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Abstract

The goal of constraint acquisition is to learn exactly a con-
straint network given access to an oracle that answers truth-
fully certain types of queries. In this paper we focus on partial
membership queries and initiate a systematic investigation of
the learning complexity of constraint languages. First, we use
the notion of chain length to show that a wide class of lan-
guages can be learned with as few as O(n log(n)) queries.
Then, we combine this result with generic lower bounds to
derive a dichotomy in the learning complexity of binary lan-
guages. Finally, we identify a class of ternary languages that
eludes our framework and hints at new research directions.

1 Introduction
Constraint programming is a declarative programming
paradigm for solving combinatorial problems, with a wide
range of applications in artificial intelligence (van Beek and
Chen 1999; Négrevergne and Guns 2015) and operational
research (Shaw 1998; Hooker and van Hoeve 2018). The
user declares a list of variables, which range over a domain
of his choice, and then constraints, which specify forbid-
den assignments to certain subsets of variables. A solver will
then either find an assignment to the variables that satisfies
every constraint or prove that no such assignment exists.

From the user’s perspective, the difficulty lies in the mod-
elling phase. Variables and domain values are often easily
derived from the unkowns in the original problem, but spec-
ifying rigorously what a solution is using only relations im-
posed upon subsets of variables may require considerable
expertise, especially if the solver only offers a limited cata-
log of possible relations. Constraint acquisition systems are
learning agents designed to assist the user in modelling his
problem. Such systems provide the user with simple queries
— for instance membership queries, in which a given assign-
ment must be labelled as either “solution” or “non-solution”
— and use the collected data to construct a constraint net-
work that hopefully corresponds to user’s problem. There
exist a number of constraint acquisition systems (Bessiere et
al. 2005; 2013; Beldiceanu and Simonis 2012), with various
learning strategies and theoretical guarantees.
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For constraint acquisition systems, there is a tradeoff be-
tween the computational difficulty of answering the queries
and the number of queries needed to identify the target net-
work. Some queries that could guarantee quick convergence
towards a constraint network are too difficult for a human
to answer with certainty. For instance, equivalence queries
provide the user with a candidate constraint network N and
ask if it captures his problem; if it does not, the user must
reply with an assignment misclassified by N . Other queries
(such as membership queries) are easy to answer but con-
vergence may require exponentially many queries, even on
very simple constraint networks (Bessiere et al. 2017).

Partial membership queries are generalisations of mem-
bership queries in which the user is required to classify par-
tial assignments. In 2013, Bessiere et al. presented a con-
straint acquisition algorithm Quacq based on partial mem-
bership queries, and they observed that on certain elemen-
tary constraint languages ({=, 6=} and {>} on the Boolean
domain) their algorithm is guaranteed to converge after
O(n log(n)) queries (Bessiere et al. 2013). These languages
are learnable with few, simple queries, but they are not very
useful for modelling. Are there more expressive languages
with similar learning properties?

Our first contribution is a proof that Quacq-like algo-
rithms can learn a considerably larger class of languages
with a quasi-linear number of partial membership queries.
Our argument revolves around the notion of chain length.
When one constraint is removed from a constraint network,
the solution set may either remain unchanged (if the con-
straint is redundant) or increase in size. The chain length
of a constraint language corresponds roughly to the maxi-
mum number of times the size of the solution set may in-
crease when the constraints of an n-variables network are
removed one by one. We find that Quacq-like algorithms
always learn constraint networks with O(CL(n) · log(n))
queries, where CL(n) is the chain length of the language.

As an example, consider a system of homogeneous lin-
ear equations over a finite field. The solution set is a vector
space. When an equation (a constraint) is removed, either
the solution set remains the same, or new linearly indepen-
dent solutions appear and the dimension increases. Since
the dimension of the solution set is bounded by the num-



ber n of variables, the latter case may only occur at most
n times if all the constraints are removed one by one: sets
of homogeneous linear equations have linear chain length.
As a consequence, they can be learned with a quasi-linear
number of partial membership queries. The most general
property known to imply linear chain length is the pres-
ence of a (finite-domain) Mal’tsev embedding, which was in-
troduced recently in the context of parameterised complex-
ity (Lagerkvist and Wahlström 2017). These languages can
be fairly expressive; in fact, some NP-hard languages have a
Mal’tsev embedding (Lagerkvist and Wahlström 2017).

As our second contribution, we show that every binary
constraint language that does not have linear chain length
(via a notion closely related to Mal’tsev embeddings, which
we call Mal’tsev derivations) has VC-dimension Ω(n2).
This implies that a binary language is either learnable with
O(n log(n)) partial membership queries, or it is not learn-
able with o(n2) yes/no queries of any kind.

Third and last, we show that there exist ternary constraint
languages with VC-dimension o(n2) but no Mal’tsev em-
bedding nor Mal’tsev derivation. This suggests that classi-
fying the learning complexity of ternary languages requires
tools beyond VC-dimension and Mal’tsev derivations.

2 Preliminaries
CSP. A (constraint) language is a finite set of relations
over a finite domain D. Given a language Γ, a CSP instance
over Γ is a pair (X,C) where X is a set of n variables and
C is a set of constraints, that is, pairs c = (Rc, Sc) where
Rc ∈ Γ and Sc is a tuple of variables whose length is the
arity of Rc. An assignment φ : X → D satisfies a con-
straint c = (Rc, Sc) if φ(Sc) ∈ Rc; otherwise it violates c.
A solution to a CSP instance is an assignment φ : X → D
that satisfies every constraint. We will assume that the vari-
able set X has a total order x1 < x2 < . . . < xn and
define sol(I) as the n-ary relation {(φ(x1), . . . , φ(xn)) |
φ is a solution to I} over D. The restriction of a CSP in-
stance I = (X,C) to a subset X ′ of X , denoted by I[X ′],
is obtained by dropping all variables in X\X ′ and all con-
straints c such that Sc contains a variable in X\X ′.

Constraint acquisition. We use Angluin’s exact learning
model (Angluin 1988). Let Γ be a language over a domain
D. We associate to each CSP instance I = (X,C) over Γ an
oracle which answers truthfully a certain type of queries. A
membership query asks whether an assignment φ : X → D
is a solution to I , a partial membership query asks whether
a partial assignment φ : X ′ → D is a solution to I[X ′], and
an equivalence query asks whether a CSP instance I ′ satis-
fies sol(I) 6= sol(I ′), in which case the oracle must return
a tuple in the symmetric difference of sol(I) and sol(I ′).
A query is Boolean if the oracle answer can only be yes or
no. Membership queries and partial membership queries are
Boolean, but not equivalence queries.

A constraint acquisition algorithm for Γ is an algorithm
that, given a variable set X and access to an oracle for a
target CSP instance IT = (X,CT ) over Γ, outputs a CSP
instance IL over Γ such that sol(IT ) = sol(IL). Given a

type Q of queries, we say that a finite constraint language
Γ is learnable with f(n) queries of type Q if there exists a
constraint acquisition algorithm that learns any CSP instance
over Γ of n variables with at most f(n) queries of type Q.
Note that the time complexity of the acquisition algorithm
needs not be bounded by a polynomial.

c-definitions. Given a language Γ over a domain D and
a relation R ⊆ Dr, we say that R is c-definable over Γ if
there exists a CSP instance I over Γ such that sol(I) = R.
(c-definitions are particular cases of the more widely used
qfpp-definitions, which allow equality relations in addition
to the relations of Γ; see e.g. (Jonsson, Lagerkvist, and Roy
2017).) By extension, a language Γ′ is c-definable in Γ if
every R ∈ Γ′ is c-definable in Γ. We define the chain length
of Γ as the function CLΓ : N∗ → N∗ such that CLΓ(n) is the
maximum length of a sequence R1, R2, . . . , Rq of relations
of the same arity k ≤ n such that

R1 ( R2 ( . . . ( Rq

and each Ri, i ∈ {1, . . . , q}, is c-definable over Γ.
We say that Γ shatters a relationR if for every subrelation

R′ ⊆ R there exists a relation R∗ such that R∗ ∩ R = R′

and R∗ is c-definable over Γ. (Note that R itself needs
not be c-definable.) The VC-dimension of Γ is the function
VCΓ : N∗ → N∗ such that VCΓ(n) is the maximum size
(i.e. number of tuples) of a relation of arity at most n that
is shattered by Γ. We will also discuss a measure of redun-
dancy, which is tightly connected to the VC-dimension of a
language. Given a CSP instance (X,C), we say that a con-
straint c ∈ C is non-redundant if there exists an assignment
φ : X → D such that φ is a solution to (X,C\{c}) but
φ violates c. The non-redundancy of a language Γ, which
we denote by NRDΓ(n), is the maximum number of non-
redundant constraints in a CSP instance over Γ with n vari-
ables. Throughout the paper we will use the following ob-
servations about CLΓ(n), VCΓ(n) and NRDΓ(n).

Observation 1. If Γ = Γ1∪Γ2, then CLΓ(n) ≤ CLΓ1
(n)+

CLΓ2
(n).

Proof. Let n > 0, q = CLΓ(n) and R1, . . . , Rq be a se-
quence of relations of arity at most n, c-definable over Γ,
and such that R1 ( R2 ( . . . ( Rq . Let I1, . . . , Iq be CSP
instances over Γ such that Ij = (X,Cj) and sol(Ij) = Rj

for all j ≤ q. We assume without loss of generality that
Cj+1 ( Cj for all j < q. (If it is not the case, we add to
Cj all constraints in ∪k>jCk; this operation leaves sol(Ij)
unchanged.) We partition each constraint set Cj into C1

j =

{(R,S) ∈ Cj | R ∈ Γ1}, C2
j = {(R,S) ∈ Cj | R ∈ Γ2}

and define R1
j = sol(X,C1

j ), R2
j = sol(X,C2

j ). Then, we
have Rj = R1

j ∩ R2
j for all j ≤ q. Furthermore, since

R1 ( . . . ( Rq , R1
1 ⊆ . . . ⊆ R1

q and R2
1 ⊆ . . . ⊆ R2

q ,
it follows that for all j < q we have either R1

j ( R1
j+1 or

R2
j ( R2

j+1. These events may happen at most CLΓ1(n)
times and CLΓ2

(n) times, respectively. This implies q =
CLΓ(n) ≤ CLΓ1

(n) + CLΓ2
(n).



Observation 2. If Γ is c-definable over Γ′, then CLΓ(n) ≤
CLΓ′(n).

Proof. The claim follows directly from the fact that every
relation c-definable over Γ is also c-definable over Γ′.

Observation 3. If Γ has VC-dimension Ω(f(n)), then Γ is
not learnable with o(f(n)) Boolean queries.

Proof. Suppose that A is a constraint acquisition algorithm
that learns any CSP over Γ with o(f(n)) queries. The output
of A is completely determined by the o(f(n)) bits that it re-
ceives as answers to its Boolean queries. There are 2o(f(n))

possible combinations of inputs, so the algorithm can only
output 2o(f(n)) different CSP instances over n variables.
However, since Γ has VC-dimension Ω(f(n)), the number
of CSP instances over Γ with distinct solution sets and n
variables is 2Ω(f(n). It follows that for sufficiently large n
the algorithm has fewer outputs than there are distinct n-
variables constraint networks over Γ, a contradiction.

Observation 4. For every language Γ, it holds that
NRDΓ(n) = VCΓ(n).

Proof. We first prove NRDΓ(n) ≤ VCΓ(n). Let n > 0 and
I = (X,C) be a CSP instance over Γ with n variables and
such that C contains precisely NRDΓ(n) constraints, all of
which are non-redundant. Then, for each c ∈ C there exists
an assignment φc such that φc violates c but satisfies every
other constraint. For each c ∈ C, let tc be a tuple such that
tc[i] = φc(xi) for all i ∈ {1, . . . , n}. We claim that Γ shat-
ters the relation RI = {tc | c ∈ C}. For each R∗I ⊆ RI , we
define the instance I∗ = (X,C∗) with {c ∈ C | tc /∈ R∗I}).
Then, φc is a solution to I∗ if and only if c /∈ C∗, and hence
RI∩sol(I∗) = R∗I . Therefore, Γ shattersRI , which contains
NRDΓ(n) tuples, and hence NRDΓ(n) ≤ VCΓ(n). Now we
prove NRDΓ(n) ≥ VCΓ(n). Let R be a relation of arity
r ≤ n such that Γ shatters R and q = |R| = VCΓ(n).
Let t1, . . . , tq be an arbitrary ordering of the tuples of R
and I1, . . . , Iq be a set of CSP instances over Γ with vari-
able set X and constraint sets Ci, 1 ≤ i ≤ q, such that
sol(Ii) ∩ R = R\{ti}. Note that each Ci can be chosen so
that it contains a single constraint ci, since ti /∈ sol(Ii) if and
only if there exists ci ∈ Ci such that ti /∈ sol(X, {ci}). This
implies that no constraint cmay belong to Ci and Cj for any
j 6= i, since otherwise we would have sol(Ii) = sol(Ij).
If we define I∗ = (X,C1 ∪ . . . ∪ Cq) then this instance has
exactly q = VCΓ(n) constraints c1, . . . , cq . Furthermore, re-
moving any constraint ci adds at least the tuple ti to sol(I∗),
so no constraint is redundant and NRDΓ(n) ≥ VCΓ(n).

Observation 5. For every language Γ, it holds that
VCΓ(n) ≤

∑
R∈Γ VC{R}(n).

Proof. By Observation 4 it suffices to show that every
CSP instance I = (X,C) over Γ with n variables has
at most

∑
R∈Γ NRD{R}(n) non-redundant constraints. For

each R ∈ Γ we define IR = (X, {c = (R,Sc) ∈ C}).
Note that if c = (R,S) is non-redundant in I , then it is non-
redundant in IR. Each instance IR has at most NRD{R}(n)
non-redundant constraints, so the claim follows.

Partial polymorphisms. A partial operation of arity r on
a set D is a mapping f : Q→ D where Q ⊆ Dr. The set Q
is called the domain of f and we write Q = domain(f).
Given a relation R of arity k over a set D and a par-
tial operation f on D of arity r, we say that f is a par-
tial polymorphism of R if for every t1, . . . , tr ∈ R, ei-
ther f(t1, . . . , tr) ∈ R or there exists i ∈ {1, . . . , k} such
that (t1[i], . . . , tr[i]) /∈ domain(f). If in addition we have
domain(f) = Dr, we say that f is a polymorphism of R. A
partial operation is a (partial) polymorphism of a language
Γ if it is a (partial) polymorphism of each of its relations.
Polymorphisms and partial polymorphisms are fundamental
technical tools in the study of the complexity and expressiv-
ity of constraint languages. For a comprehensive exposition
of the subject we refer the reader to (Barto, Krokhin, and
Willard 2017; Couceiro, Haddad, and Lagerkvist 2019).

3 Constraint acquisition and chain length
In this section we describe a simple constraint acquisition al-
gorithm that learns any CSP instance with n variables over
a language Γ using O(CLΓ(n) · log(n)) partial membership
queries. Our contribution does not lie in the algorithm it-
self, which is essentially a stripped-down version of the con-
straint acquisition algorithm Quacq found in (Bessiere et
al. 2013), but rather in its analysis. We borrow the following
proposition from their work.
Proposition 6 ((Bessiere et al. 2013), Proposition 2). There
exists an algorithm FindScope which given in input
• a set X of n variables,
• a partial membership oracle for a target CSP instance

(X,CT ), and
• a negatively answered membership query φ
outputs the set Xc of variables that appear in the scope Sc

of a constraint c ∈ CT that φ violates, usingO(|Sc|·log(n))
partial membership queries.
Theorem 7. Let Γ be a fixed language. There exists a con-
straint acquisition algorithm that learns any CSP instance
over Γ on n variables using O(CLΓ(n) · log(n)) partial
membership queries.

Proof. Let O be an oracle associated with a CSP instance
IT = (X,CT ) over Γ. Consider the following constraint ac-
quisition algorithm. Let L and P be two sets of constraints
from the language Γ on the variable set X . These sets can
be understood as the sets of learned and possible constraints,
respectively. When the algorithm is invoked, L is initialised
to the empty set and P is initialised to the set of all possi-
ble constraints from Γ on X . The algorithm then repeats the
following steps until sol(X,L) ⊆ sol(X,P ):

• Find φ ∈ sol(X,L)\sol(X,P ).
• Query φ to the oracle.

– If the answer is yes, set P = {c ∈ P : φ satisfies c}.
– If the answer is no, invoke FindScope on in-

put (X,O, φ), and then query all possible partial as-
signments to the returned subset X ′ to determine
sol(IT [X ′]). Add to L a set C ′ of constraints such that
sol(X ′, C ′) = sol(IT [X ′]).



Once the condition sol(X,L) ⊆ sol(X,P ) holds, the algo-
rithm returns (X,L) and halts.

We now turn to the analysis. First, observe that at each
loop either L grows or P shrinks, so the algorithm will
eventually halt. For correctness, it suffices to show that we
have the two invariants (i) sol(X,CT ) ⊆ sol(X,L) and
(ii) CT ⊆ P . (If both (i) and (ii) hold, then sol(X,P ) ⊆
sol(X,CT ) ⊆ sol(X,L) is also an invariant, and upon ter-
mination we have sol(X,CT ) = sol(X,L).) Both (i) and
(ii) hold at initialisation. Notice that whenever a constraint
c is removed from P , there exists a solution φ to (X,CT )
that violates c, so c /∈ CT and (ii) is indeed an invari-
ant of the algorithm. Similarly, whenever a constraint c is
added to L we have sol(X,CT ∪ {c}) = sol(X,CT ); it fol-
lows that if sol(X,CT ) ⊆ sol(X,L) then sol(X,CT ) =
sol(X,CT ∪{c}) ⊆ sol(X,L∪{c}), so (i) is also an invari-
ant and the algorithm is correct.

Now, we bound the number of oracle queries performed
by the algorithm before it halts. We will use Li, 0 ≤ i ≤ l,
and Pj , 0 ≤ j ≤ p to denote the sequences of distinct states
of L and P , respectively. Using Proposition 6 to bound the
number of oracle queries within each call to FindScope,
and observing that any subset X ′ of variables returned by
FindScope has bounded size since Γ (and hence the max-
imum constraint arity) is fixed, we find that the algorithm
makes a total of O(p + l · log(n)) oracle queries. Thus, it
suffices to bound l and p by a linear function of CLΓ(n).

First, observe that for every i ∈ {0, . . . , l − 1}, it holds
that sol(X,Li+1) ( sol(X,Li) since Li ( Li+1 and
sol(X,Li+1)[X ′] = sol(X,CT )[X ′] 6= sol(X,Li)[X

′],
where X ′ is the set of variables returned by FindScope.
Each relation sol(X,Li), 0 ≤ i ≤ l, is c-definable over Γ so
we deduce l ≤ CLΓ(n).

In order to derive a similar bound on p, let φj , 0 ≤ j ≤
p − 1, be the positively answered query that triggered the
update of P from state Pj to state Pj+1, and let cj be an
arbitrary constraint in Pj\Pj+1. In particular, observe that
the assignment φj violates cj , but φj does not violate ck for
any k > j. Thus, we have

sol(X, {cp}) ( sol(X, {cp−1, cp})
( . . . ( sol(X, {c0, . . . , cp})

since for each 0 ≤ j ≤ p− 1 the assignment φj is a solution
to (X, {cj+1, . . . , cp}) but not to (X, {cj , . . . , cp}). Again,
each of these relations is c-definable over Γ so p ≤ CLΓ(n).
The total query complexity of the algorithm is O(CLΓ(n) +
CLΓ(n) · log(n)) = O(CLΓ(n) · log(n)), as claimed.

4 Languages of linear chain length
As a corollary to Theorem 7, every language Γ with linear
chain length is learnable with a quasi-linear number of par-
tial membership queries. As noted in the introduction, linear
equations over finite fields have linear chain length. They
correspond to a special case of a larger class of languages;
to describe this class we will need additional terminology.

A Mal’tsev operation on a domain D is a ternary opera-
tion f : D3 → D such that f(x, x, y) = f(y, x, x) = y for
all x, y ∈ D. A language Γ is Mal’tsev if it has a Mal’tsev

polymorphism. Mal’tsev languages have played an impor-
tant role in the study of the complexity of constraint lan-
guages (Bulatov and Dalmau 2006; Idziak et al. 2010). Their
most salient property is that any c-definable relation has a
linear-size generating set which encodes them efficiently, in
the same way that bases describe vector spaces. The fact that
Mal’tsev languages have linear chain length is folklore; we
include a proof for completeness.

The signature of a relationR overD of arity r, denoted by
Sig(R), is the set of all triples (k, d1, d2) ∈ {1, . . . , r}×D2

such that there exist t1, t2 ∈ R satisfying t1[k] = d1, t2[k] =
d2 and t1[i] = t2[i] for all i < k.

Lemma 8 ((Bulatov and Dalmau 2006), Lemma 3.1). Let
φ be a Mal’tsev operation over a domain D and R1, R2 be
two relations over D such that R1 ⊆ R2 and φ is a poly-
morphism of both R1 and R2. Then, Sig(R1) = Sig(R2) if
and only if R1 = R2.

Proposition 9. If Γ is Mal’tsev, then CLΓ(n) = O(n).

Proof. Let φ be a Mal’tsev polymorphism of Γ. Let
R1, . . . , Rq be a sequence of n-ary relations, c-definable
over Γ, such thatR1 ( . . . ( Rq . Polymorphisms are invari-
ant under c-definitions (Barto, Krokhin, and Willard 2017),
so φ is a polymorphism of R1, . . . , Rq . By Lemma 8 we
have Sig(R1) ( . . . ( Sig(Rq). Since |Sig(Rq)| ≤ n|D|2,
we obtain q ≤ n|D|2 +1 = O(n) and CLΓ(n) = O(n).

We can extend this result using Observation 1 and Ob-
servation 2, which provide ways to combine languages and
relations while preserving chain length. We say that a con-
straint language Γ has a Mal’tsev derivation if there exists a
language Γ̂ such that (i) every relation in Γ̂ has a Mal’tsev
polymorphism and (ii) every relation in Γ is c-definable in
Γ̂. (Intuitively, languages with Mal’tsev derivations are those
that can be obtained from a finite number of Mal’tsev rela-
tions through a finite sequence of language unions and c-
definitions.) The following proposition follows from Propo-
sition 9, Observation 1 and Observation 2.

Proposition 10. Let Γ be a language. If Γ has a Mal’tsev
derivation, then CLΓ(n) = O(n).

Combining this result with Theorem 7, we obtain a gen-
eral sufficient condition for learnability with a quasi-linear
number of partial membership queries.

Theorem 11. If Γ has a Mal’tsev derivation, then Γ is learn-
able with O(n log(n)) partial membership queries.

Example 1. A classical example of Mal’tsev relations are
those corresponding to the solution space of an equation
over a finite field (see e.g. Example 5 in (Bulatov and Dal-
mau 2006)). Theorem 11 implies that any language in which
each individual relation is the solution space of an equation
over a finite field is learnable with a quasi-linear number of
partial membership queries, even if the field in question dif-
fers from one relation to another.



Example 2. Let k ≥ 3 be a fixed integer and consider the
relation Rk that contains all Boolean k-tuples of Hamming
weight 1. This relation is not Mal’tsev as mappings satis-
fying the Mal’tsev identity must map any three tuples of
Rk to one with Hamming weight at least 2. However, Rk is
precisely the intersection of {0, 1}k with the solution set R∗
of the equation (x1 + . . . + xk) mod k = 1. Both R∗ and
{0, 1}k are Mal’tsev (we invite the reader to verify that the
operation f(x, y, z) = x−y+z mod k is a polymorphism
of R∗), so {Rk} has a Mal’tsev derivation.

Mal’tsev derivations are very similar to a notion intro-
duced in (Lagerkvist and Wahlström 2017) called Mal’tsev
embeddings. A language Γ over D embeds in a language Γ̂

over D̂ ⊃ D if there exists a bijective function h : Γ → Γ̂
such that for each R ∈ Γ of arity r, we have that R =
h(R) ∩Dr. If Γ embeds in a Mal’tsev language whose do-
main is finite, we say that Γ has a (finite) Mal’tsev embed-
ding. For instance, in Example 2 the language {Rk} embeds
in {R∗}, which is Mal’tsev.

Every language with a Mal’tsev embedding has a straight-
forward Mal’tsev derivation: if Γ is a language over a do-
main D that embeds into a Mal’tsev language Γ′ of arity at
most r, then it has a c-definition over Γ̂ = Γ′∪{Dk : k ≤ r},
in which each relation is Mal’tsev. Could the two notions co-
incide? Building on ideas from (Lagerkvist and Wahlström
2017), we can deduce a partial converse.
Observation 12. If Γ has a Mal’tsev derivation, then it has
an infinite-domain Mal’tsev embedding.

Proof sketch. Theorem 28 in (Lagerkvist and Wahlström
2017) can be generalised to arbitrary domains to show
that (i) infinite-domain Mal’tsev embeddings can be char-
acterised in terms of partial polymorphisms only, and (ii) for
any two languages Γ1,Γ2 with Mal’tsev embeddings, there
exists an infinite domain D∞ and a Mal’tsev operation u
over D∞ such that both Γ1 and Γ2 can be embedded in a
language over D∞ with polymorphism u. From (i) and (ii),
we obtain that infinite-domain Mal’tsev embeddings are in-
variant under c-definitions and language unions.

5 A dichotomy for binary languages
The results of Sections 3 and 4 raise interesting questions.
Are there languages learnable with a quasi-linear number of
partial membership queries but whose chain length is not
linear? Is there a gap, in the sense that a language not learn-
able with O(n log(n)) Boolean queries is not learnable with
o(nc) Boolean queries of any kind, for some c > 1?

In this section we prove the following theorem, which an-
swers both questions for binary languages. A binary relation
R is rectangular if there does not exist four (not necessarily
distinct) values a, b, c, d such that (a, b), (c, d), (a, d) ∈ R
but (c, b) /∈ R. A language is rectangular if each of its rela-
tions is rectangular.
Theorem 13. Let Γ be a binary language. If Γ is rectan-
gular, then it has linear chain length and is learnable with
O(n log(n)) partial membership queries. Otherwise, Γ is
not learnable with o(n2) Boolean queries.

We first prove that every rectangular relation has a
Mal’tsev derivation. To this purpose, we will need two
known facts about rectangular relations.

Lemma 14 ((Kazda 2011), Lemma 10). Let R be a rect-
angular relation. If we define the relations ∼1, ∼2 over D
as

d ∼1 d
′ ⇐⇒ ∃d∗ ∈ D | (d, d∗) ∈ R and (d′, d∗) ∈ R

d ∼2 d
′ ⇐⇒ ∃d∗ ∈ D | (d∗, d) ∈ R and (d∗, d′) ∈ R

then ∼1 and ∼2 are equivalence relations on the sets {d ∈
D | ∃d∗ ∈ D, (d, d∗) ∈ R} and {d ∈ D | ∃d∗ ∈
D, (d∗, d) ∈ R}, respectively.

Furthermore, if we denote by E1, E2 the equivalence
classes of ∼1, ∼2 then the mapping h : E1 → E2 given
by

h(e) = f ⇐⇒ ∃de ∈ e, df ∈ f : (de, df ) ∈ R

is a bijection from E1 to E2.

Lemma 15 ((Kazda 2011), Lemma 15). Let R be a rectan-
gular relation and ∼1 be as in Lemma 14. Let R+ be the
relation whose domain is the set E1 of equivalence classes
of ∼1, and such that

(e, f) ∈ R+ ⇐⇒ ∃d1 ∈ e, d2 ∈ f : (d1, d2) ∈ R.

Then, R is Mal’tsev if and only if R+ is Mal’tsev.

Proposition 16. Let Γ be a binary language. If Γ is rectan-
gular, then it has a Mal’tsev derivation.

Proof. Let D be the domain of Γ. We will prove that the
language {R} embeds in a Mal’tsev language {R̂} for every
R ∈ Γ. The claim will then follow from the fact that Γ has a
c-definition over Γ̂ = {R̂ : R ∈ Γ} ∪ {D2}, in which every
relation is Mal’tsev. Let R be a (rectangular) relation in Γ
and∼1,∼2, E1, E2, h be as in Lemma 14. For each ordered
pair (e, f) ∈ (E1)2 we introduce a fresh domain value αef .
Then, we define

S1 = {(αef , d
∗) | (e, f) ∈ (E1)2, d∗ ∈ h(e)}

S2 = {(d∗, αef ) | (e, f) ∈ (E1)2, d∗ ∈ f}
S3 = {(αef , αge) | (e, f, g) ∈ (E1)3}

and a relation R̂ = R ∪ S1 ∪ S2 ∪ S3, whose domain is
denoted by D̂. By construction, R̂ ∩D2 = R.

We claim that R̂ is rectangular. It follows from the defi-
nitions of S1, S2 and S3 that for any αef ∈ D̂\D, d̂ ∈ D̂

and de ∈ e, (αef , d̂) is a tuple of R̂ if and only if (de, d̂) is a
tuple of R̂. Symmetrically, for any αef ∈ D̂\D, d̂ ∈ D̂

and dh(f) ∈ h(f), (d̂, αef ) is a tuple of R̂ if and only
if (d̂, dh(f)) is a tuple of R̂. Towards a contradiction, let
(a, b, c, d) ∈ D̂ be such that (a, b), (c, d), (a, d) ∈ R̂ but
(c, b) /∈ R̂. By the observation above, if any of a, b, c, d be-
longs to D̂\D then it can be replaced by a value in D while
still having (a, b), (c, d), (a, d) ∈ R̂ and (c, b) /∈ R̂. If we
replace them all, then we obtain values (a, b, c, d) ∈ D such



that (a, b), (c, d), (a, d) ∈ R̂ but (c, b) /∈ R̂, which is impos-
sible since R = R̂ ∩D2 is rectangular.

Since R̂ is rectangular, we can define the relation ∼̂1 as
in Lemma 14 and R̂+ as in Lemma 15, whose domain is the
set Ê of equivalence classes of ∼̂1. By construction we have

Ê = {e ∪ {αef | f ∈ E} | e ∈ E}

and (αef , αfe) ∈ R̂ for all f, e ∈ E. Then, for all ê, f̂ ∈ Ê
we have (ê, f̂) ∈ R̂+ since (αef , αfe) ∈ R̂, αef ∈ ê and
αfe ∈ f̂ . Therefore R̂+ = Ê2, which is Mal’tsev as it ad-
mits all operations on Ê as polymorphisms. By Lemma 15,
R̂ is Mal’tsev as well, and hence {R} has a Mal’tsev em-
bedding. This is true for all R ∈ Γ, so Γ has a Mal’tsev
derivation over Γ̂ = {R̂ : R ∈ Γ} ∪ {D2}.

Proposition 17. Let Γ be a binary language. If Γ is not rect-
angular, then VCΓ(n) = Ω(n2).

Proof. Let R ∈ Γ be a non-rectangular relation. By defini-
tion, there exist three tuples (a, b), (c, d), (a, d) ∈ R such
that (c, b) /∈ R. Now, let n be an even positive integer. For
each pair (i, j) with 1 ≤ i ≤ n/2 and n/2 < j ≤ n, let t(i,j)

denote the n-tuple given by t[i] = c, t[j] = b, and for all k ∈
{1, . . . , n} different from i, j we have t[k] = a if k ≤ n/2
and t[k] = d otherwise. We claim that Γ shatters the relation
Rn = {t(i,j) | (i, j) ∈ {1, . . . , n/2} × {n/2 + 1, . . . , n}}.

Let R∗n be an arbitrary subrelation of Rn. Let I∗ =
(X,C∗) be a CSP instance such that C∗ = {(R, (xi, xj)) |
t(i,j) /∈ R∗n}. By construction, an assignment φ to X such
that φ(xk) ∈ {a, c} for k ≤ n/2 and φ(xk) ∈ {b, d}
otherwise is a solution to I∗ if and only if there is no
constraint (R, (xi, xj)) ∈ C∗ such that φ(xi) = c and
φ(xj) = b. It follows that t(i,j) ∈ sol(I∗) if and only
if (R, (xi, xj)) /∈ C∗, and by definition of I∗ we have
(R, (xi, xj)) /∈ C∗ if and only if t(i,j) ∈ R∗n. Putting every-
thing together we get that sol(I∗) ∩ Rn = R∗n. Such an in-
stance I∗ exists for all choices of subrelation R∗n, so Γ shat-
ters Rn for every even positive integer n. The relation Rn

contains (n/2)2 = Ω(n2) tuples, so the claim follows.

Proof (of Theorem 13). If Γ is rectangular, then by Proposi-
tion 16 it has a Mal’tsev derivation. By Proposition 10 we
have CLΓ = O(n) and Γ is learnable in O(n log(n)) partial
membership queries by Theorem 7. Otherwise, by Proposi-
tion 17 VCΓ = Ω(n2) and by Observation 3 any acquisition
algorithm for Γ must make Ω(n2) Boolean queries.

6 Beyond binary languages
Theorem 13 shows an interesting dichotomy for binary
languages: either Γ has a Mal’tsev derivation, or its VC-
dimension is quadratic. In this section we show that the sit-
uation is more complex for ternary languages already as this
dichotomy no longer exists (Theorem 18 and Example 3).

Given a domain D, we define p∗ as the ternary par-
tial operation on D with domain(p∗) = {(d1, d2, d3) ∈
D3 : |{d1, d2, d3}| ≤ 2} and satisfying p∗(x, x, y) =
p∗(y, x, x) = y and p∗(x, y, x) = x for all x, y ∈ D. These

three identities are well known and called the Pixley identi-
ties; in the terminology of (Lagerkvist and Wahlström 2017)
p∗ would be called the first partial Pixley operation on D.
The main result of this section is the following.
Theorem 18. Let Γ be a ternary language. If p∗ is a partial
polymorphism of Γ, then VCΓ(n) is o(n2).

We will prove Theorem 18 indirectly, using combina-
torial arguments to show that every CSP instance over Γ
contains at most o(n2) non-redundant constraints. Observa-
tion 4 will then bridge the gap between non-redundancy and
VC-dimension. By Observation 5, it suffices to prove The-
orem 18 in the case where Γ contains a single relation. For
the rest of this section we fix a ternary language Γ = {R}
over D which admits p∗ as a partial polymorphism.

The next lemma establishes a simple but important prop-
erty thatR shares with rectangular relations. As in Section 5,
we let∼1,∼2 and∼3 be three binary relations overD given
by:

d ∼1 d
′ ⇐⇒ ∃d2, d3 ∈ D | (d, d2, d3), (d′, d2, d3) ∈ R

d ∼2 d
′ ⇐⇒ ∃d1, d3 ∈ D | (d1, d, d3), (d1, d

′, d3) ∈ R
d ∼3 d

′ ⇐⇒ ∃d1, d2 ∈ D | (d1, d2, d), (d1, d2, d
′) ∈ R

Lemma 19. ∼1, ∼2 and ∼3 are equivalence relations over
{d ∈ D | ∃(d, d2, d3) ∈ R}, {d ∈ D | ∃(d1, d, d3) ∈ R}
and {d ∈ D | ∃(d1, d2, d) ∈ R}, respectively.

Proof. We prove the lemma for∼1. The cases of∼2 and∼3

are identical. By definition ∼1 is reflexive and symmetric,
so we need only prove transivity. Let d, d′, d′′ be such that
d ∼1 d

′ and d′ ∼1 d
′′. By definition, there exist d1, d2 such

that t1 = (d, d1, d2) ∈ R, t2 = (d′, d1, d2) ∈ R, and d3, d4

such that t3 = (d′, d3, d4) ∈ R, t4 = (d′′, d3, d4) ∈ R.
From the identities of p∗ we get p∗(t2, t3, t4) = (d′′, d1, d2)
so d ∼1 d

′′ and ∼1 is transitive.

Let I = (X,C) be a CSP instance over Γ. For i ∈
{1, 2, 3} we let Xi = {xij | xj ∈ X}. We let JI denote the
CSP instance (XJ , CJ) over Γ ∪ {=}, where XJ = X1 ∪
X2∪X3 andCJ contains a constraint cJ = (R, (x1

i , x
2
j , x

3
k))

for each c = (R, (xi, xj , xk)) ∈ C as well as two constraints
(=, (x1

j , x
2
j )), (=, (x2

j , x
3
j )) for every xj ∈ X .

Lemma 20. Let c be a constraint in C. If cJ is redundant in
JI , then c is redundant in I .

Proof. We prove the contrapositive. Suppose that c is not
redundant in I . Then, there exists an assignment φ : X → D
such that φ violates c but satisfies every c′ ∈ C, c′ 6= c. If
we define φJ : XJ → D such that φJ(xkj ) = φ(xj) for all
xkj ∈ XJ , then for any c′ ∈ C we have φJ(x1

i , x
2
j , x

3
k) =

φ(xi, xj , xk), so φJ satisfies c′J if and only if c′ 6= c. Since
φJ also satisfies the equalities, cJ is not redundant.

By Lemma 20 we can reduce the proof of Theorem 18 to
finding a bound on the number of non-redundant constraints
in JI . To this purpose, we will turn JI into a reduced in-
stance J∗I , which has the same solution set but fewer con-
straints; any constraint that does not appear in the reduced
instance will be redundant.



We propose the following transformation T . If there
exists three constraints c1 = (R, (x1, y1, z1)), c2 =
(R, (x1, y2, z2)) and c3 = (R, (x2, y2, z1)) (of which at
least 2 are distinct) then we remove c2, c3 from the in-
stance and instead we add three constraints (∼1, (x1, x2)),
(∼2, (y1, y2)) and (∼3, (z1, z2)).
Lemma 21. Applying the transformation T leaves the solu-
tion set unchanged.

Proof. Let c1 = (R, (x1, y1, z1)), c2 = (R, (x1, y2, z2))
and c3 = (R, (x2, y2, z1)) be the three constraints on
which T will be applied. We first prove that the con-
straints (∼1, (x1, x2)), (∼2, (y1, y2)) and (∼3, (z1, z2)) are
implied by c1, c2 and c3. Suppose that φ is a solution
to the instance before T is applied. Then, from the con-
straints c1, c2, c3 we deduce that R contains the tuples
t1 = (φ(x1), φ(y1), φ(z1)), t2 = (φ(x1), φ(y2), φ(z2)) and
t3 = (φ(x2), φ(y2), φ(z1)). From the identities of p∗ we get
p∗(t1, t2, t3) = (φ(x2), φ(y1), φ(z1)) ∈ R, which imply
x1 ∼1 x2 from t1 and y1 ∼2 y2 from t3. Since y1 ∼2 y2

we deduce from t1 that (φ(x1), φ(y2), φ(z1)) ∈ R, and to-
gether with t2 we obtain z1 ∼3 z2. Hence, adding the three
equivalence constraints does not remove any solution.

Next, we prove that the four constraints c1, (∼1, (x1, x2)),
(∼2, (y1, y2)) and (∼3, (z1, z2)) together imply c2 and c3. If
φ is a solution to the instance after T has been applied, then
we have (φ(x1), φ(y1), φ(z1)) ∈ R. Since φ(y1) ∼2 φ(y2)
and φ(z1) ∼3 φ(z2), we have that (φ(x1), φ(y2), φ(z2)) ∈
R and c2 is satisfied. The case of c3 is symmetric. Putting ev-
erything together we get that replacing the constraints c1, c2,
c3 with c1, (∼1, (x1, x2)), (∼2, (y1, y2)) and (∼3, (z1, z2))
leaves the solution set unchanged.

The transformation T may seem odd, because it removes
two constraints but adds three new constraints each time.
The reason why we are making progress is that the intro-
duced constraints are equivalence relations, among which at
most a linear number are non-redundant.

Proof of Theorem 18. We establish the theorem for the case
where Γ contains a single relation R. The result will then
follow from Observation 5. Let I be a CSP instance over Γ
and JI = (XJ , CJ) be the associated instance over Γ∪{=}.
We apply the transformation T to JI until fixed point, and
then remove all redundant equalities and equivalence con-
straints. (Note that T removes at least one ternary constraint
at each step, so a fixed point will eventually be reached.) The
resulting instance J∗I contains O(n) equalities and equiva-
lence constraints, and a yet unknown number k of ternary
constraints with relationR. If we define a graphG = (V,E)
such that V = XJ and {x, y} ∈ E if and only if there ex-
ists a constraint c = (R,Sc) in J∗I such that both x and y
appear in Sc, then we have |E| = 3k, since no two ternary
constraints can share two variables unless T is applicable.
Furthermore, every adjacent pair of vertices are contained in
a unique triangle (given by the unique constraint c that con-
tains the two variables) unless T is applicable. (If another
triangle exists, then its two extra edges belong to distinct
constraints c′, c′′. Then, T is applicable on {c, c′, c′′} be-
cause each variable involved in two constraints must be at

the same position in their respective scopes, by definition of
JI .) Therefore G is locally linear, and by (Ruzsa and Sze-
merédi 1978) G has o(n2) edges. It follows that k = o(n2)
and J∗I has o(n2) constraints.

In order to carry this bound to the number of non-
redundant constraints in JI , observe that every equivalence
relation in J∗I is implied by at most three ternary constraints
of JI . Therefore, if we replace each equivalence constraint
in JI with these ternary constraints, we obtain an instance
with o(n2) constraints, all of which belong toCJ , and whose
solution set is by Lemma 21 identical to that of JI . It fol-
lows that JI has o(n2) non-redundant constraints, and then
by Lemma 20 I has o(n2) non-redundant constraints.

Example 3. Consider the ternary relation

R =


A A B
A C A
B C C
C A C
C B A


over the domain D = {A,B,C}. For any three distinct
tuples t1, t2, t3 ∈ R there exists i ∈ {1, 2, 3} such that
t1[i], t2[i] and t3[i] are three different values, and hence
(t1[i], t2[i], t3[i]) /∈ domain(p∗). Furthermore, for any
two (not necessarily distinct) tuples t1, t2 ∈ R we have
p∗(t1, t1, t2) = t2, p∗(t2, t1, t1) = t2 and p∗(t1, t2, t1) =
t1. Therefore, p∗ is a partial polymorphism of R and
VC{R}(n) = o(n2) by Theorem 18.

However, {R} does not have a Mal’tsev embedding,
even on an infinite domain; it follows from Observation 12
that it does not have a Mal’tsev derivation either. To
see this, suppose that R embeds in a relation R̂ over a
(possibly infinite) domain D̂ with a Mal’tsev polymor-
phism f . Then, the operation g given by g(x1, . . . , x5) =
f(x1, f(x2, x3, f(x1, x2, x3)), f(x5, x4, f(x1, x2, x3)))

over D̂ is also a polymorphism of R̂. Applying g to the
five tuples of R (from top to bottom) we obtain (B,B,B),
which belongs to R̂ ∩D3 but not to R, a contradiction.

As a final remark, we note (without proof, due to space
constraints) that the relationR of Example 3 is NP-hard. The
proof of Theorem 18 gives a polynomial-time algorithm that
transforms any CSP instance over {R} into an equivalent
one with o(n2) constraints, or, in other words, a kernel with
o(n2) constraints.

7 Conclusion
We have shown that the existence of a Mal’tsev derivation
implies linear chain length, and that linear chain length im-
plies efficient learnability with partial membership queries.
For binary languages, by Theorem 13 these properties are
equivalent. Could this also be true in the general case?
Does there exist a language with linear chain length but no
Mal’tsev derivation, or a language that is efficiently learn-
able despite having superlinear chain length?
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