𝑘 vectors 𝑡1, . . . , 𝑡𝑘 belongs
to 𝑅. We say that a language L has the polymorphism 𝑓 if all relations in L are closed under 𝑓 . The complexity of
CSP(L) is known to be determined by the polymorphisms of CSP(L), up to logspace reductions (Jeavons, Cohen,
and Gyssens 1997).

For all languages L over finite domains, CSP(L) is either in P or NP-complete (Bulatov 2017; Zhuk 2020). For
our purposes, we only need to present the dichotomy criterion in the boolean setting. This particular result
is known as Schaefer’s Theorem (Schaefer 1978), and its modern formulation involves six different boolean
functions.
In the following, let 𝑓0 and 𝑓1 denote the constant unary functions that always return 0 and 1, respectively.

The binary functions max and min return respectively the maximum and minimum of their two arguments. The
majority function maj : {0, 1}3 → {0, 1} (already seen in Example 7) is given by

maj(𝑥,𝑦, 𝑧) =

{
𝑦 if 𝑦 = 𝑧

𝑥 otherwise

and the minority function miny : {0, 1}3 → {0, 1} is given by

miny(𝑥,𝑦, 𝑧) =

{
𝑧 if 𝑥 = 𝑦

¬𝑧 otherwise.

Theorem 1. (Schaefer 1978) Let L be a boolean language. If L has either 0, 1, max, min, maj or miny as a
polymorphism, then CSP(L) ∈ P. Otherwise, CSP(L) is NP-complete.

Theorem 2. Let L be a finite boolean language closed under taking complements. Then, assuming P ≠ NP,
wAXpDT(L) ∈ P iff L has either max, min, maj or miny as a polymorphism.

Proof. ⇐: Suppose that L has either max, min, maj or miny as a polymorphism. By Theorem 1, we have
CSP(L) ∈ P. Furthermore, all unary relations have these four polymorphisms. Thus, we also have CSP(L ∪𝐴𝑠𝑠𝑡)
∈ P, and hence by Proposition 1, wAXpDT(L) ∈ P.
⇒: We first give a polynomial reduction from CSP(L) to wAXpDT(L). Let 𝐼 be an instance of CSP(L) consisting

of constraints 𝐶1, . . . ,𝐶𝑒 . We build a DT 𝑇𝐼 , shown in Figure 6, as a sequence of tests corresponding to these
constraints. 𝐶1 is the test at the root of 𝑇𝐼 , and each 𝐶𝑖 (𝑖 = 2, . . . , 𝑒) is the test at the positive child of 𝐶𝑖−1 (i.e.
the node attained after a positive response to the test 𝐶𝑖−1). The positive child of 𝐶𝑒 is a leaf node labelled 0. All
negative children of all nodes of 𝑇𝐼 are leaf nodes labelled 1. Let 𝜅 be the function defined by the DT 𝑇𝐼 . Now
consider any decision 𝜅 (v) = 1. The empty set is a weak AXp of this decision iff it is impossible to simultaneously

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:10 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

satisfy the constraints 𝐶1, . . . ,𝐶𝑒 , since the only leaf node labelled 0 can only be reached if all these constraints
are satisfied. Thus deciding whether ∅ is a weak AXp amounts to solving 𝐼 ∈ CSP(L).
Thus, assuming P ≠ NP, we deduce from Theorem 1 that CSP(L) ∈ P iff L has (at least) one of the six functions

𝑓0, 𝑓1, max, min, maj or miny as a polymorphism. A non-empty relation 𝑅 has polymorphism 𝑓𝑎 , where 𝑎 ∈ {0, 1},
iff the tuple (𝑎, . . . , 𝑎) (of length the arity of 𝑅) belongs to 𝑅. Consequently, a language L closed under taking
complements cannot have 𝑓𝑎 as a polymorphism unless all relations in L are either empty or complete; in this
case, L has all six of Schaefer’s polymorphisms. Thus L has either max, min, maj or miny as a polymorphism.

□

In the general (non-boolean) case, the two reductions behind Proposition 1 and Theorem 2 imply that
wAXpDT(L) is at most as hard as CSP(L ∪ 𝐴𝑠𝑠𝑡) and at least as hard as CSP(L). However, in contrast to
boolean domains, there exists a wide array of languages L such that CSP(L) ∈ P and CSP(L ∪ 𝐴𝑠𝑠𝑡) is NP-
complete. These languages greatly complicate the analysis and make a general-domain analog of Theorem 2
more difficult to prove. For now, we will focus on boolean domains only.
Theorem 2 shows that there is a complexity dichotomy for wAXpDT(L) but fails to provide an explicit

description of the polynomial-time boolean languages. We address this issue in the next section.

4 Characterisation of Tractable Boolean Languages
We now study tractable boolean languages closed under taking complements, in order to gain a better insight into
the tractable classes identified in Theorem 2. LetL𝑓 be the language of boolean relations having the polymorphism
𝑓 . It is well known (Jeavons, Cohen, and Gyssens 1995, 1997; Jeavons and Cooper 1995) that
(1) Lmin is the set of conjunctions of Horn clauses.
(2) Lmax is the set of conjunctions of anti-Horn clauses.
(3) Lminy is the set of conjunctions of affine constraints (i.e. linear equations).
(4) Lmaj is the set of conjunctions of 2-clauses.

In all four cases, L𝑓 is not closed under complement and so we require extra work to identify the (unique)
maximal sublanguage closed under complement.

4.1 Horn and Anti-Horn
We start with the language Lmin. By the discussion above we need to characterise the maximal sublanguage
of Lmin closed under complement, or equivalently the Horn formulas whose negation is expressible by a Horn
formula. We will prove that these formulas are exactly those in which the sets of negative literals appearing in
clauses are totally ordered with respect to set inclusion. We call such formulas star-nested.

Definition 4. A Horn formula𝜓 is star-nested if and only if there exist sets of literals 𝐿 and ∅ = 𝑆0 ⊂ 𝑆1 ⊂ 𝑆2 ⊂
. . . ⊂ 𝑆𝑞 such that
• all literals in 𝐿 are positive, and
• all literals in 𝑆𝑞 are negative, and
• every clause 𝐶 in𝜓 is of the form 𝐶 =

∨
𝑠∈𝑆𝑖 𝑠 or 𝐶 = 𝑙 ∨

(∨
𝑠∈𝑆𝑖 𝑠

)
with 𝑙 ∈ 𝐿.

To clarify the definition, we point out that each set 𝑆𝑖 may occur more than once in the formula (in clauses
with different positive literals 𝑙). In particular, star-nested Horn formulas may contain any number of unit clauses
with positive literals (which correspond to the set 𝑆0 = ∅). Clearly, since the sets 𝑆𝑖 are nested, a star-nested
formula with no redundant clauses contains at most one clause consisting of only negative literals and at most
one clause for each positive literal 𝑙 ∈ 𝐿.

Proposition 2. Let𝜓 be a star-nested Horn formula. Then, ¬𝜓 is equivalent to a star-nested Horn formula.

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:11

Proof. We proceed by induction on the number of sets 𝑆𝑖 . For 𝑞 = 0, we have ¬𝜓 =
∨

𝑙∈𝐿 ¬𝑙 and hence ¬𝜓 is a
star-nested Horn formula. Now, let 𝑞 > 0 and𝜓 be a star-nested Horn formula with sets 𝐿, 𝑆0, . . . , 𝑆𝑞 . Suppose
that the claim is true for all formulas with strictly fewer sets. If we denote by 𝐿0 the subset of literals in 𝐿 that
appear in unit clauses of𝜓 , then𝜓 can be rewritten as

𝜓 =

(∧
𝑙∈𝐿0

𝑙

)
∧

(
(
∨
𝑠∈𝑆1

𝑠) ∨ 𝜙
)

where 𝜙 is Horn and star-nested with sets 𝐿 \ 𝐿0, 𝑆1 \ 𝑆1, 𝑆2 \ 𝑆1, . . . , 𝑆𝑞 \ 𝑆1. In particular, 𝜙 is star-nested with
one fewer set than𝜓 . By induction, ¬𝜙 can be assumed to be Horn and star-nested with sets 𝐿′, 𝑆 ′0, . . . , 𝑆

′
𝑝 . Then,

we have

¬𝜓 =

(∨
𝑙∈𝐿0

¬𝑙
)
∨

(
(
∧
𝑠∈𝑆1
¬𝑠) ∧ ¬𝜙

)
and hence ¬𝜓 is star-nested with sets 𝑆 ′′0 = ∅, 𝑆 ′′1 = 𝑆 ′0 ∪ {¬𝑙 | 𝑙 ∈ 𝐿0}, . . . , 𝑆 ′′𝑝+1 = 𝑆 ′𝑝 ∪ {¬𝑙 | 𝑙 ∈ 𝐿0}, and
𝐿′′ = 𝐿′ ∪ {¬𝑠 | 𝑠 ∈ 𝑆1}. □

Proposition 3. Let𝑅 be a boolean relation such thatmin is a polymorphism of both𝑅 and¬𝑅. Then𝑅(𝑥1, . . . , 𝑥𝑟) ≡
𝜓 (𝑥1, . . . , 𝑥𝑟), where𝜓 is a star-nested Horn formula.

Proof. We proceed by induction on the arity 𝑟 of 𝑅. The claim is true for 𝑟 = 1 since 𝑅 is either empty,
complete, or equivalent to a unit clause; in all cases it is expressible by a star-nested Horn formula. Let 𝑟 > 1 and
suppose that the claim is true for all relations whose arity is strictly smaller than 𝑟 . Let 𝑅 be a relation of arity
𝑟 such that min is a polymorphism of both 𝑅 and ¬𝑅. We assume without loss of generality that the all-zeroes
tuple of length 𝑟 belongs to 𝑅. (If this is not the case, then ¬𝑅 contains this tuple and we prove the claim on
¬𝑅 instead.) If 𝑅 is complete then we are done. Otherwise, its negation ¬𝑅 = {𝑡1, . . . , 𝑡𝑛} is not empty. Since ¬𝑅
has the polymorphism min (which we can assume to be of any arity), we have 𝑡 = min(𝑡1, . . . , 𝑡𝑛) ∈ ¬𝑅. Note
that each 𝑡𝑖 is a tuple, so here the operation min is applied componentwise to the set of tuples 𝑡1, . . . , 𝑡𝑛 . The
tuple (0, . . . , 0) does not belong to ¬𝑅, so the set 𝑃 = {𝑖 ≤ 𝑟 | 𝑡 [𝑖] = 1} is not empty. We assume without loss
of generality that 𝑃 = {1, . . . , 𝑐}. Since 𝑡 𝑗 [𝑖] = 1 for all 𝑗 ∈ {1, . . . , 𝑛} and 𝑖 ∈ 𝑃 , there exists a relation 𝑄 such
that ¬𝑅(𝑥1, . . . , 𝑥𝑟) ≡ 𝑥1 ∧ . . . ∧ 𝑥𝑐 ∧ 𝑄 (𝑥𝑐+1, . . . , 𝑥𝑟). Both 𝑄 and ¬𝑄 have the polymorphism min (because 𝑄
is a projection of ¬𝑅 and ¬𝑄 is a projection of a conjunction of 𝑅 with unit clauses; the polymorphism min is
invariant under these transformations) and the arity of 𝑄 is strictly smaller than 𝑟 . By induction, there exists a
star-nested Horn formula𝜓 such that ¬𝑄 (𝑥𝑐+1, . . . , 𝑥𝑟) ≡ 𝜓 (𝑥𝑐+1, . . . , 𝑥𝑟). Then, we have

𝑅(𝑥1, . . . , 𝑥𝑟)
≡ ¬(𝑥1 ∧ . . . ∧ 𝑥𝑐 ∧𝑄 (𝑥𝑐+1, . . . , 𝑥𝑟))
≡ ¬𝑥1 ∨ . . . ∨ ¬𝑥𝑐 ∨ ¬𝑄 (𝑥𝑐+1, . . . , 𝑥𝑟)
≡ ¬𝑥1 ∨ . . . ∨ ¬𝑥𝑐 ∨𝜓 (𝑥𝑐+1, . . . , 𝑥𝑟)

and hence 𝑅 is equivalent to a star-nested Horn formula by distributivity of ∨ over ∧. □

Theorem 3. Let L be a boolean constraint language. The following are equivalent:

(i) L has the polymorphism min and is closed under taking complements
(ii) Each relation in L is equivalent to a star-nested Horn formula

Proof. Follows from Proposition 2 and Proposition 3. □

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:12 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

We also note that, given in input the list of tuples of a relation 𝑅, star-nested formulas for 𝑅 and its complement
¬𝑅 can be constructed in polynomial time if they exist. The algorithm is given by the recursive constructions
used in the proofs of Proposition 2 and Proposition 3.

An anti-Horn formula is star-nested if replacing each literal by its negation yields a star-nested Horn formula.
The following directly follows from the arguments above, with only slight adaptations.

Theorem 4. Let L be a boolean constraint language. The following are equivalent:
(i) L has the polymorphism max and is closed under taking complements
(ii) Each relation in L is equivalent to a star-nested anti-Horn formula

4.2 Affine
We now turn our attention to the case of Lminy, which is straightforward.

Theorem 5. Let L be a boolean constraint language. The following are equivalent:
(i) L has the polymorphism miny and is closed under taking complements
(ii) Each relation in L is equivalent to a linear equation over GF(2), the finite field of two elements.

Proof. The fact that any language satisfying (ii) is closed under taking complements is trivial, as the comple-
ment of the equation 𝑎1𝑥1 + . . . + 𝑎𝑟𝑥𝑟 = 𝑏 is 𝑎1𝑥1 + . . . + 𝑎𝑟𝑥𝑟 = 1 − 𝑏. In addition, relations equivalent to linear
equations over GF(2) have the minority polymorphism (Jeavons, Cohen, and Gyssens 1995). This establishes (ii)
⇒ (i).
Now, let 𝑅 be a relation of arity 𝑟 such that both 𝑅 and ¬𝑅 have the minority polymorphism. If 𝑅 is either

empty or complete then it is expressible as a linear equation (0 = 1 or 0 = 0, respectively). Otherwise, both 𝑅 and
¬𝑅 correspond to the solution sets of systems of linear equations over GF(2) that are not degenerate (i.e. at least
one equation has a nonzero coefficient). Since any nondegenerate linear equation over GF(2) over 𝑟 variables
has exactly 2𝑟−1 solutions, we have |𝑅 | = |¬𝑅 | = 2𝑟−1 and only one equation will remain in both systems after
discarding all redundant equations. This establishes (i)⇒ (ii) and concludes the proof. □

4.3 Conjunctions of 2-Clauses
As mentioned above, over boolean domains a relation has the polymorphism maj if and only if it is a conjunctions
of 2-clauses (clauses containing up to two literals). Thus, to complete the study of tractable cases identified in
Theorem 2, we now characterise those formulas Φ such that both Φ and ¬Φ are expressible as conjunctions of
2-clauses.

A 2-clause is a clause consisting of at most two literals and a 2-term is a term consisting of at most two literals.
The following lemma follows immediately from De Morgan’s theorem.

Lemma 2. A boolean formula Φ such that ¬Φ is expressible as conjunction of 2-clauses is expressible as a disjunction
of 2-terms.

Lemma 3. Suppose that a boolean formula Φ is such that Φ is expressible as conjunctions of 2-clauses and also as a
disjunction of 2-terms. Suppose, furthermore, that Φ ≡ (𝑎 ∨𝑏) ∧Φ1 and Φ ≡ (𝑐 ∧𝑑) ∨Φ2. Then there is a non-empty
intersection between the two sets of literals {𝑎, 𝑏} and {𝑐, 𝑑}.

Proof. With the assignments 𝑎 = 𝑏 = 0 and 𝑐 = 𝑑 = 1 we have a contradiction. This can only be avoided if the
sets of literals {𝑎, 𝑏} and {𝑐, 𝑑} intersect. □

Lemma 4. Suppose that a boolean formula Φ is such that Φ is expressible as a conjunction of 2-clauses and also as
a disjunction of 2-terms of the form Φ = 𝑎 ∨ Φ1, where 𝑎 is a literal. Then Φ is of one of the three forms (1) 𝑎, (2)
𝑎 ∨ 𝑏, or (3) (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐).

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:13

Proof. Suppose that Φ ≡ (𝑏 ∨ 𝑐) ∧ Φ2. Setting 𝑎 = 1 and 𝑏 = 𝑐 = 0 leads to a contradiction, so to render this
impossible we must have 𝑎 = 𝑏 or 𝑎 = 𝑐 . Since this is true for any conjunct, when Φ is expressed as a conjunction
of 2-clauses, we can deduce that Φ ≡ ∧𝑚

𝑖=1(𝑎 ∨ 𝑏𝑖) for some literals 𝑏1, . . . , 𝑏𝑚 . Since Φ is also expressible as a
disjunction of 2-terms, we only need to consider the cases in which𝑚 ≤ 2. When we include the case Φ = 𝑎 we
have the three cases (1) 𝑎, (2) 𝑎 ∨ 𝑏, (3) (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐). □

We give without proof the analogous lemma obtained by exchanging conjunction and disjunction.

Lemma 5. Suppose that a boolean formula Φ is such that Φ is expressible as a disjunction of 2-terms and also as a
conjunction of 2-clauses of the form Φ = 𝑎 ∧ Φ1, where 𝑎 is a literal. Then Φ is of one of the three forms (1) 𝑎, (2)
𝑎 ∧ 𝑏, or (3) (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐).

Observe that case (3) in Lemma 5 when written as a conjunction of 2-clauses is 𝑎 ∧ (𝑏 ∨ 𝑐).
A binary term is a 2-term that contains exactly two distinct literals.

Lemma 6. Suppose that a boolean formula Φ ≠ ⊥ is such that Φ is expressible as a conjunction of 2-clauses and
also as a disjunction of binary terms of the form Φ = (𝑎∧𝑐) ∨ (𝑏 ∧𝑑) ∨Φ1, where 𝑎, 𝑏, 𝑐, 𝑑 are distinct literals. Then Φ
is of one of the three forms (1) (𝑎∨𝑏) ∧ (𝑐∨𝑑), (2) (𝑎∨𝑏) ∧ (𝑏∨𝑐) ∧ (𝑐∨𝑑), or (3) (𝑎∨𝑏) ∧ (𝑏∨𝑐) ∧ (𝑎∨𝑑) ∧ (𝑐∨𝑑)
for distinct literals 𝑎, 𝑏, 𝑐, 𝑑 .

Proof. Applying Lemma 3 twice, we know that all conjuncts, when Φ is expressed as a conjunction of 2-clauses,
must contain one of 𝑎, 𝑐 and one of 𝑏, 𝑑 . Since 𝑎, 𝑏, 𝑐, 𝑑 are distinct literals, we can deduce that the only possible
2-clauses are (𝑎 ∨ 𝑏), (𝑏 ∨ 𝑐), (𝑎 ∨ 𝑑) and (𝑐 ∨ 𝑑). Eliminating symmetrically equivalent cases, by exhaustive
search, we easily obtain only three distinct cases, namely Φ is of one of the three forms (1) (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑), (2)
(𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑑), or (3) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑). □

Observe that although 𝑎, 𝑏, 𝑐, 𝑑 are distinct literals, the variables are not necessarily distinct. For example, if
𝑑 = ¬𝑎 then case (1) becomes (𝑎 ∨ 𝑏) ∧ (¬𝑎 ∨ 𝑐).

Lemma 7. Suppose that a boolean formula Φ, expressible as a non-empty conjunction of 2-clauses, is also expressible
as a non-empty disjunction of binary terms in which each pair of terms share a literal. Then either Φ is of the form
Φ = 𝑎 ∧ Φ1, where 𝑎 is a literal, or Φ is of the form (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑐).

Proof. If Φ can be expressed as a disjunction of 2-terms with only one term or two terms (which share a
literal), then Φ is of the form Φ = 𝑎 ∧ Φ1, for some literal 𝑎. If Φ can be expressed as a disjunction of three distinct
binary terms (where each pair of terms shares a literal), then Φ is of the form (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑐). There is
no set of four distinct binary terms which satisfy the property that each pair shares a literal. □

We now obtain the following characterisation theorem.

Proposition 4. Let Φ be a boolean formula such that both Φ and ¬Φ are expressible as non-empty conjunctions
of 2-clauses. Then Φ has one of the following forms (in which 𝑎, 𝑏, 𝑐, 𝑑 are distinct literals):
(1) 𝑎,
(2) 𝑎 ∨ 𝑏,
(3) 𝑎 ∧ 𝑏,
(4) 𝑎 ∧ (𝑏 ∨ 𝑐),
(5) (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐),
(6) (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑),
(7) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑑),
(8) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑐),
(9) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑).

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:14 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

Proof. By Lemma 2, we are interested in Φ that can be expressed as a conjunction of 2-clauses and a disjunction
of 2-terms. If Φ, when written as a disjunction of 2-terms, has a unary term (i.e. Φ can be written in the form
𝑎 ∨ Φ1), then Lemma 4 applies (cases (1), (2), (5)). If Φ can be expressed as a disjunction of binary terms, two of
which share no literals, then Lemma 6 applies (cases (6), (7), (9)). If Φ can be expressed as a disjunction of binary
terms, each pair of which share a literal, then Lemma 7 applies (case (8)). In the subcase of Lemma 7 in which Φ
can be written in the form 𝑎 ∧ Φ1, Lemma 5 applies (cases (1), (3), (4)). □

The following corollary is simply a more succinct rewriting of Proposition 4.

Corollary 2. If Φ is a boolean formula such that both Φ and ¬Φ are expressible as non-empty conjunctions of
2-clauses, then Φ has one of the three following forms (in which the four literals are not necessarily distinct):
(i) (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑),
(ii) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑑),
(iii) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑).

Proof. We can obtain the nine cases listed in Proposition 4 as follows: (1) set 𝑎 = 𝑏 = 𝑐 in (iii), (2) set 𝑎 = 𝑐 and
𝑏 = 𝑑 in (iii), (3) set 𝑎 = 𝑏 and 𝑐 = 𝑑 in (iii), (4) set 𝑎 = 𝑑 in (iii), (5) set 𝑎 = 𝑐 in (iii), (6) is case (i) (7) is case (ii), (8)
set 𝑎 = 𝑑 in (ii), (9) is case (iii). □

It is straightforward to verify that the converse to Corollary 2 holds, that is, any formula Φ satisfying at least
one of items (i), (ii) or (iii) is such that both Φ and ¬Φ are expressible as conjunctions of 2-clauses. In the following,
we use the name square 2CNF for formulas that are expressible as both conjunctions of 2-clauses and disjunctions
of 2-terms (characterised in Proposition 4 and Corollary 2). The name reflects the fact these formulas are the
subformulas of the square given by item (iii) of Corollary 2 (seeing literals 𝑎,𝑏,𝑐 ,𝑑 as vertices and clauses as edges).

Observation 1. Square 2CNF formulas include all binary relations over boolean domains. For example, the
relation 𝑎 ≠ 𝑏 can be obtained by setting 𝑐 = ¬𝑎 and 𝑑 = ¬𝑏 in (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑).

Theorem 6. Let L be a boolean constraint language. The following are equivalent:
(i) L has the polymorphism maj and is closed under taking complements
(ii) Each relation in L is equivalent to a square 2CNF, i.e. either empty, complete, or expressible in one of the three

following forms (in which the four literals are not necessarily distinct): (i) (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑), (ii) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨
𝑐) ∧ (𝑐 ∨ 𝑑), (iii) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑).

4.4 The Dichotomy for Boolean Languages
Bringing together what we have learnt in this section, we have the following theorem.

Theorem 7. Let L be a finite boolean language closed under taking complements. Then, assuming P ≠ NP,
wAXpDT(L) ∈ P iff at least one of the conditions holds:

(1) Each relation in L is equivalent to a star-nested Horn formula
(2) Each relation in L is equivalent to a star-nested anti-Horn formula
(3) Each relation in L is equivalent to a linear equation over GF(2)
(4) Each relation in L is equivalent to a square 2CNF formula.

The requirement that L is finite in Theorem 7 arises from technicalities related to the representation of
infinite languages. Indeed, certain degenerate representations for the relations of an infinite language L may be
problematic from an algorithmic perspective. For example, the promise that the relations of L are equivalent to
star-nested Horn formulas might not be sufficient to ensure tractability (or even membership in NP) if they are
encoded in a way that makes even the most elementary relational operations NP-hard. However, this theorem

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:15

is still true for infinite languages if one makes the mild assumptions that (i) relations equivalent to linear
equations are always represented as such, and (ii) the representation used for relations equivalent to star-nested
Horn/anti-Horn formulas allows for checking in polynomial time whether a given assignment extends to a tuple.

Example 11. Consider the language L of Example 6, which consists of all 2-conjunctions of 2-clauses. Now, extend
L with pseudo-boolean constraints 𝑎 + 𝑏 + 𝑐 ≥ 2 for any literals 𝑎, 𝑏, 𝑐 , where summation is over Z. This larger
language L′ is closed under taking complements (the complement of 𝑎 + 𝑏 + 𝑐 ≥ 2 is ¬𝑎 + ¬𝑏 + ¬𝑐 ≥ 2), and all
constraints inL′ can be expressed as square 2CNF formulas because 𝑎+𝑏+𝑐 ≥ 2 ≡ (𝑎∨𝑏)∧(𝑏∨𝑐)∧(𝑐∨𝑎). Therefore,
by Theorem 7 we have wAXpDT(L′) ∈ P. However, no quaternary pseudo-boolean constraint 𝑎 + 𝑏 + 𝑐 + 𝑑 ≥ 𝑘 with
1 ≤ 𝑘 < 4 can be expressed as a square 2CNF formula. In fact, adding any such constraint to L would cause the
corresponding wAXpDT problem to become NP-complete by Theorem 7 as the resulting language would violate each
of the four tractability conditions.

5 Extending the Tractable Boolean Languages
In this section we extend tractable languages to ordered domains of arbitrary finite size and prove a dichotomy
for a restricted form of languages.

Without loss of generality, and for simplicity of presentation, we assume that all features have the same domain
𝐷 = {0, 1, . . . , 𝑑 − 1}.

Recall that we call literals of the form 𝑥𝑖 ≥ 𝑎 or 𝑥𝑖 < 𝑎, where 𝑎 is a constant in 𝐷 \ {0}, unary inequality literals
(UI-literals). We choose the convention that literals of the form 𝑥𝑖 ≥ 𝑎, where 𝑎 ∈ 𝐷 \ {0}, are positive UI-literals,
whereas literals of the form 𝑥𝑖 < 𝑎 are negative UI-literals. The notions of (anti-)Horn clauses, star-nested
(anti-)Horn formulas and square 2CNF all generalise in a natural way. For example, a UI-generalisation of a
Horn clause is the disjunction of UI-literals, at most one of which is positive. We show in this section that the
star-nested (anti-)Horn and square 2CNF languages generalise to tractable languages over domains of size 𝑑 ≥ 3,
whereas the affine language does not.

5.1 Generalised Square 2CNFs
Definition 5. A constraint relation 𝑅 (over domains of arbirary finite size) is generalised square 2CNF if 𝑅 has

one of the three following forms, where 𝑎, 𝑏, 𝑐, 𝑑 are (not necessarily distinct) UI-literals:
(i) (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑),
(ii) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑑),
(iii) (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑)

Example 12. All boolean functions of two UI-literals (i.e. the constraints studied in Example 8) are generalised
square 2CNF. This follows directly from Observation 1. All constraints of the form (𝑥𝑖 ∈ [𝑝, 𝑞]) ∨ (𝑥 𝑗 ∈ [𝑟, 𝑠]) are
also generalised square 2CNF since they can be obtained by setting 𝑎 = (𝑥𝑖 ≥ 𝑝), 𝑏 = (𝑥 𝑗 ≥ 𝑟), 𝑐 = (𝑥𝑖 < 𝑞+1) and
𝑑 = (𝑥 𝑗 < 𝑠+1) in (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑).

We denote by L𝐺𝑆 the language of generalised square 2CNF relations together with all unary constraints (i.e.
constraints of the form 𝑥𝑖 ∈ 𝐴 where ∅ ⊂ 𝐴 ⊂ 𝐷).

Lemma 8. L𝐺𝑆 is closed under taking complements.

Proof. For unary constraints, this follows from the fact that ¬(𝑥𝑖 ∈ 𝐴) ≡ 𝑥𝑖 ∈ 𝐷 \𝐴 and ∅ ⊂ 𝐴 ⊂ 𝐷 implies
∅ ⊂ (𝐷 \𝐴) ⊂ 𝐷 . For generalised square 2CNF constraints, as in the boolean case, it follows from the identities:

(i) ¬((𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑)) ≡ (¬𝑎 ∨ ¬𝑐) ∧ (¬𝑏 ∨ ¬𝑐) ∧ (¬𝑎 ∨ ¬𝑑) ∧ (¬𝑏 ∨ ¬𝑑),
(ii) ¬((𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑐 ∨ 𝑑)) ≡ (¬𝑎 ∨ ¬𝑐) ∧ (¬𝑏 ∨ ¬𝑐) ∧ (¬𝑏 ∨ ¬𝑑),
(iii) ¬((𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑑) ∧ (𝑐 ∨ 𝑑)) ≡ (¬𝑎 ∨ ¬𝑐) ∧ (¬𝑏 ∨ ¬𝑑)

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:16 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

□

Proposition 5. wAXpDT(L𝐺𝑆) ∈ P.

Proof. Clearly 𝐴𝑠𝑠𝑡 ⊆ L𝐺𝑆 since, by definition, L𝐺𝑆 contains all unary constraints. Given Proposition 1 and
Lemma 8, it therefore suffices to show that CSP(L𝐺𝑆) ∈ P.
Consider the ternary function med: 𝐷3 → 𝐷 which returns the median value among its three arguments.

We will show that med is a polymorphism of L𝐺𝑆 . Since med is conservative (that is, it always returns one
of its arguments), it is a polymorphism of all unary constraints. It is well known that if two relations 𝑅1, 𝑅2
have the same polymorphism 𝑓 , then so does their join 𝑅1 Z 𝑅2 (Jeavons, Cohen, and Gyssens 1997). In the
definition of generalised square 2CNF relations, the conjunction operation is equivalent to a join. Hence, to show
that all generalised square 2CNF relations have the polymorphism med it suffices to show that 𝑎 ∨ 𝑏 has the
polymorphism med where 𝑎 and 𝑏 are any UI-literals.

Suppose that (𝑢1, 𝑢2), (𝑣1, 𝑣2), (𝑤1,𝑤2) ∈ 𝑅, where 𝑅 = 𝑎 ∨ 𝑏 and 𝑎, 𝑏 are UI-literals on variables 𝑥1, 𝑥2. Then at
least two of these tuples must satisfy the same UI-literal. Without loss of generality, suppose that (𝑢1, 𝑢2), (𝑣1, 𝑣2)
both satisfy the literal on the variable 𝑥1. Now if this is a positive UI-literal, say 𝑥1 ≥ 𝑝 , then med(𝑢1, 𝑣1,𝑤1) ≥ 𝑝 .
Similarly, if it is a negative literal, say 𝑥1 < 𝑞, then med(𝑢1, 𝑣1,𝑤1) < 𝑞. Hence 𝑎 ∨ 𝑏 has the polymorphism med
for any UI-literals 𝑎, 𝑏, and so does L𝐺𝑆 .

It is known that for constraint languages Γ with a majority polymorphism, such as med, CSP(Γ) can be solved
in polynomial time by establishing strong 3-consistency (Jeavons, Cohen, and Cooper 1998). This thus completes
the proof that wAXpDT(L𝐺𝑆) ∈ P. □

5.2 Generalised Star-nested (Anti-)Horn
Definition 6. A constraint relation 𝑅 over domains of arbitrary finite size is generalised star-nested Horn if

and only if there exist sets of UI-literals 𝐿 and ∅ = 𝑆0 ⊂ 𝑆1 ⊂ 𝑆2 ⊂ . . . ⊂ 𝑆𝑞 such that

• all UI-literals in 𝐿 are positive, and
• all UI-literals in 𝑆𝑞 are negative, and
• 𝑅 is the conjunction of clauses 𝐶 of the form 𝐶 =

∨
𝑠∈𝑆𝑖 𝑠 or 𝐶 = 𝑙 ∨

(∨
𝑠∈𝑆𝑖 𝑠

)
with 𝑙 ∈ 𝐿.

A relation 𝑅 is generalised star-nested anti-Horn if replacing each UI-literal by its negation yields a generalised
star-nested Horn relation.

Example 13. A useful constraint that is generalised star-nested Horn is the constraint 𝑥𝑖 ≥ 𝑥 𝑗 . To see this, observe
that 𝑥𝑖 ≥ 𝑥 𝑗 is equivalent to the non-existence of a value 𝑎 ∈ 𝐷 \ {0} such that 𝑥𝑖 < 𝑎 and 𝑥 𝑗 ≥ 𝑎. Hence

𝑥𝑖 ≥ 𝑥 𝑗 ≡
∧

𝑎∈𝐷\{0}

(
(𝑥𝑖 ≥ 𝑎) ∨ (𝑥 𝑗 < 𝑎)

)
≡

∧
𝑎∈𝐷\{0}

(
(𝑥𝑖 ≥ 𝑎) ∨

∨
𝑠∈𝑆𝑎

𝑠

)
where 𝑆𝑎 = {𝑥 𝑗 < 1, . . . , 𝑥 𝑗 < 𝑎}. Clearly 𝑆1 ⊂ . . . ⊂ 𝑆𝑑−1 and so 𝑥𝑖 ≥ 𝑥 𝑗 satisfies the definition of a generalised
star-nested Horn constraint.
This argument can be generalised to a larger family of constraints. Consider 𝑘 + 1 features 𝑥𝑖 , 𝑥 𝑗1 , . . . , 𝑥 𝑗𝑘 and a

constraint of the form 𝑥𝑖 ≥ min
(
𝑓1 (𝑥 𝑗1), . . . , 𝑓𝑘 (𝑥 𝑗𝑘)

)
where each function 𝑓𝑞 : N→ N is nondecreasing. As above,

this constraint is equivalent to the non-existence of 𝑎 ∈ 𝐷 \ {0} such that 𝑥𝑖 < 𝑎 and 𝑓𝑞 (𝑥 𝑗𝑞) ≥ 𝑎 for all 1 ≤ 𝑞 ≤ 𝑘 . In
order to express this condition as a formula over UI-literals, notice that for all 1 ≤ 𝑞 ≤ 𝑘 and 𝑎 ∈ 𝐷 \ {0} we have

𝑓𝑞 (𝑥 𝑗𝑞) < 𝑎 ≡
{
true if 𝑓𝑞 (𝑑 − 1) < 𝑎∨

𝑏∈𝐷\{𝑑−1}:𝑓𝑞 (𝑏)<𝑎 (𝑥 𝑗𝑞 < 𝑏 + 1) otherwise.

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:17

Finally, we obtain

𝑥𝑖 ≥ min
(
𝑓1 (𝑥 𝑗1), . . . , 𝑓𝑘 (𝑥 𝑗𝑘)

)
≡

∧
𝑎∈𝐴

(
(𝑥𝑖 ≥ 𝑎) ∨

∨
𝑠∈𝑆𝑎

𝑠

)
where𝐴 = {𝑎 ∈ 𝐷\{0} | ∀𝑞, 𝑓𝑞 (𝑑−1) ≥ 𝑎}, 𝑆𝑎 = 𝑆𝑎1∪. . .∪𝑆𝑎𝑘 and 𝑆𝑎𝑞 = {𝑥 𝑗𝑞 < 𝑏+1 | (0 ≤ 𝑏 < 𝑑−1)∧(𝑓𝑞 (𝑏) < 𝑎)}
for all 𝑎 ∈ 𝐴 and 1 ≤ 𝑞 ≤ 𝑘 . Each function is nondecreasing, so 𝑆𝑝 ⊂ 𝑆𝑞 whenever 𝑝 < 𝑞 and hence this constraint is
generalised star-nested Horn.

We denote by L𝐺𝐻 (respectively L𝐺𝐴) the language of generalised star-nested Horn (resp. anti-Horn) relations
together with all unary constraints.

Lemma 9. L𝐺𝐻 and L𝐺𝐴 are closed under taking complements.

Proof. For unary constraints, this follows from the fact that ¬(𝑥𝑖 ∈ 𝐴) ≡ 𝑥𝑖 ∈ 𝐷 \ 𝐴 and ∅ ⊂ 𝐴 ⊂ 𝐷 iff
∅ ⊂ (𝐷 \ 𝐴) ⊂ 𝐷 . For generalised star-nested (anti-)Horn constraints, the proof is identical to the proof of
Proposition 2. □

Proposition 6. wAXpDT(L𝐺𝐻) ∈ P and wAXpDT(L𝐺𝐴) ∈ P.

Proof. We give the proof only for L𝐺𝐻 since the proof for L𝐺𝐴 is almost identical. Clearly 𝐴𝑠𝑠𝑡 ⊆ L𝐺𝐻 since,
by definition, L𝐺𝐻 contains all unary constraints. Given Proposition 1 and Lemma 9, it therefore suffices to show
that CSP(L𝐺𝐻) ∈ P.

Consider the binary function min: 𝐷2 → 𝐷 which returns the minimum value among its two arguments. As
min always returns one of its arguments, it is a polymorphism of all unary constraints. Generalised star-nested
Horn relations are joins (conjunctions) of Horn formulas on UI-literals. As in the proof of Proposition 5, to show
that all generalised star-nested Horn relations have the polymorphism min, it suffices to show that a single Horn
clause with UI-literals is min-closed.
Suppose that (𝑢1, . . . , 𝑢𝑟), (𝑣1, . . . , 𝑣𝑟) ∈ 𝑅, where 𝑅 is given by the following Horn clause on UI-literals:

(𝑥1 < 𝑎1) ∨ . . . ∨ (𝑥𝑟−1 < 𝑎𝑟−1) ∨ (𝑥𝑟 ≥ 𝑎𝑟)

If either of the tuples satisfies a negative literal, say 𝑢𝑖 < 𝑎𝑖 , then min(𝑢𝑖 , 𝑣𝑖) < 𝑎𝑖 . The only remaining case to
consider is when both tuples satisfy the positive literal: in this case𝑢𝑟 ≥ 𝑎𝑟 and 𝑣𝑟 ≥ 𝑎𝑟 , hencemin(𝑢𝑟 , 𝑣𝑟) ≥ 𝑎𝑟 . The
case in which 𝑅 has no positive literal is immediate. Hence any Horn clause on UI-literals have the polymorphism
min, and so does L𝐺𝐻 .
It is known that for constraint languages Γ with the polymorphism min, CSP(Γ) can be solved in polynomial

time by establishing (generalised) arc consistency (Carbonnel and Cooper 2016; Jeavons, Cohen, and Gyssens
1997). This completes the proof that wAXpDT(L𝐺𝐻) ∈ P. □

5.3 A Dichotomy for UI-Generalisations of Boolean Languages
We now consider a restricted class of languages over non-boolean domains for which we establish a complexity
dichotomy. The languages we consider are natural extensions of boolean languages.

Given a formula𝜓 (𝑥1, . . . , 𝑥𝑟) on boolean variables 𝑥1, . . . , 𝑥𝑟 , the language obtained from𝜓 by UI-generalisation
(of its literals) is

L𝑈 𝐼
𝜓

= {𝜓 (𝑥1 ≥ 𝑎1, . . . , 𝑥𝑟 ≥ 𝑎𝑟) | 𝑎1, . . . , 𝑎𝑟 ∈ 𝐷 \ {0}} (1)

i.e. L𝑈 𝐼
𝜓

consists of all formulas obtained by replacing each occurrence of 𝑥𝑖 by some UI-literal 𝑥𝑖 ≥ 𝑎𝑖 , where each
𝑎𝑖 can be any non-zero constant. Note that two logically equivalent formulas𝜓1,𝜓2 necessarily give rise to the same
languagesL𝑈 𝐼

𝜓1
,L𝑈 𝐼

𝜓2
. Indeed,𝜓1 (𝑥1 ≥ 𝑎1, . . . , 𝑥𝑟 ≥ 𝑎𝑟) ≡ 𝜓2 (𝑥1 ≥ 𝑎1, . . . , 𝑥𝑟 ≥ 𝑎𝑟) if𝜓1 (𝑥1, . . . , 𝑥𝑟) ≡ 𝜓2 (𝑥1, . . . , 𝑥𝑟).

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:18 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

Hence, we can write L𝑈 𝐼
𝑅

for any constraint relation 𝑅 over boolean domains, since it is independent of the
boolean formula used to express 𝑅.
For a boolean language B, the language L𝑈 𝐼

B obtained by UI-generalisation from B is given by

L𝑈 𝐼
B =

⋃
𝑅∈B
L𝑈 𝐼

𝑅

Clearly, if B is closed under taking complements, then so is L𝑈 𝐼
B : indeed, ¬(𝑅(𝑥1 ≥ 𝑎1, . . . , 𝑥𝑟 ≥ 𝑎𝑟)) ≡ (¬𝑅) (𝑥1 ≥

𝑎1, . . . , 𝑥𝑟 ≥ 𝑎𝑟) and B closed under taking complements means that 𝑅 ∈ B ⇒ (¬𝑅) ∈ B.
In the definition of UI-generalisation in equation (1), each occurrence of the argument 𝑥𝑖 in the formula

𝜓 (𝑥1, . . . , 𝑥𝑟) is replaced by the same UI-literal 𝑥𝑖 ≥ 𝑎𝑖 . Observe, however, that we assume (implicitly) in the
definition of the problems CSP(L) and wAXpDT(L) that constraints can be applied with repeated arguments. This
allows us in CSP(L𝑈 𝐼

B) or wAXpDT(L𝑈 𝐼
B) to apply a constraint of the form 𝑅(𝑥1 ≥ 𝑎1, 𝑥1 ≥ 𝑎2, 𝑥3 ≥ 𝑎3, . . . , 𝑥𝑟 ≥ 𝑥𝑟)

where 𝑎1 ≠ 𝑎2, by replacing the second argument 𝑥2 of 𝑅 by the UI-literal 𝑥1 ≥ 𝑎2.
An important point is that not all languages of relations over a domain 𝐷 of size greater than 2 can be expressed

as a language L𝑈 𝐼
B for some boolean language B. A property of languages L𝑈 𝐼

B obtained by UI-generalisation of
boolean languages is that they are value-independent in the sense that L𝑈 𝐼

B necessarily contains all relations
𝑅(𝑥1 ≥ 𝑎1, . . . , 𝑥𝑟 ≥ 𝑎𝑟) for all (𝑎1, . . . , 𝑎𝑟) ∈ (𝐷 \ {0})𝑟 for 𝑅 ∈ B. For example, if B is the language consisting of
the single square 2CNF relation 𝑥1 ∨ 𝑥2, then we do not consider the language consisting of the single relation
(𝑥1 ≥ 1) ∨ (𝑥2 ≥ 1); instead L𝑈 𝐼

𝑅
is {(𝑥1 ≥ 𝑎1) ∨ (𝑥2 ≥ 𝑎2) | 𝑎1, 𝑎2 ∈ 𝐷 \ {0}}.

We now study the complexity of CSP(L𝑈 𝐼
B) for boolean languages B.

Lemma 10. For boolean languages B, CSP(L𝑈 𝐼
B) ∈ P only if CSP(B) ∈ P.

Proof. Let L1
B be the subset of L𝑈 𝐼

B consisting of the relations 𝑅(𝑥1 ≥ 1, . . . , 𝑥𝑟 ≥ 1) for all 𝑅 ∈ B. There is a
direct polynomial reduction from CSP(B) to CSP(L1

B) in which each constraint 𝑅(𝑥𝑖1 , . . . , 𝑥𝑖𝑟) is replaced by the
constraint 𝑅(𝑥𝑖1≥1, . . . , 𝑥𝑖𝑟≥1). Hence CSP(L𝑈 𝐼

B) ∈ P implies that CSP(B) ∈ P. □

This means that to identify all tractable languages L𝑈 𝐼
B closed under taking complements, we only need

to consider the four tractable boolean languages B closed under taking complements. For square 2CNF and
star-nested (anti-)Horn tractability of wAXpDT follows from results we have already proved, as we show in the
following proposition.

Proposition 7. Let𝑈 be the set of unary relations (of the form 𝑥𝑖 ∈ 𝐴 where ∅ ⊂ 𝐴 ⊂ 𝐷). Then wAXpDT(L𝑈 𝐼
B)

∈ P and wAXpDT(L𝑈 𝐼
B ∪𝑈) ∈ P when B is any of the following boolean languages:

(1) the language of square 2CNF relations,
(2) the language of star-nested Horn relations,
(3) the language of star-nested anti-Horn relations.

Proof. We have already seen that B is closed under taking complements for the language of square 2CNF
relations (Lemma 8 in the case of boolean domains), and the language of star-nested (anti-)Horn relations
(Proposition 2). As observed above, if B is closed under taking complements, then so is L𝑈 𝐼

B . We have already
seen, in the proof of Lemma 8, that𝑈 is closed under taking complements. It follows that all languages under
consideration are closed under taking complements.
When B is the language of square 2CNF relations, L𝑈 𝐼

B ∪𝑈 ⊆ L𝐺𝑆 and so tractability of wAXpDT(L𝑈 𝐼
B ∪𝑈)

(and wAXpDT(L𝑈 𝐼
B)) follows from Proposition 5. When B is the language of star-nested Horn relations, L𝑈 𝐼

B ∪𝑈
⊆ L𝐺𝐻 and so tractability of wAXpDT(L𝑈 𝐼

B ∪𝑈) (and wAXpDT(L𝑈 𝐼
B)) follows from Proposition 6. When B is

the language of star-nested anti-Horn relations, L𝑈 𝐼
B ∪𝑈 ⊆ L𝐺𝐴 and so tractability of wAXpDT(L𝑈 𝐼

B ∪𝑈) (and
wAXpDT(L𝑈 𝐼

B)) follows again from Proposition 6. □

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:19

The only remaining boolean language to consider is the affine case, i.e. B the set of linear equations over GF(2).
The relation obtained by UI-generalisation of the equation 𝑥1 + 𝑥2 + . . . + 𝑥𝑟 ≡ 𝑐 mod 2 is

[𝑥1 ≥ 𝑎1] + [𝑥2 ≥ 𝑎2] + . . . + [𝑥𝑟 ≥ 𝑎𝑟] ≡ 𝑐 mod 2 (2)

where [𝑃] equals 1 if 𝑃 is true, 0 otherwise. We call a relation of the form in equation (2), a UI-generalised affine
relation. Recall that all affine constraints can bewritten in the form of the sum of positive literals 𝑥1+𝑥2+. . .+𝑥𝑟 ≡ 𝑐
mod 2. For example, the constraint (¬𝑥1) + 𝑥2 + . . . + 𝑥𝑟 ≡ 𝑐 mod 2 is equivalent to 𝑥1 + 𝑥2 + . . . + 𝑥𝑟 ≡ 𝑐 + 1
mod 2.

Lemma 11. Let B be a boolean language composed of the single affine relation 𝑥1 + 𝑥2 + . . . + 𝑥𝑟 ≡ 𝑐 mod 2,
where 𝑟 ≥ 3, and let L𝑈 𝐼

B be the UI-generalisation of B to a domain of size 𝑑 ≥ 3. Then CSP(L𝑈 𝐼
B ∪𝐴𝑠𝑠𝑡) is NP-hard.

Proof. We demonstrate NP-hardness by reduction from 𝑑-coloring. To do this, it is sufficient to give a gadget
that simulates the constraint 𝑥𝑖 ≠ 𝑥 𝑗 . Consider the gadget

∃𝑦3, . . . , 𝑦𝑟 ([𝑥𝑖 ≥ 𝑎] + [𝑥 𝑗 ≥ 𝑏] + [𝑦3 ≥ 1] + . . . + [𝑦𝑟 ≥ 1] ≡ 𝑐 mod 2
∧ [𝑥𝑖 ≥ 𝑎+1] + [𝑥 𝑗 ≥ 𝑏+1] + [𝑦3 ≥ 1] + . . . + [𝑦𝑟 ≥ 1] ≡ 𝑐 mod 2)

This is equivalent to
[𝑥𝑖 ≥ 𝑎] + [𝑥 𝑗 ≥ 𝑏] ≡ [𝑥𝑖 ≥ 𝑎+1] + [𝑥 𝑗 ≥ 𝑏+1] mod 2

which can be simplified to
(𝑥𝑖 = 𝑎) ≡ (𝑥 𝑗 = 𝑏)

In the above construction, when 𝑎 is the maximum element in the domain, 𝑥𝑖 ≥ 𝑎+1 is not a valid UI-literal. But,
in this case, we replace it in the above gadget by the literal [𝑦1 ≥ 2] and we add the constraint 𝑦1 = 1 (which
belongs to 𝐴𝑠𝑠𝑡). This has the same effect as 𝑥𝑖 ≥ 𝑎+1 which, of course, is always false. A similar remark holds
when 𝑎 = 0. In this case, [𝑥𝑖 ≥ 𝑎] is not a valid UI-literal, but since it is always true we replace it by 𝑦1 ≥ 1 (where
again we impose the assignment constraint 𝑦1 = 1). Clearly, similar adjustments will be necessary if 𝑏 = 𝑑 − 1 or
𝑏 = 0.

Now, for any 𝑎 ∈ 𝐷 \ {0}, we can choose a domain value 𝑎′ ≠ 𝑎 and we can construct the gadget

∃𝑧𝑘 ((𝑥𝑖 = 𝑎) ≡ (𝑧𝑘 = 𝑎)
∧ (𝑥 𝑗 = 𝑎) ≡ (𝑧𝑘 = 𝑎′))

This is equivalent to
(𝑥𝑖 ≠ 𝑎) ∨ (𝑥 𝑗 ≠ 𝑎)

The conjunction
∧

𝑎∈𝐷 ((𝑥𝑖 ≠ 𝑎) ∨ (𝑥 𝑗 ≠ 𝑎)) is then equivalent to 𝑥𝑖 ≠ 𝑥 𝑗 . Thus we can construct the constraint
𝑥𝑖 ≠ 𝑥 𝑗 and hence there is a polynomial reduction from 𝑑-coloring to CSP(L𝑈 𝐼

B). □

This allows us to state the following dichotomy for UI-generalisations of boolean languages,

Theorem 8. Let B be a finite boolean language closed under taking complements, and let 𝑈 be the set of unary
relations (of the form 𝑥𝑖 ∈ 𝐴 where ∅ ⊂ 𝐴 ⊂ 𝐷). Assuming P ≠ NP, wAXpDT(L𝑈 𝐼

B ∪𝑈) ∈ P iff B is a sublanguage
of (at least) one of the following boolean languages:

(1) the language of square 2CNF relations,
(2) the language of star-nested Horn relations,
(3) the language of star-nested anti-Horn relations.

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:20 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

Proof. The ‘if’ direction follows directly from Proposition 7. For the ‘only if’ direction, we first show that
any binary UI-generalised affine relation is, in fact, equivalent to a generalised square 2CNF. The binary affine
constraint [𝑥𝑖 ≥ 𝑎] + [𝑥 𝑗 ≥ 𝑏] ≡ 1 mod 2 is equivalent to the generalised square 2CNF:

((𝑥𝑖 ≥ 𝑎) ∨ (𝑥 𝑗 ≥ 𝑏)) ∧ ((𝑥𝑖 < 𝑎) ∨ (𝑥 𝑗 < 𝑏))
and the other binary affine constraint [𝑥𝑖 ≥ 𝑎] + [𝑥 𝑗 ≥ 𝑏] ≡ 0 mod 2 is equivalent to the generalised square
2CNF:

((𝑥𝑖 ≥ 𝑎) ∨ (𝑥 𝑗 < 𝑏)) ∧ ((𝑥𝑖 < 𝑎) ∨ (𝑥 𝑗 ≥ 𝑏))
Unary affine constraints are of course unary constraints. Thus, by Lemma 11, the largest subsetL of UI-generalised
affine relations such that CSP(L) is not NP-hard, is actually a sublanguange of L𝑈 𝐼

B𝑆 ∪𝑈 where B𝑆 is the boolean
language of square 2CNF relations. Thus, the ‘only if’ direction then follows from Theorem 7 (the dichotomy for
boolean languages) together with Lemma 10. □

We now revisit the notion of contrastive explanation (CXp). Recall that a CXp a minimal set of features which
can be changed in order to change the class. From Definition 3, it is clear that being a weak CXp is a monotone
property. Hence, we can deduce from Lemma 1 that to find a CXp in polynomial time, it is sufficient to be able to
test whether a set of features is a weak CXp in polynomial time. We therefore concentrate on this latter problem.
Let wCXpDT(L) denote the problem of deciding whether a set of features is a weak CXp for a given decision
taken by an MDT in L-DT. Let 𝐹 denote the set of features. It follows immediately from the definitions of weak
AXp and weak CXp that a set 𝑆 is a weak CXp iff 𝐹 \ 𝑆 is not a weak AXp. This implies that the wAXpDT(L) ∈ P
iff wCXpDT(L) ∈ P, from which we have the following theorem.

Theorem 9. Let B be a finite boolean language closed under taking complements, and let 𝑈 be the set of unary
relations (of the form 𝑥𝑖 ∈ 𝐴 where ∅ ⊂ 𝐴 ⊂ 𝐷). Assuming P ≠ NP, wCXpDT(L𝑈 𝐼

B ∪𝑈) ∈ P iff B is a sublanguage
of (at least) one of the following boolean languages:
(1) the language of square 2CNF relations,
(2) the language of star-nested Horn relations,
(3) the language of star-nested anti-Horn relations.

6 Experimental Trials
An important question is whether there is a real advantage in using MDTs rather than DTs. When comparing
their relative merits, obvious criteria are the accuracy of the model and the computational resources required to
learn the model, to query it and to produce explanations. One should also take into account the interpretability
of explanations that are produced for predictions. For example, there may be a trade-off between accuracy and
concision of explanations.

In order to guarantee tractability of finding an explanation, we chose to study MDTs whose conditions belong
to the language of generalised square 2CNFs. To ensure the feasibility of building a model, we limited ourselves
to constraints concerning just one or two finite-domain features. In other words, we consider the language of
constraints described in Example 8 and illustrated in Figure 4. In order to perform a fair comparison between
MDTs and DTs, we chose to compare the accuracy of MDTs and DTs for which average sizes of explanations are
expected to be equal. Our experimental trials indicated that there is no statistically significant difference between
the accuracy of depth-5 MDTs and depth-7 DTs. As we explain in detail below, the depths 5 and 7 were chosen so
as to have, on average, the same size of explanations. A direct conclusion is that MDTs can provide more compact
models with the same performance (in terms of accuracy and explanation-size) as DTs.

We now describe in more detail our experiments. There are exactly ten truly binary boolean functions (i.e. not
equivalent to constant or unary functions) on two boolean arguments, namely the following five functions and

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:21

their complements: 𝑓1 (𝑥,𝑦) = 𝑥 ∨ 𝑦, 𝑓2 (𝑥,𝑦) = ¬𝑥 ∨ 𝑦, 𝑓3 (𝑥,𝑦) = 𝑥 ∨ ¬𝑦, 𝑓4 (𝑥,𝑦) = ¬𝑥 ∨ ¬𝑦, 𝑓5 (𝑥,𝑦) = 𝑥 ⊕ 𝑦 (i.e.
the exclusive or of 𝑥 and 𝑦). All these functions are square 2CNFs. Under a uniform distribution of the values of
the arguments 𝑥,𝑦, 𝑓𝑖 (𝑥,𝑦) has a probability of 1/4 of being 0 and 3/4 of being 1 (𝑖 = 1, . . . , 4) whereas 𝑓5 (𝑥,𝑦)
has a probability of 1/2 of being either 0 or 1. Consider a node in an MDT whose constraint is 𝑙1 ∨ 𝑙2, for some
literals 𝑙1, 𝑙2. It has two child nodes corresponding respectively to the disjunction 𝑙1 ∨ 𝑙2 and its complement, the
conjunction ¬𝑙1 ∧ ¬𝑙2. The explanation for taking the disjunctive branch is the feature associated with the literal
which is true (or an arbitrary choice if both 𝑙1, 𝑙2 are true). The explanation for taking the conjunctive branch
¬𝑙1 ∧ ¬𝑙2 is both features. In the case of an exclusive or, the explanation for taking either branch requires both
features. Assuming that the five functions 𝑓1, . . . , 𝑓5 are equally likely to occur as constraints in an MDT, the
probability that we require only one feature to explain which branch was taken is (4/5) · (3/4) = 3/5 (since 4 out
of 5 of the functions 𝑓𝑖 have a disjunctive branch, and as observed above there is a 3/4 chance that this is the
branch that is taken).
As a first approximation to compare explanation size for decisions taken by MDTs and DTs, we can simply

estimate the size of a weak AXp corresponding to the path from the root to a leaf, assuming that all features
encountered along a path are distinct. In a DT the size of this weak AXp is equal to the length of the path. As
we have seen above, in an MDT every disjunctive branch along the path contributes one feature and every
conjunctive branch or exclusive-or branch contributes two features. An MDT may also contain unary constraints,
but since there are much fewer unary constraints than binary constraints (a linear number rather than a quadratic
number), we consider that unary constraints are rare (which was confirmed by our experiments) and can hence be
ignored in the approximate calculation of expected explanation size. Let 𝑑DT and 𝑑MDT be, respectively, the depths
of the DT and MDT. We have seen above that each edge in an MDT contributes one feature with probability 3/5
and two features with probability 1 − 3/5 = 2/5. This means that the weak AXp corresponding to a path from the
root to a leaf in an MDT will contain, on average, 𝑑MDT (3/5 + 2 · (2/5)) = 𝑑MDT · (7/5) features, compared to the
𝑑DT features for a DT. Thus, in order to make a fair comparison, we decided to build MDTs of depth 5 and DTs of
depth 7, so that the resulting AXp’s can be expected to be of the same average length.

We used Blossom (Demirovic et al. 2023), a program that searches for optimal DTs and which importantly has a
good anytime performance, in the sense that good-quality trees are found even if the program times out. Blossom
is designed to build DTs, so to learn MDTs we opted for a simple solution consisting of effectively adding new
features corresponding to 𝑓𝑖 (𝑥,𝑦) (𝑖 = 1, . . . , 5) for each pair of distinct features 𝑥,𝑦. The DTs thus constructed
are clearly equivalent to MDTs on the original features. Given the large increase in the number of features (the
larger data set have millions of features standing for binary tests), a guarantee of optimality was rarely achieved
for the MDTs. Blossom was stopped after 10 minutes of computation time in every case.

The experiments were run on a computing cluster containing 780 CPUs operated with Ubuntu 20.04. LTS and
Slurm 20.11.4, although each run was a single thread limited to 10 minutes of CPU time. Blossom was run with its
default parameters, in particular, it uses Gini impurity (Breiman et al. 1984) to guide the search, and implements
preprocessing of the data set which was highly relevant given the size of the expanded data sets. All code and
data necessary to reproduce the experiments is available in a repository2.

We used datasets from the UCI repository (Kelly et al. accessed 2025) (listed in Table 1). The columns “unary”
and “binary” features in this table indicate the original number of features and the number of possible binary test
in the chosen language. Although the complexity of the method scales exponentially in this parameter3, its good
anytime behavior makes it possible to learn high quality trees. For each data set, we splitted the instances with
uniform probability between the training and test set, to a ratio of 4 to 1, respectively. A DT of maximum depth 7
and an MDT of maximum depth 5 were built for each dataset. We then compared accuracy (on the test set) and

2https://gitlab.laas.fr/roc/emmanuel-hebrard/mdt-experiments
3It scales linearly with the number of instances, which is thus irrelevant here.

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:22 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

data set # features test accuracy tree size expl. length

unary binary DT MDT DT MDT DT MDT

car_evaluation-bin 14 455 0.9165 0.9150 35.1 13.6 1.36 1.30
balance-scale-bin 16 600 0.7849 0.8373 76.8 23.8 2.66 3.46
car-un 21 1050 0.9668 0.9734 58.0 14.9 2.93 1.23
compas_discretized 25 1500 0.6612 0.6667 102.1 30.9 5.40 5.09
tic-tac-toe 27 1755 0.9705 0.9378 39.8 20.2 2.23 3.92
banknote-bin 28 1890 0.9862 0.9876 19.7 11.8 1.23 1.89
primary-tumor 31 2325 0.7426 0.7603 41.5 21.2 1.96 4.01
winequality-red-bin 42 4305 0.9859 0.9884 13.5 8.9 1.25 2.44
IndiansDiabetes-bin 43 4515 0.6539 0.7162 114.9 27.5 5.64 5.02
vote 48 5640 0.9420 0.9489 15.9 10.8 1.73 2.11
soybean 50 6125 0.9386 0.9488 27.9 11.9 1.87 3.10
adult_discretized 59 8555 0.8540 0.8550 87.0 24.7 6.16 4.92
hepatitis 68 11390 0.7276 0.7862 12.5 8.7 1.30 1.99
lymph 68 11390 0.8194 0.8677 14.0 7.7 1.37 2.24
HTRU_2-bin 70 12075 0.9760 0.9778 100.2 24.1 5.28 4.33
kr-vs-kp 73 13140 0.9836 0.9908 35.2 14.9 1.88 2.94
messidor-bin 86 18275 0.6364 0.6450 85.1 28.3 6.54 4.91
magic04-bin 86 18275 0.8457 0.8453 125.0 31.0 7.49 5.56
hypothyroid 88 19140 0.9743 0.9775 52.5 19.1 3.51 2.69
breast-cancer-un 89 19580 0.9380 0.9438 25.4 12.8 1.07 1.45
yeast 89 19580 0.6980 0.7208 87.4 26.5 4.45 4.87
seismic_bumps-bin 91 20475 0.8992 0.9153 102.8 21.3 5.17 4.41
anneal 93 21390 0.8681 0.8687 51.1 15.2 4.25 1.77
heart-cleveland 95 22325 0.7367 0.7650 31.1 18.5 2.59 3.89
german-credit 112 31080 0.6805 0.6950 96.0 24.8 5.87 4.73
diabetes 112 31080 0.6630 0.7221 107.4 26.1 6.57 4.62
mushroom 119 35105 1.0000 1.0000 7.8 4.0 0.29 1.00
breast-wisconsin 120 35700 0.9328 0.9526 18.3 11.1 1.82 2.93
australian-credit 125 38750 0.8220 0.8265 59.7 19.9 3.66 4.07
audiology 148 54390 0.9295 0.9227 7.4 4.3 1.19 0.96
taiwan_binarised 205 104550 0.8130 0.8167 121.7 30.3 8.09 5.30
bank_conv-bin 212 111830 0.8961 0.8966 88.0 28.3 5.46 5.31
pendigits 216 116100 0.9970 0.9963 19.9 14.7 2.09 3.27
letter 224 124880 0.9915 0.9891 81.1 17.7 4.74 3.29
segment 235 137475 0.9991 0.9998 5.0 3.0 1.69 1.12
letter_recognition-bin 240 143400 0.9941 0.9949 50.9 13.9 3.89 3.33
vehicle 252 158130 0.9482 0.9524 26.2 13.2 2.41 3.38
splice-1 287 205205 0.9447 0.9589 57.5 21.8 4.60 4.77
biodeg-bin 304 230280 0.8354 0.8340 72.4 23.2 5.22 3.82
titanic-un 333 276390 0.7904 0.8163 66.8 21.5 3.98 4.35
spambase-bin 386 371525 0.8772 0.8765 75.1 21.8 6.58 4.26
ionosphere 445 493950 0.8789 0.8732 19.8 12.2 1.37 2.29
Statlog_satellite-bin 539 724955 0.9660 0.9694 58.4 19.0 3.57 3.54
forest-fires-un 989 2442830 0.5269 0.5635 31.2 12.3 1.39 1.49
wine1-un 1276 4067250 0.6417 0.6361 12.0 6.2 0.07 0.28
wine2-un 1276 4067250 0.6730 0.6703 12.8 7.3 0.25 0.73
wine3-un 1276 4067250 0.7278 0.6722 13.7 6.9 0.45 0.61

average 0.8518 0.8612 52.4 17.3 3.29 3.17

Table 1. Comparison of DTs and MDTs learnt by Blossom.

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:23

the size of the weak AXp’s corresponding to the path followed by the instance to be explained. This operation
was repeated 10 times for every data set with distinct random seeds resulting in 10 distinct partitions, and the
values reported in Table 1 are the averages over these 10 runs.

Although the DTs were deeper, the average accuracy for MDTs was slightly better (although the difference
was not found to be statistically significant on any particular dataset). Explanation sizes were found to be similar
for the DTs and the MDTs, which was to be expected given our choice of depth-5 MDTs and depth-7 DTs, as
explained above. However, a definite advantage of the MDTs was their relative compactness: complete depth-5
MDTs have 4 times less nodes than complete depth-7 DTs and in our experiments the depth-5 MDTs had on
average 3 times less nodes than the depth-7 DTs. Since there are more opportunities for pruning in depth-7 trees
than in depth-5 trees, it is to be expected that the ratio of 4 is not reached.
Thus, our experiments indicate that an MDT can provide a more compact model than a DT with similar

accuracy and interpretability (in terms of the number of features required to explain decisions).

7 Conclusion
We have shown the close link between classes of multivariate decision trees for which decisions can be explained
in polynomial time and tractable constraint languages closed under complement. We have shown that tractable
explainability applies to existing and well-studied classes of MDTs, such as oblique DTs over real domains, but
also to novel classes of MDTs over finite domains. Such novel classes provide generalisations of classical DTs in
that branching is possible not only on the value of a single variable but also according to specific (non-linear)
conditions on two or more variables.
Interesting open questions concern the continued evaluation of the practical utility (Cañete-Sifuentes et al.

2021; Li et al. 2005) as well as the theoretical computational power of such generalised DTs. There is a rich
history of the study of MDTs with linear conditions as a computational model, such as bounds on the depth
of such decision trees to test the equality of two sets (Reingold 1972). An avenue of future work is a similar
theoretical study of the computational power of MDTs with (generalised) star-nested Horn constraints (studied
in Section 4.1 and Section 5.1), or (generalised) square 2CNF formulas (studied in Section 4.3 and Section 5.2) to
determine whether there is a substantial theoretical gain in depth or size when compared with classical DTs. Our
experiments on a sublanguage of generalised square 2CNFs indicate that MDTs are more compact than DTs with
the same accuracy and average explanation-lengths.
Another avenue of future research is the investigation of algorithms for learning MDTs with (generalised)

star-nested Horn constraints or (generalised) square 2CNF formulas. Examples 12 and 13 show that we can
extend classical univariate DTs by adding bivariate constraints either of the form 𝑥𝑖 ∈ [𝑝, 𝑞] ∨ 𝑥 𝑗 ∈ [𝑟, 𝑠] or of the
form 𝑥𝑖 ≥ 𝑥 𝑗 , while retaining tractable explainability. This may be a useful compromise between the expressive
power of the constraint language and the learnability of the corresponding class of MDTs. In our experiments we
used a learning algorithm based on a complete search for an optimal tree of bounded depth (Demirovic et al.
2023). Alternative approaches are possible, inspired by methods for learning oblique DTs, such as a classical
top-down greedy approach for recursively splitting nodes (possibly followed by a pruning step) (Heath et al.
1993; Murthy et al. 1994; Wickramarachchi et al. 2016), a bottom-up approach using clustering (Barros et al. 2014)
or the successive optimisation of the split conditions at nodes (Carreira-Perpiñán and Tavallali 2018; Hada et al.
2024). It is known that finding an optimal splitting hyperplane at a node of an oblique DT is NP-hard (Heath et al.
1993; Murthy et al. 1994). An open theoretical question is the complexity of finding an optimal split at a node
among (generalised) star-nested (anti-)Horn relations.

Our P/NP-hard dichotomy for boolean languages closed under complement is an interesting theoretical result
which may find applications in other domains. Our generalisation of this dichotomy to boolean formulas of

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

0:24 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

UI-literals can be seen as a foundation on which to build a future characterisation of all tractable finite-domain
languages closed under complement.

An independent question is the so-called recognition problem: given an arbitrary multivariate DT, determine
whether the set of constraints it uses is a sublanguage of one of the tractable languages we have identified. It is
reasonable to assume that this problem would be solved off-line, if at all.

Acknowledgments
This work was supported by the AI Interdisciplinary Institute ANITI, funded by the French program “Investing for
the Future – PIA3” under grant agreement no. ANR-19-PI3A-0004, by the ForML research project ANR-23-CE25-
0009 and by the European Union’s Horizon Europe Research and Innovation program under grant agreement
TUPLES no. 101070149.

References
L. Amgoud and J. Ben-Naim. 2022. “Axiomatic Foundations of Explainability.” In: IJCAI. Ed. by L. D. Raedt. ijcai.org, 636–642. doi:10.24963/ijc

ai.2022/90.
M. Arenas, P. Barceló, M. A. R. Orth, and B. Subercaseaux. 2022. “On Computing Probabilistic Explanations for Decision Trees.” In: NeurIPS.

Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, 28695–28707.
G. Audemard, S. Bellart, L. Bounia, F. Koriche, J. Lagniez, and P. Marquis. 2022. “On the explanatory power of Boolean decision trees.” Data

Knowl. Eng., 142, 102088. doi:10.1016/j.datak.2022.102088.
P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux. 2020. “Model Interpretability through the lens of Computational Complexity.” In: NeurIPS.

Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. https://proceedings.neurips.cc/paper/2020/hash/b1adda14824f50ef24ff
1c05bb66faf3-Abstract.html.

R. C. Barros, P. A. Jaskowiak, R. Cerri, and A. C. P. de Leon Ferreira de Carvalho. 2014. “A framework for bottom-up induction of oblique
decision trees.” Neurocomputing, 135, 3–12. doi:10.1016/j.neucom.2013.01.067.

S. Bassan, G. Amir, and G. Katz. 2024. “Local vs. Global Interpretability: A Computational Complexity Perspective.” In: Forty-first International
Conference on Machine Learning, ICML. OpenReview.net. https://openreview.net/forum?id=veEjiN2w9F.

F. Bollwein and S. Westphal. 2021. “A branch & bound algorithm to determine optimal bivariate splits for oblique decision tree induction.”
Appl. Intell., 51, 10, 7552–7572. https://doi.org/10.1007/s10489-021-02281-x.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression Trees. Wadsworth & Brooks.
C. E. Brodley and P. E. Utgoff. 1995. “Multivariate Decision Trees.” Mach. Learn., 19, 1, 45–77. doi:10.1007/BF00994660.
A. A. Bulatov. 2017. “A Dichotomy Theorem for Nonuniform CSPs.” In: FOCS. Ed. by C. Umans. IEEE Computer Society, 319–330. doi:10.1109

/FOCS.2017.37.
M. Calautti, E. Malizia, and C. Molinaro. 2025. “On the Complexity of Global Necessary Reasons to Explain Classification.” In: KR 2025,

206–217. doi:10.24963/kr.2025/21.
L. Cañete-Sifuentes, R. Monroy, and M. A. Medina-Pérez. 2021. “A Review and Experimental Comparison of Multivariate Decision Trees.”

IEEE Access, 9, 110451–110479. doi:10.1109/ACCESS.2021.3102239.
C. Carbonnel and M. C. Cooper. 2016. “Tractability in constraint satisfaction problems: a survey.” Constraints An Int. J., 21, 2, 115–144.

doi:10.1007/S10601-015-9198-6.
C. Carbonnel, M. C. Cooper, and J. Marques-Silva. 2023. “Tractable Explaining of Multivariate Decision Trees.” In: KR 2023. Ed. by P. Marquis,

T. C. Son, and G. Kern-Isberner, 127–135. doi:10.24963/KR.2023/13.
M. Á. Carreira-Perpiñán and S. S. Hada. 2021. “Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms.” In:

AAAI. AAAI Press, 6903–6911. https://ojs.aaai.org/index.php/AAAI/article/view/16851.
M. Á. Carreira-Perpiñán and P. Tavallali. 2018. “Alternating optimization of decision trees, with application to learning sparse oblique trees.”

In: NeurIPS. Ed. by S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, 1219–1229. https://proceedings.n
eurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html.

Z. Chen and S. Toda. 1995. “The Complexity of Selecting Maximal Solutions.” Inf. Comput., 119, 2, 231–239. doi:10.1006/inco.1995.1087.
M. C. Cooper, D. A. Cohen, and P. Jeavons. 1994. “Characterising Tractable Constraints.” Artif. Intell., 65, 2, 347–361. doi:10.1016/0004-3702(94

)90021-3.
M. C. Cooper and J. Marques-Silva. 2023. “Tractability of explaining classifier decisions.” Artif. Intell., 316.
E. Demirovic, E. Hebrard, and L. Jean. 2023. “Blossom: an Anytime Algorithm for Computing Optimal Decision Trees.” In: International

Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine Learning Research). Ed. by

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

https://doi.org/10.24963/ijcai.2022/90
https://doi.org/10.24963/ijcai.2022/90
https://doi.org/10.1016/j.datak.2022.102088
https://proceedings.neurips.cc/paper/2020/hash/b1adda14824f50ef24ff1c05bb66faf3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b1adda14824f50ef24ff1c05bb66faf3-Abstract.html
https://doi.org/10.1016/j.neucom.2013.01.067
https://openreview.net/forum?id=veEjiN2w9F
https://doi.org/10.1007/s10489-021-02281-x
https://doi.org/10.1007/BF00994660
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.24963/kr.2025/21
https://doi.org/10.1109/ACCESS.2021.3102239
https://doi.org/10.1007/S10601-015-9198-6
https://doi.org/10.24963/KR.2023/13
https://ojs.aaai.org/index.php/AAAI/article/view/16851
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://doi.org/10.1006/inco.1995.1087
https://doi.org/10.1016/0004-3702(94)90021-3
https://doi.org/10.1016/0004-3702(94)90021-3

Explaining Multivariate Decision Trees: Characterising Tractable Languages • 0:25

A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett. Vol. 202. PMLR, 7533–7562. https://proceedings.mlr.press/v202/de
mirovic23a.html.

Y. Dhebar, K. Deb, S. Nageshrao, L. Zhu, and D. Filev. 2024. “Toward Interpretable-AI Policies Using Evolutionary Nonlinear Decision Trees
for Discrete-Action Systems.” IEEE Transactions on Cybernetics, 54, 1, 50–62. doi:10.1109/TCYB.2022.3180664.

J. H. Good, T. Kovach, K. Miller, and A. Dubrawski. 2023. “Feature Learning for Interpretable, Performant Decision Trees.” In: NeurIPS. Ed. by
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, 66571–66582.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. 2019. “A Survey of Methods for Explaining Black Box Models.”
ACM Comput. Surv., 51, 5, 93:1–93:42. doi:10.1145/3236009.

S. S. Hada, M. Á. Carreira-Perpiñán, and A. Zharmagambetov. 2024. “Sparse oblique decision trees: a tool to understand and manipulate
neural net features.” Data Min. Knowl. Discov., 38, 5, 2863–2902.

D. G. Heath, S. Kasif, and S. Salzberg. 1993. “Induction of Oblique Decision Trees.” In: IJCAI. Ed. by R. Bajcsy. Morgan Kaufmann, 1002–1007.
X. Huang, Y. Izza, A. Ignatiev, M. C. Cooper, N. Asher, and J. Marques-Silva. 2022. “Tractable Explanations for d-DNNF Classifiers.” In: AAAI.

AAAI Press, 5719–5728. https://ojs.aaai.org/index.php/AAAI/article/view/20514.
A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva. 2020. “From Contrastive to Abductive Explanations and Back Again.” In: AIxIA

2020 - Advances in Artificial Intelligence (Lecture Notes in Computer Science). Ed. by M. Baldoni and S. Bandini. Vol. 12414. Springer,
335–355.

A. Ignatiev, N. Narodytska, and J. Marques-Silva. 2019. “Abduction-Based Explanations for Machine Learning Models.” In: AAAI. AAAI Press,
1511–1519. doi:10.1609/aaai.v33i01.33011511.

Y. Izza, A. Ignatiev, and J. Marques-Silva. 2022. “On Tackling Explanation Redundancy in Decision Trees.” J. Artif. Intell. Res., 75, 261–321.
doi:10.1613/jair.1.13575.

P. Jeavons, D. A. Cohen, and M. C. Cooper. 1998. “Constraints, Consistency and Closure.” Artif. Intell., 101, 1-2, 251–265. doi:10.1016/S0004-37
02(98)00022-8.

P. Jeavons, D. A. Cohen, and M. Gyssens. 1995. “A Unifying Framework for Tractable Constraints.” In: Principles and Practice of Constraint
Programming - CP’95 (LNCS). Ed. by U. Montanari and F. Rossi. Vol. 976. Springer, 276–291. doi:10.1007/3-540-60299-2_17.

P. Jeavons, D. A. Cohen, and M. Gyssens. 1997. “Closure properties of constraints.” J. ACM, 44, 4, 527–548. doi:10.1145/263867.263489.
P. Jeavons and M. C. Cooper. 1995. “Tractable Constraints on Ordered Domains.” Artif. Intell., 79, 2, 327–339. doi:10.1016/0004-3702(95)00107-7.
R. Kairgeldin and M. Á. Carreira-Perpiñán. 2024. “Bivariate Decision Trees: Smaller, Interpretable, More Accurate.” In: KDD. Ed. by R.

Baeza-Yates and F. Bonchi. ACM, 1336–1347.
M. Kelly, R. Longjohn, and K. Nottingham. accessed 2025. The UCI Machine Learning Repository. https://archive.ics.uci.edu.
S. K. Lahiri and M. Musuvathi. 2005. “An Efficient Decision Procedure for UTVPI Constraints.” In: Frontiers of Combining Systems, 5th

International Workshop (Lecture Notes in Computer Science). Ed. by B. Gramlich. Vol. 3717. Springer, 168–183. doi:10.1007/11559306_9.
Y. Li, M. Dong, and R. Kothari. 2005. “Classifiability-based omnivariate decision trees.” IEEE Trans. Neural Networks, 16, 6, 1547–1560.

doi:10.1109/TNN.2005.852864.
J. Marques-Silva. 2024. “Logic-Based Explainability: Past, Present and Future.” In: Leveraging Applications of Formal Methods, Verification

and Validation. ISoLA, Proceedings, Part IV (Lecture Notes in Computer Science). Ed. by T. Margaria and B. Steffen. Vol. 15222. Springer,
181–204.

J. Marques-Silva and A. Ignatiev. 2022. “Delivering Trustworthy AI through Formal XAI.” In: AAAI. AAAI Press, 12342–12350. https://ojs.aaai
.org/index.php/AAAI/article/view/21499.

T. Miller. 2019. “Explanation in artificial intelligence: Insights from the social sciences.” Artif. Intell., 267, 1–38. doi:10.1016/j.artint.2018.07.007.
S. K. Murthy, S. Kasif, and S. Salzberg. 1994. “A System for Induction of Oblique Decision Trees.” J. Artif. Intell. Res., 2, 1–32. doi:10.1613/jair.63.
S. Ordyniak, G. Paesani, M. Rychlicki, and S. Szeider. 2024. “Explaining Decisions in ML Models: A Parameterized Complexity Analysis.” In:

KR. Ed. by P. Marquis, M. Ortiz, and M. Pagnucco. https://doi.org/10.24963/kr.2024/53.
E. M. Reingold. 1972. “On the Optimality of Some Set Algorithms.” J. ACM, 19, 4, 649–659. doi:10.1145/321724.321730.
E. G. Rodrigo, J. C. Alfaro, J. A. Aledo, and J. A. Gámez. 2024. “Label ranking oblique trees.” Knowl. Based Syst., 296, 111882.
T. J. Schaefer. 1978. “The Complexity of Satisfiability Problems.” In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing.

Ed. by R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P. Friedman, and A. V. Aho. ACM, 216–226. doi:10.1145/800133.804350.
A. Shih, A. Choi, and A. Darwiche. 2018. “A Symbolic Approach to Explaining Bayesian Network Classifiers.” In: IJCAI. Ed. by J. Lang. ijcai.org,

5103–5111. doi:10.24963/ijcai.2018/708.
S. Wäldchen, J. MacDonald, S. Hauch, and G. Kutyniok. 2021. “The Computational Complexity of Understanding Binary Classifier Decisions.”

J. Artif. Intell. Res., 70, 351–387. doi:10.1613/jair.1.12359.
D. C. Wickramarachchi, B. L. Robertson, M. Reale, C. J. Price, and J. Brown. 2016. “HHCART: An oblique decision tree.” Comput. Stat. Data

Anal., 96, 12–23. doi:10.1016/j.csda.2015.11.006.
H. Zhu, P. Murali, D. T. Phan, L. M. Nguyen, and J. Kalagnanam. 2020. “A Scalable MIP-based Method for Learning Optimal Multivariate

Decision Trees.” In: NeurIPS. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. https://proceedings.neurips.cc/paper/2020
/hash/1373b284bc381890049e92d324f56de0-Abstract.html.

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

https://proceedings.mlr.press/v202/demirovic23a.html
https://proceedings.mlr.press/v202/demirovic23a.html
https://doi.org/10.1109/TCYB.2022.3180664
https://doi.org/10.1145/3236009
https://ojs.aaai.org/index.php/AAAI/article/view/20514
https://doi.org/10.1609/aaai.v33i01.33011511
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.1016/S0004-3702(98)00022-8
https://doi.org/10.1016/S0004-3702(98)00022-8
https://doi.org/10.1007/3-540-60299-2_17
https://doi.org/10.1145/263867.263489
https://doi.org/10.1016/0004-3702(95)00107-7
https://archive.ics.uci.edu
https://doi.org/10.1007/11559306_9
https://doi.org/10.1109/TNN.2005.852864
https://ojs.aaai.org/index.php/AAAI/article/view/21499
https://ojs.aaai.org/index.php/AAAI/article/view/21499
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1613/jair.63
https://doi.org/10.24963/kr.2024/53
https://doi.org/10.1145/321724.321730
https://doi.org/10.1145/800133.804350
https://doi.org/10.24963/ijcai.2018/708
https://doi.org/10.1613/jair.1.12359
https://doi.org/10.1016/j.csda.2015.11.006
https://proceedings.neurips.cc/paper/2020/hash/1373b284bc381890049e92d324f56de0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1373b284bc381890049e92d324f56de0-Abstract.html

0:26 • Carbonnel, Cooper, Hebrard, Morales & Marques-Silva

D. Zhuk. 2020. “A Proof of the CSP Dichotomy Conjecture.” J. ACM, 67, 5, 30:1–30:78. doi:10.1145/3402029.

Received 20 December 2025; accepted 7 January 2026

Journal of Artificial Intelligence Research, Vol. 0, Article 0. Publication date: 2026.

https://doi.org/10.1145/3402029

	Abstract
	1 Background
	2 Tractable Explaining of MDT Decisions
	3 Tractable Boolean Languages: The Algebraic Approach
	4 Characterisation of Tractable Boolean Languages
	4.1 Horn and Anti-Horn
	4.2 Affine
	4.3 Conjunctions of 2-Clauses
	4.4 The Dichotomy for Boolean Languages

	5 Extending the Tractable Boolean Languages
	5.1 Generalised Square 2CNFs
	5.2 Generalised Star-nested (Anti-)Horn
	5.3 A Dichotomy for UI-Generalisations of Boolean Languages

	6 Experimental Trials
	7 Conclusion
	Acknowledgments

