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Abstract

Kernelization is a powerful concept from parame-
terized complexity theory that captures (a certain
idea of) efficient polynomial-time preprocessing
for hard decision problems. However, exploiting
this technique in the context of constraint program-
ming is challenging. Building on recent results for
the VERTEXCOVER constraint, we introduce novel
“loss-less” kernelization variants that are tailored
for constraint propagation. We showcase the the-
oretical interest of our ideas on two constraints,
VERTEXCOVER and EDGEDOMINATINGSET.

1 Introduction
Global constraints are central to the success of constraint
programming for solving real-world computational problems.
Represented algorithmically (through a propagator) rather
than extensionally, they can encapsulate powerful reasoning
while being time and memory efficient. Because a global con-
straint can be just any NP subproblem, finding a support for
a given variable-value pair is potentially NP-hard. For such
constraints, which are quite common [Bessiere et al., 2004],
enforcing arc consistency is costly, and relaxations of various
types are often employed in stead of complete algorithms.

A study of the parameterized complexity of global con-
straints, and of their relevant parameters, can help to address
this issue. For instance, propagating the NVALUE constraint
is NP-hard in general [Bessiere et al., 2006], but a refined
analysis using parameterized complexity has shown that this
is FPT when the parameter is the number of holes in the do-
mains [Bessiere et al., 2008]. This FPT algorithm has been
subsequently improved via kernelization [Gaspers and Szei-
der, 2011], which is used as a preprocessing for probing: for
every variable-value pair, the problem of deciding if a support
exists is solved on the kernel.

In [Carbonnel and Hebrard, 2016], a novel family of ker-
nels, called loss-less kernels, was introduced for subset min-
imization problems. Unlike general kernelization, loss-less
kernels maintain complete information on all supports and
thus define sound propagation rules. A powerful feature of
these new kernels is the ability to propagate a constraint with
a single probe of the kernel, or even without a probe, although

yielding a weaker filtering in this case. Naturally, this comes
at the price of a larger bound on the kernel size.

In this paper, we propose a definition of loss-less kerneliza-
tion relevant to general constraints, hence less restrictive than
the one in [Carbonnel and Hebrard, 2016]. Moreover, these
definitions are carefully crafted to make sense from a theo-
retical and from a practical point of view. Next, we focus on
the case of the VERTEXCOVER constraint with parameter k
equal to the cardinality of the minimum cover. Using a novel
framework of z-rigid crown decompositions, we demonstrate
the existence of a wide range of loss-less kernels whose size
depend on the “slack”, i.e. the difference between the size of
the smallest vertex cover and k. Finally we review the ker-
nel introduced in [Hagerup, 2012] for EDGE DOMINATING
SET and show that it is in fact loss-less (although in a weaker
sense than our kernels for VERTEX COVER).

2 Formal Background
A CSP instance is a triple (X ,D, C) where X is a finite set
of variables, D is a finite set of values and C is a set of con-
straints. A constraint C is pair (RC , SC) where the scope SC
is a subset of X and RC is a Boolean predicate on SC . A
solution to a CSP instance is a mapping φ : X 7→ D such
that for every constraint C ∈ C, the predicate RC is true for
the componentwise mapping of φ to SC . A global constraint
is a family of constraints induced by a predicate defined over
different scope sizes. Constraint solvers represent the search
space by associating a domain, that is, a set of values D(x)
to every variable x ∈ X . Moreover, they rely on so-called
propagation algorithms, one for each (global) constraint to
prune the search space by reducing the domains. Given a
constraint C with x ∈ SC , a pair (x, d) is consistent for C
if it has a support, that is, a mapping ψ : SC 7→ D such that
∀y ∈ SC , ψ(y) ∈ D(y), ψ(x) = d andRC is true on ψ(SC).
A constraint C is said arc consistent if every pair (x, d) with
x ∈ SC and d ∈ D(x) is consistent for C.

The complexity of a problem can be more finely character-
ized by considering parameters besides the size of the input.
Parameterized complexity aims at understanding which pa-
rameters are relevant to explain the hardness of a problem.
Given a problem P and a parameter p, (P, p) is in the FPT
class if there exists an algorithm that can decide an instance
x of P in time f(p)|x|O(1) where f is a computable func-
tion. A kernelization for a parameterized problem (P, p) is a



polynomial-time computable function K that maps each in-
stance (x, k) of (P, p) to an instance (x′, k′) of the same
problem such that (x, k) is a yes-instance if and only (x′, k′)
is, |x′| ≤ f(k), and k′ ≤ g(k) for some computable func-
tions f, g. There is intense research both on FPT algorithms
and kernelization methods [Cygan et al., 2015].

3 Loss-less Kernels
Let Q = Q ∪ {∞,−∞} denote the set of rational numbers
with infinity. A (n-ary) cost function over a finite domain
D is a function π : Dn → Q. Throughout the paper we
consider NP problems that correspond to the decision version
of minimizing an input cost function π drawn from a fixed
(but infinite) family Π of cost functions.

Π-MINIMIZATION-DECISION
Input: A set of variables X = {x1, . . . , xn} with do-

mains D(x1), . . . , D(xn) ⊆ D, π ∈ Π over
D of arity n, k ∈ Q

Question: Does there exist an assignment φ : X →
D such that ∀x ∈ X,φ(x) ∈ D(x) and
π(φ(x1), . . . , φ(xn)) ≤ k?

Note that any problem corresponding to a Boolean predi-
cate imposed upon a set of variables (that is, a constraint) can
be written in that form by letting φ return−∞ if the predicate
is satisfied and∞ otherwise. Assignments to X that respect
the domains and have finite cost are called feasible, and solu-
tions are feasible assignments of cost less than k. For a given
instance I with variable set X , σ(I) denotes the minimum
cost of a feasible assignment to X , U(I) denotes the set of all
pairs (x, d) with x ∈ X and d ∈ D(x), and Σ(I) denotes the
set of all pairs (x, d) ∈ U(I) such that there exists a solution
φ to I with φ(x) = d (in the CSP world, this is the set of
arc consistent variable-value pairs). Depending on the con-
text, we may write kI instead of k to stress that k belongs to
the instance I . We shall assume that the choice of encoding
for π is part of the definition of Π, but to preserve member-
ship in NP we will assume that π can be evaluated in polyno-
mial time. For example, VALUED CSP is a problem of this
kind where π is a sum of smaller cost functions (constraints),
each of which is represented using tables of costs. Given a
fixed family Π of cost functions, we can turn an instance I
of Π-MINIMIZATION-DECISION into a global constraint Cπ
whose tuples are the solutions to I . The scope of that con-
straint is (x1, . . . , xn,K), where K is a cost variable, and
the predicate of that constraint is π(x1, . . . , xn) ≤ K. The
purpose of this section is to identify new notions of kerneliza-
tion for those cost-minimization problems that are relevant to
the propagation of their associated constraint.

As classical kernels typically use rules to identify which
values are relevant to the decision problem (i.e. finding a
tuple-solution), we want to define kernels which capture the
values that are relevant to propagation. In other words, if the
parameter is p we want a subproblem of size f(p) such that
the knowledge of propagated values in this subproblem al-
lows complete propagation of all values in polynomial time.
This is much more consistent with the spirit of kernelization,
extends smoothly constraints with polynomial-time propaga-

tors and yields a propagation algorithm with running time
O(g(p) + |I|O(1)pO(1)), instead of O(|I|O(1)g(p)) for prob-
ing plus classical kernelization.

Now that we have identified the foundations of the desired
notion of kernelization, we can refine it for cost minimization
constraints using a recurrent phenomenon in CSP solving.
Let us consider a cost minimization constraint Cπ with cost
variable K and underlying instance I . Let K be the maxi-
mum value of K. If σ(I) is much smaller than K then Cπ
is likely to contain many tuples, hence propagating this con-
straint is unlikely to filter out values. However, during search
the domain of K will be reduced until K ≤ σ(I) + z for a
small constant z. The constraint will get tighter, hence more
likely to entail propagation. Therefore, it makes sense to bol-
ster the propagation methods when z is small (e.g., we have
a lower bound of σ(I)). From the kernelization perspective,
this means that we should prioritize kernels whose size will
provably decrease as z gets closer to 0, or even kernels that
only exist for small values of z. Thus, instead of large kernels
that preserve all supports, we can focus on supports whose
cost is at most z from the optimum cost - at the small price of
being useful only when the constraint becomes tight.

We will define a hierarchy of three different types of ker-
nels for propagation, which we call z-loss-less and will be
respectively labelled as direct, weak and strong. Direct z-
loss-less kernels, which are the smallest and most general,
follow closely the thought process of the above paragraphs.

Definition 1 Let z ∈ Q and Π be a fixed family of
cost functions. A direct z-loss-less kernelization of Π-
MINIMIZATION-DECISION parameterized by p is a function
that maps in polynomial time each parameterized instance
(I, p) of Π-MINIMIZATION-DECISION to a new parameter-
ized instance (I ′, p′), such that

(i) There exist computable functions f, g such that |I ′| ≤
f(p) and p′ ≤ g(p);

(ii) I is a yes-instance if and only if I ′ is;
(iii) There exists a polynomial-time algorithm A which on

input (I, σ(I ′)) computes σ(I);
(iv) There exists a polynomial-time algorithm B which out-

puts Σ(I) on input (I, σ(I),Σ(I ′)), if σ(I) ≥ kI − z.
Weak z-loss-less kernels improve on their “direct” counter-

part by allowing polynomial-time propagation of non-kernel
values even if only the optimum cost σ(I ′) of the kernel I ′
is known. This gives a nice flexibility: with n variables and
d values in each domain, one can either be satisfied by prop-
agating the up to nd − f(p) non-kernel values at the cost of
solving a single FPT optimization subproblem, or push fur-
ther and decide to propagate the kernel values as well by
solving a number of subproblems that depends only on the
parameter. Note that in practice we often have U(I ′) ⊆ U(I)
although this is not required in the following definitions.

Definition 2 Let z ∈ Q and Π be a fixed family of
cost functions. A weak z-loss-less kernelization of Π-
MINIMIZATION-DECISION parameterized by p is a function
that maps in polynomial time each parameterized instance
(I, p) of Π-MINIMIZATION-DECISION to a new parameter-
ized instance (I ′, p′), such that



(i)-(iv) It is a direct z-loss-less kernelization;

(v) On input (I, σ(I)) and whenever σ(I) ≥ kI − z, the
algorithm B outputs Σ(I) ∩ (U(I)\U(I ′)).

In the next sections we present weak z-loss-less kernels for
VERTEX COVER with an additional property that turns out to
be highly relevant to propagation: in these kernels, the al-
gorithm B is capable of performing partial propagation if a
lower bound of σ(I) is given in input instead of σ(I). This
means that invoking A becomes optional, and hence the ker-
nel remains useful even if the FPT subproblem is not solved
at all. More precisely, in our case the algorithm B converges
towards complete propagation as the lower bound gets closer
to σ(I). Of course, if B does nothing unless σ(I) is given as
input it technically converges; but the key observation is that
B cannot do that in general because it is a polynomial-time
algorithm and checking if the input is indeed σ(I) is likely to
be difficult. If an algorithm B with this property exists, we
say that the kernelization is strong rather than weak.

Definition 3 Let z ∈ Q and Π be a fixed family of
cost functions. A strong z-loss-less kernelization of Π-
MINIMIZATION-DECISION parameterized by p is a function
that maps in polynomial time each parameterized instance
(I, p) of Π-MINIMIZATION-DECISION to a new parameter-
ized instance (I ′, p′), such that

(i)-(iv) It is a direct z-loss-less kernelization;

(v) On input (I, l) where l ∈ Q, l ≤ σ(I), the algorithm B
outputs a set Σl ⊆ U(I)\U(I ′) such that

– For every l1, l2 with l1 ≥ l2, Σl1 ⊆ Σl2 ;
– σ(I) < kI − z or Σσ(I) = Σ(I) ∩ (U(I)\U(I ′)).

There are numerous ways to generalize these definitions -
for instance, turning z into a function of the parameter or con-
sidering kernels for higher-order consistencies that preserve
supports for simultaneous assignments to variables. We leave
these generalizations for future research.

Related work. Damaschke defined full kernels [Dam-
aschke, 2006] for subset minimization problems which are
particular cases of our framework. Such problems ask for
a subset S of size ≤ k of a universe U with some property
P which is ⊃-closed, i.e. Y ⊃ X has the property P when-
ever X has. A full kernel is a subset of U containing the
union of all inclusion-minimal solutions. When computable
in polynomial time, they are strong∞-loss-less kernels where
σ(I) = σ(I ′) and B does not remove any values unless the
input lower bound is exactly k, in which case it no longer
finds supports for the value true in the domain of non-kernel
variables. This is an example for which the convergence of B
to complete propagation is the worst possible, since B does
nothing until the lower bound is equal to k.

Enum-kernels are kernels that preserve all necessary infor-
mation to enumerate all solutions with FPT delay [Creignou
et al., 2013]. In that aspect they are incomparable with our
kernels which are required to preserve one support (i.e. solu-
tion) for each variable-value pair, and the existence of these
supports must be decidable in polynomial time (not FPT)
from the knowledge of kernel supports. However, since the

core idea is relatively similar we can expect many direct loss-
less kernels to be enum-kernels as well (and vice versa). Fi-
nally, in the very specific context of strong backdoors Samer
and Szeider have introduced loss-free kernels [Samer and
Szeider, 2008], which are essentially identical to full kernels.

4 Vertex Cover
We first introduce some elementary notions of graph theory
and relevant notations. A graph is an ordered pair G =
(V,E) where V is a set of vertices andE is a set of edges, that
is, binary subsets of V . The subgraph ofG = (V,E) induced
by a subset of vertices W is denoted G[W ] = (W, 2W ∩ E).
Given a graph G = (V,E) and W, I ⊆ V , W ∩ I = ∅,
we write GW,IB for the bipartite graph with bipartition W, I
and edge set {(u, v) ∈ E : u ∈ W ∧ v ∈ I}. An inde-
pendent set is a set I ⊆ V such that no pair of vertices in I
is in E. A matching is a subset of pairwise disjoint edges.
A vertex cover of G is a set S ⊆ V such that every edge
e ∈ E is incident to at least one vertex in S, i.e., S ∩ e 6= ∅.
The size of a matching is a straightforward and widely used
lower bound to that of any vertex cover because covering the
matching itself requires at least one vertex per edge. The
VERTEX COVER problem asks, given a graph G and an in-
teger k, whether G has a vertex cover of size at most k. It
is NP-complete [Garey and Johnson, 1979] and commonly
parameterized by the solution size k. The problem is easily
seen as FPT via a bounded search tree, and more involved
techniques yield an exact FPT algorithm with running time
O(1.2738k + |V |k) [Chen et al., 2006].

4.1 Preliminaries: classical kernelization
In this section we survey the known kernelization methods
for VERTEX COVER, and in particular crown-based kernels
which will serve as a baseline for our contributions. The sim-
plest kernelization is Buss’s rule. The idea is straightforward.
If a vertex has degree k + 1, it must belong to every size-k
vertex cover as otherwise we would have to include its whole
neighbourhood; thus we can safely remove it from the graph
and decrement k by 1. If this rule is no longer applicable, then
every vertex can cover at most k edges, and therefore no size-
k vertex cover exists unless the graph has at most k2 edges
and k2 + k non-isolated vertices. A more refined kerneliza-
tion algorithm works using decompositions called crowns.

Definition 4 Let G = (V,E) be a graph. A crown decompo-
sition of G is a partition (H,W, I) of V such that

(i) I is an independent set;
(ii) There is no edge between I and H;

(iii) There is a matching M between W and I of size |W |.

Given a crown decomposition of a graph G, every vertex
cover ofG[W∪I] is of size at least |W | because of the match-
ingM . Since I is an independent set, taking the vertices ofW
over those of I in the vertex cover is always a sound choice:
they would cover all the edges between W and I at minimum
cost, and as many edges in G[W ∪ H] as possible. This re-
duction rule is slightly more difficult to apply than Buss’s rule



because one has to actually compute a “good” crown decom-
position, which is not obviously easy. For this, two competing
methods exist: one based on maximal matchings that leaves
a residual instance G[H] with 3k vertices [Abu-Khzam et al.,
2007], and one that uses the relaxation of the LP formulation
instead and yields a kernel of size 2k [Nemhauser and Trot-
ter Jr, 1975]. The best known kernel for VERTEX COVER has
size 2k − c log(k) by using a reduction to ALMOST-2-SAT
on top of the LP method [Lampis, 2011], but the algorithmic
cost becomes quickly prohibitive as c increases.

There is a fundamental difference between Buss’s rule and
crown-based kernelization. Let us turn to the formulation as a
cost function minimization problem, with one Boolean vari-
able for each v ∈ V that decides if v should be in the cover.
When Buss’s rule can be applied to a vertex v, it belongs to all
vertex covers of size at most k. This means that the value 0 in
the domain of v is inconsistent, and 1 is consistent if and only
if a solution exists. After removal of those, every other non-
kernel vertex is isolated, and for these the value 1 is consistent
if and only if the minimum cost is strictly less than k. Over-
all, this is a strong ∞-loss-less kernelization. On the other
hand, crown decompositions assert that taking the vertices in
W in the cover is at least as good as taking those in I , but it
may happen that size-k (and even minimum-size) vertex cov-
ers contain vertices in I . In other words, we preserve at least
one minimum-size cover but information on supports may be
lost in the process. This idea is formalized more rigorously
in the next proposition, which is definitely not surprising but
included for completeness. A full proof based on a reduction
from MINIMAL CSP can be found in [Carbonnel, 2016].

Proposition 1 Unless P = NP, there is no polynomial-time
algorithm that takes as input:

• A graph G and a crown decomposition (H,W, I) of G,

• The minimum size of a vertex cover of G[H],

• The list of all vertices of H that belong to all minimum-
size vertex covers of G[H], and

• The list of all vertices of H that belong to no minimum-
size vertex covers of G[H]

and decides if there exists a vertex in W that belongs to all
minimum-size vertex covers of G.

As a consequence crown decompositions are unsafe for
computing loss-less kernels, even for direct ones and with
z = 0. To address this issue, Chlebı́k and Chlebı́ková defined
special crown decompositions for which every minimum-size
vertex cover of GW,IB contains every vertex in W and none
in I [Chlebı́k and Chlebı́ková, 2008]. These crowns are said
to be strong. An optimal strong crown decomposition can be
found in polynomial time using a variant of the LP method,
where “optimal” means that H does not have a strong crown
decomposition and |H| ≤ 2k (thus matching the best known
bound for general crown kernelization). When the upper
bound k is the minimum size of a vertex cover, this kerneliza-
tion method gives simple rules to completely propagate non-
kernel vertices: this is a strong 0-loss-less kernelization.

I

W

H

Figure 1: A crown decomposition. When ignoring the dashed
edges, there exists a minimum-size vertex cover of G[W ∪ I]
that does not containW (circled vertices) hence the decompo-
sition is not rigid. With the dashed edges, it becomes 1-rigid.

4.2 z-loss-less kernels for Vertex Cover
For a graph G, the VERTEXCOVER constraint has one cost
variable K and one Boolean variable xv for each vertex v.
Its predicate is π(X) ≤ K, where π returns ∞ if S = {v |
xv = true} is not a vertex cover ofG and |S| otherwise. On
the scale of z-loss-less kernelization, Buss’s rule and strong
crowns correspond to the two extreme cases z = ∞ and z =
0. Buss’s kernel is large (quadratic in k) but the propagation
algorithm B can be used at any time. In contrast, the strong
crown kernel is almost as small as a kernel can be but does
not propagate anything unless k is exactly the minimum size
of a vertex cover. In this section we show that a full hierarchy
of intermediate z-loss-less kernels exist between these two,
and their size is linear in both z and k. To achieve this, we
consider the following extension of strong crowns.
Definition 5 Let G = (V,E) be a graph and z ∈ N. A z-
rigid crown decomposition of G is a crown decomposition
(H,W, I) of G such that every vertex cover of the bipartite
graph (W, I) of size at most |W |+ z contains W .

This idea is illustrated in Figure 1. z-rigid crown decom-
positions define sound reduction rules for z-loss-less kernel-
izations: if the size kopt of a minimum vertex cover is such
that kopt + z > k, every vertex in W belongs to all solutions
and those in I belong to a solution if and only if kopt < k.

The rest of this section is devoted to prove the soundness
of our z-loss-less kernelization algorithm (for arbitrary z)
zCrown (Algorithm 1). We will make use of the following
proposition. A crown decomposition is straight if |W | = |I|;
straight crown decompositions are not z-rigid for any z.
Lemma 1 ([Abu-Khzam et al., 2007]) There exists a
polynomial-time algorithm NT that computes a crown
decomposition ΣN = (H,W, I) of any graph G such that all
crown decompositions of G[H] are straight.

We now prove key properties of the algorithm zCrown. A
crown decomposition (H,W, I) is trivial if W = I = ∅.
Lemma 2 For every graph G and integers k, z ≥ 0,
zCrown(G, k, z) = (H,W, I) is a z-rigid crown and G[H]
has no nontrivial z-rigid crown decomposition.



Algorithm 1: zCrown(G = (V,E), k, z)
1 (H,W, I)← NT(G) ;
2 while there exists a minimum vertex cover S of GW,IB

such that W 6⊂ S and |S| ≤ |W |+ z do
3 W ←W ∩ S ;
4 I ← I\S ;
5 return (H,W, I) ;

Proof: First, we prove that (H,W, I) being a crown is an
invariant of the loop Line 2. S is a vertex cover of GW,IB
so no edge may exist between I\S and W\S, and because I
remains an independent set throughout the algorithm we need
only show that there is a matching betweenW ∩S and I\S of
size |W ∩S|. For the sake of contradiction, let us assume that
no such matching exists. By König’s Theorem, it follows that
there exists a vertex cover S′ of GW∩S,I\S

B such that |S′| <
|W ∩ S|, and S′ ∪ (I ∩ S) is a vertex cover of GW,IB since
I ∩S covers all edges except those between W ∩S and I\S.
However, we have |S′∪(I∩S)| < |(W ∩S)∪(I∩S)| = |S|,
which contradicts the minimality of S.

By Lemma 1, in the output of the algorithm NT at Line 1,
all crown decompositions of H are straight and thus every
z-rigid crown decomposition of G must be a subcrown of
(H,W, I). We will prove that the latter property is another
invariant of the loop Line 2. Suppose for the sake of contra-
diction that there exists a z-rigid crown Σz = (Hz,W z, Iz)
of G with W z 6⊂ (W ∩ S). Then, by definition of Σz ,
|S ∩ (W z ∪ Iz)| > |Wz| + z. Furthermore, because Σz is a
crown there is no edge between W\Wz and Iz , and therefore
the matching M between W and I witnessing that (H,W, I)
is a crown must match the vertices in W\Wz with those in
I\Iz . Because S must hit each edge in the matching, it fol-
lows that |S| ≥ |S ∩ (W z ∪ Iz)| + |W\Wz| > |W | + z, a
contradiction with the loop condition.

Finally, because the loop Line 2 exits only when (H,W, I)
itself is z-rigid, the claim follows. �

Our next task is to bound the size of the residual graph
G[H] produced by zCrown by a function of z and k. To
this purpose, we will make a small detour and consider de-
compositions that are not quite crowns. A partition (H,W, I)
of the vertex set of a graph G is an almost-crown if I is an
independent set and N(I) = W (an almost-crown is sim-
ply an alternative representation of independent sets). The
width δ(Σ) of an almost-crown Σ = (H,W, I) is the size of
a maximum matching between I and W . A crown is then an
almost-crown Σ with δ(Σ) = |W |.
Proposition 2 Let Σ = (H,W, I) be an almost-crown of a
graph G = (V,E) with no isolated vertices. If |I| > (z +
1)δ(Σ), then Σ contains a z-rigid subcrown.

Proof: We proceed by induction on the value of δ(Σ). If
δ(Σ) = 1, every vertex i ∈ I has the same (unique) neighbour
v ∈ W . It follows that W = {v} and Σ is itself a z-rigid
crown since every vertex cover not containing v is of size at
least |I| > z + 1 = z + |W |. Let k ≥ 1 and suppose that the
claim is true for all almost-crowns Σ′ with δ(Σ′) ≤ k. Let

Σ = (H,W, I) be an almost-crown with no isolated vertex
and such that |I| > (z + 1)δ(Σ) = (z + 1)(k + 1). If Σ
is not z-rigid, then there exists a cover S of (W, I) of size
at most δ(Σ) + z = k + 1 + z that does not contain W .
Now, let W2 = W ∩ S, I2 = I\S and observe that Σ2 =
(V \{I2,W2},W2, I2) is an almost-crown (the neighbours of
I2 must belong to W2 because S is a cover).

Assume that δ(Σ2) = k+ 1. Then, there exists a matching
M2 of size k+1 betweenW2 and I2. Since S does not contain
W there exists a vertex v ∈ W\S, and since N(I) = W and
S is a vertex cover there must exist i ∈ I ∩S with (i, v) ∈ E.
Then, M2 ∪ (i, v) is a matching of size k + 2 of Σ, contra-
dicting the hypothesis δ(Σ) = k + 1. Therefore, δ(Σ2) ≤ k.

It remains to prove that |I2| > (z + 1)δ(Σ2). By con-
struction, we have |I2| = |I| − |S ∩ I| > (z + 1)(k + 1) −
(k + 1 + z − |W2|). Since |W2| ≥ δ(Σ2), we have |I2| >
(z+1)(k+1)+δ(Σ2)−(k+1+z) = (z+1)k−k+δ(Σ2).
If we let x = δ(Σ2) and d(x) = |I2| − (z + 1)x then

d(x) > (z + 1)k − k + x− (z + 1)x = zk − zx ≥ 0

Therefore |I2| > (z + 1)δ(Σ2) and the claim follows. �

Corollary 1 Let z ≥ 0. If G = (V,E) is a graph with no
nontrivial z-rigid crown decomposition and no isolated ver-
tices, then |V | ≤ (z+ 2)kopt where kopt is the size of a mini-
mum vertex cover of G.

Proof: Let S be a minimum-size vertex cover of G. Σ =
(∅, S,N(S)) is an almost-crown; by Proposition 2 we have
|V | = |N(S)|+kopt ≤ (z+ 1)δ(Σ) +kopt ≤ (z+ 2)kopt.�

Theorem 1 Given an instance (G, k) of VERTEX COVER
and an integer z, a strong z-loss-less kernel of (G, k) with at
most (z + 2)k vertices can be computed in polynomial time.

Proof: We start by invoking the algorithm zCrown on input
(G, k, z). Let zCrown(G, k, z) = (H,W, I). The vertices in
W belong to all vertex covers of G of size is most z from the
minimum value. The vertices in I and those isolated in G[H]
after removing W belong to no minimum-size vertex covers,
but if k is not exactly the minimum size of a vertex cover they
belong to at least one vertex cover of size at most k. In both
cases, the size of a minimum vertex cover suffices to prop-
agate non-kernel variables, and having only a lower bound
does not result in unsound propagation. By Corollary 1, after
removal of isolated vertices G[H] contains at most (z + 2)k
vertices and hence is a strong z-loss-less kernel. �

5 ∞-loss-less kernel for Edge Dominating Set
A subset of edges D ⊆ E of a graph G = (V,E) is an edge
dominating set (EDS) if every edge in E shares a vertex with
at least one edge inD. It is independent (IEDS) if the edges in
D are pairwise disjoint. The EDGE DOMINATING SET prob-
lem asks, given a graph G and an integer k, whether there
exists an EDS of G of cardinality at most k. This problem
is NP-complete and remains so even if G is bipartite with
maximum degree 3 [Yannakakis and Gavril, 1980]. The cor-
responding constraint has one Boolean variable xe for each
edge e and a cost variable K. Its predicate is π(X) ≤ K



where π returns∞ if D = {e | xe = true} is not an EDS
of G, and |D| otherwise. The best known kernelization for
this problem parameterized by k is found in [Hagerup, 2012].
Due to space constraints we do not explain in detail Hagerup’s
kernelization; instead we extract from his work a proposition
that summarizes the main result that we will use.

Proposition 3 ([Hagerup, 2012]) There exists a
polynomial-time algorithm that computes from an input
graph G = (V,E) a subset A′ ⊆ V such that:
• Every vertex in A′ appears in all size-k IEDS of G;
• The graph G′ = (V ′, E′), obtained by removing from G

all vertices with only neighbours in A′ and then adding
to each vertex x ∈ A′ a new degree-1 neighbour dx, has
at most max(6k, 12k

2 + 7
2k) vertices.

The contribution of this section is a proof that Hagerup’s
algorithm is in fact a direct ∞-loss-less kernelization. The
next lemma asserts the equivalence with respect to propaga-
tion of the EDS and IEDS problems. Its proof is inspired by
Harary’s work on the relationship between edge dominating
sets and maximal matchings [Harary, 1969].

Lemma 3 Let e be an edge of a graph G and k ≥ 0. Then,
e belongs to no (resp. all) EDS of size at most k of G if and
only if e belongs to no (resp. all) IEDS of size at most k of G.

Proof: We start with the “no” part of the claim. One implica-
tion is trivial: if e belongs to no size-k EDS, then it belongs to
no size-k IEDS. For the converse implication, let us assume
that e belongs to some size-k EDS D. We will construct an
IEDS at least as small as D that contains e as well.

First, we build from D a minimal EDS of G that contains
e as follows. First, we isolate e from the other edges in D
by replacing each edge e′ = (x, y) ∈ D sharing an endpoint
x with e by an arbitrary edge e′′ incident to y that does not
belong to D. If no such edge e′′ exists, we simply remove e′
from D. By construction, after this procedure D remains an
EDS of G and its size has not increased. Then, we attempt
to greedily remove from D as many edges as possible while
maintaining the property thatD is an EDS. Once a fixed point
is reached, D is a minimal EDS of G that contains e.

Now, if D is not independent, there exist two edges e1 =
(u, v) and e2 = (v, w) sharing an endpoint v. Because e does
not share any endpoint with other edges in D, we can assume
e1 6= e. Because D is minimal, there exists at least one edge
e′1 incident to u that is dominated only by e1. Then, we re-
move e1 fromD and add e′1 instead. After this exchangeD is
still an EDS and its size in unchanged, but strictly fewer pairs
of edges in D share an endpoint. We repeat the operation
until D is independent; by construction e ∈ D and |D| ≤ k.

For the “all” part of the claim, we follow a similar reason-
ing. Again, one direction is trivial: if e belongs to all size-k
EDS it belongs to all size-k IEDS as well. For the converse
implication, let D be a size-k EDS that does not contain e.
We will build an IEDS at least as small that does not contain
e either. We turn D into a minimal EDS that does not con-
tain e. This is more straightforward, as the greedy algorithm
only remove edges. Then, if D is not an IEDS, there exist
two edges e1 = (u, v) and e2 = (v, w) sharing an endpoint.
D is minimal, so e1 (resp. e2) is incident to an edge e′1 (resp.

e′2) that is only dominated by e1 (resp. e2). This implies that
e′1 6= e′2 and at least one of them, say e′1, is not e. We remove
e1 from D and add e′1 instead. We repeat the operation until
D is an IEDS; by construction e /∈ D and |D| ≤ k. �

Theorem 2 EDGE DOMINATING SET has a direct ∞-loss-
less kernelization leaving at most max(6k, 12k

2+ 7
2k) vertices

in the kernel.

Proof: We show that the sets of all edges that belong to all/no
size-k EDS of G can be deduced in polynomial time from the
knowledge of such sets for G′, as defined in Proposition 3.

First, observe that no deleted edge (u, v) with v ∈ A′ may
belong to all size-k EDS of G: otherwise by Lemma 3 it
would belong to all size-k IEDS of G as well, and because
every neighbour of u is in the vertex set of all size-k IEDS
of G we can replace (u, v) by any other edge incident to v in
an IEDS to obtain an EDS of same size that does not contain
(u, v). Then, by another application of Lemma 3 there exists
an IEDS of G that does not contain (u, v), a contradiction.

Now, we prove that (u, v) with v ∈ A′ belongs to no size-k
EDS of G if and only if (v, dv) belongs to no size-k EDS of
G′ (equivalently, one belongs to some EDS in G if and only
if the other does the same in G′). Suppose that a size-k EDS
of G that contains (u, v) exists. By Lemma 3, an IEDS D of
G with the same property exists. We replace each edge (x, y)
in D with exactly one endpoint y in A′ with (y, dy). By the
property ofA′, after this procedureD becomes a size-k IEDS
(and thus an EDS) of G′ that contains (v, dv). Conversely,
given an EDS D′ of G′ we can obtain an EDS of G of same
size by replacing any edge (x, dx) ∈ D′ by any edge of G
incident to x; in particular we can replace (v, dv) with (u, v).

Incidentally, it follows from the above method of convert-
ing an EDS ofG into an EDS ofG′ (and vice-versa) that every
edge both in G and G′ belongs to all (resp. no) EDS of G if
and only if it belongs to all (resp. no) EDS of G′. Combined
with the bound on the size of G′ given by Proposition 3, it
follows that (G′, k) is a direct∞-loss-less kernel of (G, k).�

6 Conclusion
Observing that standard kernelization does not quite meet
the needs of constraint propagation problems, we introduced
loss-less kernels as a mean to reduce the whole propagation
process to a subproblem whose size is only a function of the
parameter. We refined this idea for cost-minimization con-
straints and defined variants which perform increasingly bet-
ter propagation as the constraint becomes tighter, i.e. the cost
of every tuple is at most a small constant z from the optimum.

We investigated this new perspective of kernelization on
the case study of VERTEX COVER. We showed that crown
kernelization techniques can be adapted to compute z-loss-
less kernels with at most (z + 2)k vertices for every fixed z,
matching the results of [Chlebı́k and Chlebı́ková, 2008] for
z = 0. Finally, we showed with the example of EDGE DOM-
INATING SET that the idea of loss-less kernelization applies
to others problems as well. Our results demonstrate the the-
oretical value of loss-less kernels and complement well the
practical study of [Carbonnel and Hebrard, 2016].
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[Chlebı́k and Chlebı́ková, 2008] Miroslav Chlebı́k and
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