
Detecting and Exploiting Subproblem Tractability

Christian Bessiere
U. Montpellier

Montpellier, France
bessiere@lirmm.fr

Clement Carbonnel
Université de Grenoble

Grenoble
France

clement.carbonnel@ensimag.imag.fr

Emmanuel Hebrard
LAAS-CNRS

Toulouse, France
hebrard@laas.fr

George Katsirelos
MIAT, INRA

Toulouse
France

george.katsirelos@toulouse.inra.fr

Toby Walsh
NICTA & UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract
Constraint satisfaction problems may be nearly
tractable. For instance, most of the relations in
a problem might belong to a tractable language.
We introduce a method to take advantage of this
fact by computing a backdoor to this tractable
language. The method can be applied to many
tractable classes for which the membership test is
itself tractable. We introduce therefore two poly-
nomial membership testing algorithms, to check if
a language is closed under a majority or conser-
vative Mal’tsev polymorphism, respectively. Then
we show that computing a minimal backdoor for
such classes is fixed parameter tractable (FPT) if
the tractable subset of relations is given, and W[2]-
complete otherwise. Finally, we report experimen-
tal results on the XCSP benchmark set. We identi-
fied a few promising problem classes where prob-
lems were nearly closed under a majority polymor-
phism and small backdoors could be computed.

1 Introduction
The characterisation of tractable classes of constraint satisfac-
tion problems is an active and important research area. How-
ever, most constraint toolkits do not exploit tractable classes
in any specific way. Indeed, solvers often struggle to solve
tractable problems [Petke and Jeavons, 2009]. What prevents
tractability results from being more widely used in practice?
Part of the answer comes from the problem of testing mem-
bership. The question of membership of a given problem in-
stance to a polynomial class is not always easy to answer.
Moreover, since many tractable classes exist, many member-
hip tests may be needed. Unfortunately, membership testing
has not received the same attention as the problem of identify-
ing tractable classes in the first place. Additionally, problem
instances are often messy and do not belong to any known
tractable class. For instance, many tractable classes are de-
fined by a restricted constraint language and even a single ex-
tra constraint excludes an instance from this tractable class.
In this case, even though the instance is “close” to being a
member of the class, we cannot directly exploit tractability.

We make a significant step toward filling the gap between
theory and practice in this domain. We introduce a method to

take advantage of instances “almost” fitting a tractable class.
Proximity to a tractable class is a powerful tool in solving a
problem instance. The basic idea is to branch first on the part
of the problem that makes it intractable in order to obtain a
tractable subproblem. We propose a scheme that performs
such reasoning automatically. We quantify the tractability
of a CSP instance with respect to a tractable class Γ by the
size of the smallest backdoor [Williams et al., 2003], i.e., the
smallest set of variables that yields a member of Γ when in-
stantiated. Once a backdoor is found, we can solve an in-
stance by branching first on the backdoor variables, and then
using a polynomial algorithm for Γ. Instances of this type are
fixed parameter tractable (FPT) in the parameter k equal to
the size of their backdoor.

We consider first the tractable class defined by languages
admitting a majority polymorphism. Unfortunately, we prove
it is W[2]-hard to compute a minimal backdoor with respect
to this class. However, if we fix the target tractable language
(i.e., we fix a subset of the relations of the problem admitting
a majority polymorphism), then finding a minimal backdoor
is fixed parameter tractable. This tractable subset can be com-
mon to families of instances. In this case, even if obtaining
such a subset is computationally expensive, the cost can be
amortized over many instances. For each instance, we can
compute a backdoor relative to the tractable subset computed
offline, and solve the instance using it, both with a complex-
ity exponential only in the size of the backdoor. This scheme
thus constitutes a way to take advantage automatically of an
instance being “almost” tractable. We report experimental re-
sults assessing the practicality of this approach.1

Since our method is highly dependent on the ability to test
membership to a tractable class efficiently, we introduce new
polynomial membership testing algorithms for two important
tractable classes. A future challenge is to reduce the large
polynomial complexity of these algorithms and to devise al-
gorithms for other classes. Nevertheless, we were able to
use our algorithms in experiments on the XCSP [Roussel and
Lecoutre, 2009] benchmark library. Some problem classes in
this library are indeed “almost” tractable as a large subset of
their language is closed under a majority polymorphism.

The paper is organised as follows: In Section 3, we in-

1The source code developed for this evaluation is available at
http://sourceforge.net/projects/kpoly

troduce two polynomial membership testing algorithms for
tractable classes where the membership test was not previ-
ously known to be tractable. Then in Sections 4 and 5, we
describe our general FPT scheme, and analyse its complex-
ity depending on if we know which subset of the language is
tractable. Finally, in Section 6 we report experimental results
with majority polymorphisms on the XCSP repository.

2 Formal Background
Constraint Satisfaction Problems. A constraint satisfac-
tion problem (CSP) consists of deciding if a constraint net-
work has solutions. A constraint network P is defined by
the triple 〈X ,D, C〉, where X = {x1, . . . , xn} is a set of n
variables, D is a set of values, D(x) ⊆ D is the finite set
of possible values for x (its domain), and C is set of con-
straints. A constraint C ∈ C consists of a scope X(C) and
a relation R(C) over the domains of the variables in X(C).
V (C), the set of available values for variables constrained by
C is defined by V (C) =

⋃
x∈X(C)D(x). Given a network

P = 〈X ,D, C〉, we let n = |X | be the number of variables,
d = |D| be the number of values, e = |C| be the number
of constraints, and t = maxC∈C(|R(C)|) be the maximum
number of tuples in a relation. Given a tuple τ ∈ R(C), we
denote τ [x] the element of τ corresponding to x ∈ X(C).

Constraint solvers typically use backtracking search to ex-
plore the space of partial assignments. After each assignment,
constraint propagation algorithms prune the search space by
enforcing a local consistency. Given a variable x, a value
v ∈ D(x) and a constraint C such that x ∈ X(C), the
assignment 〈x, v〉 is arc consistent (AC) with respect to C
iff there exists a tuple τ ∈ R(C) such that τ [x] = v and
∀y ∈ X(C), τ [y] ∈ D(y). Such a tuple is called a support
for 〈x, v〉. A constraint network P = 〈X ,D, C〉 is arc con-
sistent iff, for all variables x ∈ X , for all values v ∈ D(x),
〈x, v〉 is arc consistent with respect to all constraints C ∈ C.
We write AC(P) for the constraint network obtained by re-
moving all values from P that are not arc consistent. If the re-
sulting constraint network is empty, P is arc inconsistent. An
assignment 〈x, v〉 is singleton arc consistent (SAC) iff, the
constraint network obtained by setting x to v is not arc incon-
sistent. For a network P , we define a constraint hypergraph
G(P) with a vertex for each variable and a hyperedge equal
to the scope of each constraint. The primal graph Gc(P) is
obtained from G(P) by replacing each hyperedge by a clique
of edges.

Polymorphisms. Throughout the paper we will consider
classes of CSPs whose languages admit a polymorphism of
a certain kind. Constraint problems whose language is closed
under certain kinds of polymorphisms (majority, affine, con-
stant, or binary idempotent commutative and associative) are
tractable [Jeavons et al., 1997]. It was later shown [Bula-
tov and Dalmau, 2006] that the Mal’tsev polymorphism also
yields a tractable language.

Let C be a constraint, r = |X(C)| its arity. The map-
ping f : V (C)m 7→ V (C), of arity2 m, is a polymorphism

2Observe that the arity of a polymorphism is orthogonal to the

of R(C) (or R(C) is closed under f) iff for every m-tuple
(τ1, . . . , τm) of elements of R(C), we have:

〈f(τ1[1], . . . , τm[1]), . . . , f(τ1[r], . . . , τm[r])〉 ∈ R(C)

Consider the relations R1 = {〈1, 0〉, 〈1, 1〉} and
R2 = {〈0, 1, 0〉, 〈0, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉}. The function
f(x, y) = (x + y mod 2) is not a polymorphism of R1 be-
cause 〈f(1, 1), f(0, 1)〉 = 〈0, 1〉 6∈ R1. However, it is a poly-
morphism of R2. To see this we consider the operator f on
all possible pairs of tuples (since f is commutative we con-
siderer unordered pairs). Pairs involving the tuple 〈0, 0, 0〉 are
mapped to the other element of the pair. Repetitions of a tu-
ple t are mapped to 〈0, 0, 0〉. We illustrate the three remaining
cases below. For each pair of tuples τ1, τ2 and each variable
xi we give the value of the function f(τ1[xi], τ2[xi]):

f f f f f f f f f︷︸︸︷
0

︷︸︸︷
1

︷︸︸︷
0

︷︸︸︷
0

︷︸︸︷
1

︷︸︸︷
0

︷︸︸︷
1

︷︸︸︷
0

︷︸︸︷
1

1︸︷︷︸ 0︸︷︷︸ 1︸︷︷︸ 1︸︷︷︸ 1︸︷︷︸ 1︸︷︷︸ 1︸︷︷︸ 1︸︷︷︸ 1︸︷︷︸
= = = = = = = = =
1 1 1 1 0 1 0 1 0

A ternary polymorphism f has the majority property iff for
all v, w ∈ V (C), it holds that f(v, v, w) = f(v, w, v) =
f(w, v, v) = v. It is Mal’tsev if v, w ∈ V (C), it holds that
f(v, v, w) = f(w, v, v) = w. Note a polymorphism can-
not be both Mal’tsev and majority. A polymorphism f of
arity m is idempotent iff for all v ∈ V (C), f(v, . . . , v) = v.
Moreover, it is conservative iff for all 〈v1, . . . , vm〉 ∈ Dm:
f(v1, . . . , vm) ∈ {v1, . . . , vm}.

Parameterized complexity. A problem is fixed-parameter
tractable (FPT) if it can be solved in O(f(k)nc) time where
f is any computable function, n is the size of the input, k
is some parameter, and c is a constant. For example, vertex
cover is fixed-parameter tractable with respect to the size of
the cover k since it can be solved in O(1.31951kk2 + kn)
time [Downey et al., 1999]. Above FPT , Downey and
Fellows have proposed a hierarchy of fixed-parameter in-
tractable problem classes:

FPT ⊆W [1] ⊆W [2] ⊆ . . . ⊆ XP

For instance, the clique problem is W [1]-complete with re-
spect to the size of the clique, whilst the dominating set prob-
lem is W [2]-complete with respect to the size of the dom-
inating set. There is considerable evidence to suggest that
W [1]-hardness implies parametric intractability and thatW [t]
is strictly easier than W [t+ 1]. The class XP contains prob-
lems that can be solved in time O(nf(k)).

3 Detecting Tractable Problems
We first give two new polynomial membership testing algo-
rithms: one for testing whether a set of relations is closed
under a majority polymorphism, and a second for testing
whether a set of binary relations is closed under a conser-
vative Mal’tsev polymorphism. We shall use the notion of
indicator problem introduced in [Jeavons et al., 1997].

arity of a constraint.

Definition 1 (Indicator problem). Let Γ be a set of relations
over a domain D. The indicator problem of order m of Γ,
denoted Pm(Γ,D), is defined as follows:

• A set of variables X = {xv̄ | v̄ ∈ Dm};

• A domain (common to all variables) D;

• Each relation R ∈ Γ of arity r, and each tuple
sequence 〈τ1, . . . , τm〉 ∈ Rm, yields the constraint
(〈xv̄1 , . . . , xv̄r

〉, R) where v̄i = 〈τ1[i], . . . , τm[i]〉.

The solutions of an indicator problem Pm(Γ,D) are poly-
morphisms of a language Γ over a domain D. There is one
variable perm-tuple of values inD, standing for the image of
this tuple under the polymorphism. For a relation R of arity
r, and for each combination of m tuples of R, there is a con-
straint on the r variables obtained by traversing these m tu-
ples component-wise whose relation is preciselyR. This con-
straint ensures that applying the polymorphism component-
wise on these tuples yields a tuple that belongs to R.

3.1 Majority
It has been recently shown [Chen et al., 2013] that we can
solve a problem backtrack-free by applying SAC at each
node when the set of relations admits a majority polymor-
phism. We shall use this property to detect a majority poly-
morphism. We use a specific indicator problem Pmaj(Γ,D)
defined as P3(Γ,D), with the following extra constraints:

∀〈v, w〉 ∈ D2, x〈v,v,w〉 = x〈v,w,v〉 = x〈w,v,v〉 = v

Theorem 1. The existence of a majority polymorphism of a
language Γ over a domainD can be decided in O(rd7lt3(t+
d)). where l = |Γ|, d = |D|, t and r are, respectively, the
maximum size and arity of a relation in Γ.

Proof: There is a bijection between solutions of Pmaj(Γ,D)
and majority polymorphisms of Γ over D. Notice that the
language of Pmaj(Γ,D) is precisely Γ plus extra unary con-
straints that are by definition closed under the majority opera-
tion. This ensures that Γ admits a majority polymorphim over
D iff Pmaj(Γ,D) can be solved backtrack-free using SAC.

The following backtrack-free procedure detects a majority
polymorphism of a set of relations Γ over a domain D:

• Build the indicator problem Pmaj({R(C) | C ∈ C},D).

• Iteratively enforce SAC on this problem and assign a
variable.

• If SAC fails return False, otherwise, if all variables
are assigned return True.

SAC can be enforced in O(ndT) on a constraint network
involving n variables of domain size d, where T is the time
complexity of achieving AC [Bessiere and Debruyne, 2008].
The network Pmaj(Γ,D) has d3 variables of domain size d,
and lt3 constraints. Since AC can be achieved inO(er(t+d))
and SAC can be enforced up to d3 times on this network, the
total time complexity of the procedure is O(rd7lt3(t + d)).
In addition, building the indicator problem takes lt3 time. �

3.2 Conservative Mal’tsev on binary relations
As previously, we shall use a specific form of indicator prob-
lem to detect conservative Mal’tsev polymorphisms of binary
relations. We call Pmal(Γ,D) the constraint network equal
to P3(Γ,D) with the extra following constraints:

∀〈v, w〉 ∈ D2, x〈v,w,w〉 = x〈w,w,v〉 = v

∀〈u, v, w〉 ∈ D3, x〈u,v,w〉 ∈ {u, v, w}
Moreover, for the purpose of our demonstration, we

shall reformulate the indicator problem Pmal(Γ,D) as fol-
lows. For every triple 〈u, v, w〉 we replace the domain of
x〈u,v,w〉 by {1, 2, 3}, and for each constraint C = (S,R)
of Pmal(Γ,D), where S = 〈x〈v1,v2,v3〉, x〈w1,w2,w3〉〉, we
replace R by R|S = {〈i, j〉 | 〈vi, wj〉 ∈ ({v1, v2, v3} ×
{w1, w2, w3} ∩ R)}. Notice that values may be repeated.
For instance the domain of x〈v,w,v〉 is {1, 2, 3}, however the
values 1 and 3 are symmetric and both share the same sup-
ports corresponding to those of v. Clearly, the reformulation
preserves the satisfiability of Pmal(Γ,D), though it may in-
troduce symmetric solutions.

Lemma 1 (derived from [Bulatov, 2002]). Let R be some
binary relation that has a Mal’tsev polymorphism. Then, R
is rectangular, i.e., for any values a, b, c, d, if < a, c >, <
a, d > and < b, c > ∈ R, then < b, d >∈ R.

It follows that a binary constraint C admits a Mal’tsev
polymorphism only if the digraph whose edges are given by
the tuples of R(C) is a set of disjoint bicliques.

Lemma 2. Let Γ be a language of binary relations, D be
a set of values, and R ∈ Γ. Let S = 〈x〈u,v,w〉, x〈a,b,c〉〉
and C = (S,R|S) be a constraint of AC(Pmal(Γ,D)). If Γ
is closed under a conservative Mal’tsev polymorphism, then
R|S is either:

• The equality relation, or

• The universal relation, or

• The union of {〈2, 2〉} and {1, 3} × {1, 3}.

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 1: The 3 possible structures for R|S after AC.

Proof: Observe that C can only be part of the in-
dicator problem if {〈u, a〉, 〈v, b〉, 〈w, c〉} ⊆ R, hence
{〈1, 1〉, 〈2, 2〉, 〈3, 3〉} ⊆ R|S .

Then, by Lemma 1, R|S is either :

• A single biclique (universal relation) ;

• 3 bicliques, (equality relation) ;

1

2

3

1

2

3

(a) Case 1

1

2

3

1

2

3

(b) Case 2

1

2

3

1

2

3

(c) Case 3

• 2 bicliques (one has a single edge).

The latter case yields 3 possibilities :
In case 1, the existence of the edges {〈1, 1〉, 〈2, 1〉, 〈3, 3〉}

implies that {〈u, a〉, 〈v, a〉, 〈w, c〉} ⊆ R. Consequently, the
constraint (〈x〈u,v,w〉, x〈a,a,c〉〉, R|〈x〈u,v,w〉,x〈a,a,c〉〉) belong to
Pmal(Γ,D) with R|〈x〈u,v,w〉,x〈a,a,c〉〉 = R|S . However, by
construction of the indicator problem D(x〈a,a,c〉) = {3}.
Therefore, enforcing AC on this constraint will reduce the
domain of x〈u,v,w〉 to the singleton {3} since only the tuple
〈3, 3〉 is a support. In other words, this constraint will be en-
tailed, hence can be removed after enforcing AC.

The same reasoning applies to case 2, and the only possi-
bility left is case 3. �

Corollary 1. If we:
• Enforce arc consistency on the indicator problem,

• Remove all constraints involving assigned variable(s),

• Merge all variables constrained together by an equality,

• Remove all universal relations,

Then the resulting network only has constrained variables
with domain size ≥ 2, and every relation will be equal to:

{〈1, 1〉, 〈1, 3〉, 〈2, 2〉, 〈3, 1〉, 〈3, 3〉}

Therefore, assigning every non-assigned variable x to
{1, 3} ∩ D(x) is always a solution. Indeed, every variable’s
domain contains at least two values so it contains either 1 or
3, and they are always compatible. Now we can easily prove
that this tractable class can be detected in polynomial time.
Theorem 2. The existence of a conservative Mal’tsev poly-
morphism of a language Γ over a domain D can be decided
in O(ld6) where l = |Γ| and d = |D|.
Proof: By Corollary 1, we know that if Γ is closed under
a conservative Mal’tsev polymorphism, after a sequence of
transformations (including AC), we can solve the indicator
problem by assigning any value in {1, 3} ∩ D(x) to each
variable x. Therefore, if enforcing AC returns a failure, or
if no such such assignment can be built, then we know that Γ
is not closed under any Mal’tsev polymorphism. Moreover,
each step in this procedure takes linear time in the number of
constraints of the indicator problem (which equals d6 where
d = |D| in the worst case). Creating the indicator problem
takes O(ld6) time. �

4 Exploiting Tractable Subproblems
Our approach to exploiting tractable subproblems is by iden-
tifying a small backdoor. We are not limited to a specific

tractable class, but can use any class characterized by a poly-
morphism that satisfies either of two properties: idempotency,
or, more strongly, being conservative. The stronger property
gives an algorithm that is FPT in a strictly smaller parameter.
Both majority and Mal’tsev imply idempotency. The exact
problem is stated as follows.

NAME: ALMOST-TRACTABLE-CSP(P)
INPUT: A CSP P = 〈X ,D, C1 ∪ C2〉 and a prop-

erty P such that P2 = 〈X ,D, C2〉 belongs
to a tractable class characterised by a poly-
morphism with property P .

PARAMETERS: d: domain size, m: the number of vari-
ables in C1, k: the minimum vertex cover
of the primal graph of C1, kh: the min-
imum hyper vertex cover of the hyper
graph of C1, and r: the maximum arity of
constraints in C1.

PROBLEM: Is P satisfiable?
Our approach to exploit almost tractable subproblems is in-

spired by the cycle-cutset method [Dechter and Pearl, 1987].
This instantiates variables of the constraint network until the
remaining subproblem is acyclic, where directed arc consis-
tency will solve the problem in polynomial time [Freuder,
1982]. The cycle cutset method can be seen as one of the
first attempts to solve almost tractable problems. However,
the tractable class was based on the structure of the network
rather than the language.

4.1 Idempotent classes
An assignment is a unary relation with a single tuple, which
is closed under any idempotent polymorphism. We use this
in our first FPT algorithm.
Theorem 3. ALMOST-TRACTABLE-CSP(IDEMPOTENT) is
FPT with parameter d+m.
Proof: We show that the set of allm variables that participate
in constraints in C1 form a backdoor with respect to the algo-
rithm for the tractable class. Indeed, let C2 be closed under the
idempotent polymorphism f . Since f(v, . . . , v) = v, any re-
lation with a single tuple is closed under f , so the union of C2
with the assignment relations is also closed under f . There-
fore, instantiating the variables that appear in constraints in
C1 leaves a tractable instance. The search tree entailed by the
backdoor has size dm. �

4.2 Conservative classes
A set of prunings can be expressed by the addition of unary
constraints to a CSP. Moreover, all unary relations are closed
under any conservative polymorphism. In this case there ex-
ists an algorithm which is exponential in the strictly smaller
parameter k. We note that k ≤ (r − 1)kh < m.
Theorem 4. ALMOST-TRACTABLE-CSP(CONSERVATIVE)
is FPT with parameter d+ k.
Proof: We use this vertex cover of the primal graph of P1

as a backdoor. That is, we branch on the variables of the ver-
tex cover, yielding a tree of size dk. At each leaf of this tree,
all constraints of C1 are reduced to unary constraints, so the
induced CSP P ′ has all the constraints of P2 and addition-
ally some unary constraints, therefore P ′ belongs to the same

conservative tractable class as P2 and its satisfiability can be
determined in polynomial time. �

5 Identifying Tractable Subproblems
When we do not know explicitly which set of relations be-
longs to a tractable language, we face a harder problem than
just finding the backdoor. We must also guess the subset of
relations that gives a small backdoor. We will demonstrate
this difficulty on languages that are tractable under a major-
ity polymorphism. We conjecture that similar results hold for
other tractable languages.

NAME: PARTITION-MAJORITY-CSP
INPUT: A CSP 〈X ,D, C〉, integer k

PROBLEM: Does there exist a partition of C into
C1, C2 such that C2 admits a conservative
majority polymorphism and C1 has a ver-
tex cover of size at most k?

Theorem 5. PARTITION-MAJORITY-CSP is NP-complete
even for binary CSPs.

Proof: A partition along with the vertex cover provides a
witness, because of Theorem 1, so the problem is in NP.
For hardness, we reduce from Vertex Cover on a graph
G = {V,E}. We construct a CSP P = 〈X,C〉 with a
variable for each vertex and a constraint between two vari-
ables iff there exists an edge between the corresponding ver-
tices. All constraints are the same relation R = {(1, 1),
(1, 2), (2, 3), (4, 1), (5, 2), (4, 3), (7, 1), (6, 2), (6, 3)}. This
relation has no majority polymorphism, as the first three
tuples require that f(1, 2, 3) ∈ {1, 2}, the next three re-
quire that f(1, 2, 3) ∈ {2, 3} and the last three require that
f(1, 2, 3) ∈ {1, 3}. No subset of constraints admits a major-
ity polymorphism, so C2 has to be empty. Hence the problem
is equivalent to finding the minimum vertex cover. �

When the parameter is the size of the vertex cover Gc(P),
it is easy to see that PARTITION-MAJORITY-CSP is in XP .
Let S be a subset of k variables and C1 be the constraints
which are covered by S in Gc(P). We can test in polynomial
time whether C2 has a conservative majority polymorphism.
There are O(nk) such sets, which gives an XP algorithm.

Lemma 3. For any k ≥ 3, there exists a set of k relations
such that every subset of k−1 relations admits a conservative
majority polymorphism but the entire set does not.

Proof: Let R1 = {(1, 3), (1, 4), (2, 5)}, R2 =
{(1, 3), (2, 4), (1, 5)}, R3 = {(2, 3(k − 2)), (1, 3(k − 2) +
1), (2, 3(k− 2) + 2)} and Ri = {((3(i− 3), 3(i− 2)), (3(i−
3)+1, 3(i−2)+1), (3(i−3)+2, 3(i−2)+2)} for 4 ≤ i ≤ k.
For example, for k = 4 this is instantiated to

R1 R2 R3 R4

1 3 1 3 2 6 3 6
1 4 2 4 1 7 4 7
2 5 1 5 1 8 5 8

We first show that the complete set of relations admits
no conservative majority polymorphism f . From R1 we get
f(3, 4, 5) ∈ {3, 4} and from R2 we get f(3, 4, 5) ∈ {3, 5},
so f(3, 4, 5) = 3. From R3 we get f(3(k − 2), 3(k − 2) +
1, 3(k−2)+2) ∈ {3(k−2)+1, 3(k−2)+2}. Finally, from

Ri, 4 ≤ i ≤ k, we get f(3(i−2), 3(i−2)+1, 3(i−2)+2) =
j ⇐⇒ f(3(i− 1), 3(i− 1) + 1, 3(i− 1) + 2) = j+ 3. This
chain gives us that f(3, 4, 5) ∈ {4, 5} 63 3.

On the other hand, consider any subset of at most k − 1
relations. If we omit either R1 or R2, we only require
f(3, 4, 5) ∈ {3, 4} (respectively, {3, 5}) which has a non-
empty intersection with {4, 5}. If we omit R3, we place no
restriction on f(3(k − 2), 3(k − 2) + 1, 3(k − 2) + 2), so it
does not conflict with f(3, 4, 5) = 3. Finally, if we omit any
of the relations R4, . . . , Rk, we break the chain that connects
f(3, 4, 5) to f(3(k− 2), 3(k− 2) + 1, 3(k− 2) + 2), so they
can be chosen independently. Therefore, any subset of k − 1
relations has a conservative majority polymorphism. �

Theorem 6. PARTITION-MAJORITY-CSP is W [2]-hard
when the parameter is k, the size of the vertex cover of the
primal graph Gc(P).

Proof: We reduce from an instance of Hitting Set over the
universe U , with sets S1, . . . , Sm, each of size p, and with
minimum hitting set size s to an instance of PARTITION-
MAJORITY-CSP with k = s with maximum arity 2. Indeed,
Hitting Set is W [2]-hard for the parameter s. Note that we
assume all sets have the same size. If that is not the case, we
pad each set using new unique elements.

We create a variable Xe for each element e in the Hitting
Set problem and a variable XS for each set S. For each set S,
we create a set RS of p relations using the method of lemma
3 and using distinct values for each set. We then create p
constraints CXSXe for each e ∈ S using the relations of RS .
This CSP has a partition into C1 and C2 s.t. the vertex cover
of C1 is k = s iff the minimum hitting set has size s.

(⇒) Suppose H is a hitting set. For each element e ∈ H
and for every set S such that e ∈ S, we place CXeXS

in C1.
Since H is a hitting set, C2 contains at most p − 1 relations
from each set of p relations that involve variable XS . There-
fore, the relations involving XS that are in C2 admit a con-
servative majority polymorphism. Since relations involving
XS are over disjoint domains with relations involving XS′

for any set S′ different from S, they do not interfere with
the parts of the polymorphism affecting each other. Thus C2
has a conservative majority polymorphism. Moreover, the set
{Xe|e ∈ H} is a vertex cover of C1 by the fact that we only
include constraints that involve one of these variables in C1.

(⇐) We first show that C1 includes exactly one constraint
of the form CXeXS

for each set S. It includes at least one
such constraint, otherwise C2 does not admit a majority poly-
morphism. To show it includes at most one such constraint,
observe first that vertex cover is monotone, i.e., adding edges
cannot decrease the size of the minimum vertex cover. Sec-
ond, in order to ensure that C2 admits a majority polymor-
phism, we only need one out of every p relations that involve
a variableXS to be in C1 and by monotonicity of vertex cover
we can assume that the other p− 1 are relations are in C2.

Since each XS appears in exactly one relation in C1, if it
is in the vertex cover to cover the constraint CXSXe

, we can
replace it by Xe and get a vertex cover that is no larger. So
there exists a minimum size vertex cover with variables Xe

only. This set of variables corresponds to a set of elements
covering the sets S1, . . . , Sm, because each covers at least

one relation CXeXS
, these constraints encode set inclusion

and all sets are covered by the chosen relations. �
This result also implies W [2]-hardness for partitioning

when the tractable subproblem is closed under a non-
conservative majority polymorphism. On the other hand, if
the parameter also includes the domain size then we lose
hardness. However, the complexity of the best algorithm we
have in this case is rather impractical.

Theorem 7. PARTITION-MAJORITY-CSP is FPT when the
parameter is d+ k + r.

Proof: Given domain size d and maximum constraint arity
r, there are 2d

r

possible relations. Suppose C1 and C2 are
the partitions. If there exist two constraints c1 and c2 with
the same relation R such that c1 ∈ C1 and c2 ∈ C2, then the
partition C′1 = C1 \ {c1}, C′2 = C2 ∪ {c1} is such that C′2 still
admits a conservative majority polymorphism, while the min-
imum vertex cover of C′1 cannot be larger than the minimum
vertex cover of C1. So it is sufficient to consider only parti-
tions of the relations rather than of the constraints. There are
22dr

possible partitions of the relations into C1 and C2 and for
each of these we can discover the minimum vertex cover of
the primal graph of C2 in time 2k, and verify in polynomial
time that C2 admits a conservative majority polymorphism.
The total complexity of this algorithm is O(22dr

dkp(n)). �
2d

r

is much larger than the number of constraints in any
practical problem, even for very small values of d and r.
However, when the number of different relations in an in-
stance is q, it is always the case that q < 2d

r

.

Corollary 2. PARTITION-MAJORITY-CSP is FPT when the
parameter is k+ q, where k is the size of the vertex cover and
q is the number of distinct relations in P .

Proof: The proof of theorem 7 goes through when we only
consider the q different relations present in P . The complex-
ity of this algorithm is O(dk2qp(n)). �

6 Implementation and Evaluation
In order to assess the practical value of this approach, and
to find almost-polynomial series of instances, we have im-
plemented this procedure using conservative majority poly-
morphisms as the target polynomial class. We implemented
the algorithm of Corollary 2 in a branch-and-bound fashion,
rather than generate-and-test. We made several improvements
which reduce runtime in practice. First, we performed pre-
processing of an instance with SAC to reduce the size of
the indicator problem. Second, we implemented a nogood
database of sublanguages which admit no majority polymor-
phism in order to avoid testing any of their supersets. We
also perform pre-emptive detection of trivially blocking and
majority-friendly relations. For testing existence of a major-
ity polymorphism, we enforce SAC on the indicator problem
using SAC3-SDS [Bessiere et al., 2011]. We compute vertex
covers using the basic O(2kp(n)) algorithm combined with a
few heuristics inspired from [Balasubramanian et al., 1998].

We implemented the algorithm in C++ and ran experiments
on a 2.2 Ghz Intel Core i7 with 8 Gb of memory on 191 se-
ries of instances made available from the Fourth International

Constraint Solver Competition. We used only instances with-
out global constraints and converted all constraints to exten-
sional form. For each family of instances, we tested the algo-
rithm on a sample of representative instances. We placed an
upper bound of 40 on the computed backdoor size. If the al-
gorithm reported no backdoor for any instance in the sample,
we pessimistically concluded that no instance in that family
has a small backdoor, otherwise we ran the algorithm on the
remaining instances.

The results are mostly (but not wholly) negative, as we
failed to find non-trivial tractable subproblems on most in-
stances of the 191 tested families. The most frequent cause
of failure is the indicator problem being too large to fit in
memory (primary cause for 135 families). Other causes in-
clude being solved by preprocessing (16), or having a large
backdoor size with respect to the problem size (40).

However, some families do show promising results. The 5
“prime” families, created by van Dongen, and in which each
constraint is a linear equation with prime numbers as coeffi-
cients produced the most interesting tractable subproblems.
For each of these series, the relations are intentional and con-
version to extensional form yields very large relations. How-
ever, when the conversion is possible (9 instances out of 36
for the first family), a subproblem closed under conservative
majority polymorphism was found with a very small back-
door (see figure 2). We were also able to find a backdoor of
size 22 on the instance “driverlogw-01c-sat_ext”,
involving 71 variables. However this family contains only
seven instances, and the other six either had no small back-
door or too large an indicator problem.

Instance #Var. #Act. #Fix. #Rel. time (s)
driverlogw-01c 71 53 22 2/14 0.40

primes-10-20-2-1 100 79 3 2/20 439.92
primes-10-40-2-1 100 56 6 3/40 344.92
primes-10-40-3-1 100 43 3 3/40 7.80
primes-10-60-2-1 100 28 0 0/59 0.01
primes-10-60-2-3 100 14 0 0/59 0.09
primes-10-60-3-1 100 17 0 0/59 0.00
primes-10-80-2-1 100 11 0 0/79 0.00
primes-10-80-2-3 100 4 0 0/79 0.08
primes-10-80-3-1 100 8 0 0/79 0.01

Figure 2: Results for almost tractable instances. #Var is the
number of variables, #Act is the number of non-assigned vari-
ables after SAC, #Fix is the size of the backdoor and #Rel is
the ratio of relations that need to be removed.

7 Conclusions
We have argued that we can exploit constraint satisfaction
problems which are nearly tractable. The basic idea is to
compute a backdoor into a tractable language. Our method
requires a tractable membership test. We therefore intro-
duced two new polynomial time membership testing algo-
rithms which check if a language admits a majority or a con-
servative Mal’tsev polymorphism. We proved that comput-
ing a minimal backdoor for such classes is fixed parameter
tractable when the tractable subset of relations is given, and
W[2]-complete otherwise.

References
[Balasubramanian et al., 1998] R. Balasubramanian,

Michael R. Fellows, and Venkatesh Raman. An Im-
proved Fixed-Parameter Algorithm for Vertex Cover. Inf.
Process. Lett., 65(3):163–168, 1998.

[Bessiere and Debruyne, 2008] Christian Bessiere and Ro-
muald Debruyne. Theoretical analysis of singleton arc
consistency and its extensions. Artif. Intell., 172(1):29–
41, 2008.

[Bessiere et al., 2011] Christian Bessiere, Stephane Cardon,
Romuald Debruyne, and Christophe Lecoutre. Efficient
Algorithms for Singleton Arc Consistency. Constraints,
16:25–53, 2011.

[Bulatov and Dalmau, 2006] Andrei A. Bulatov and Vı́ctor
Dalmau. A simple algorithm for mal’tsev constraints.
SIAM J. Comput., 36(1):16–27, 2006.

[Bulatov, 2002] Andrei A. Bulatov. Mal’tsev constraints are
tractable. Electronic Colloquium on Computational Com-
plexity (ECCC), (034), 2002.

[Chen et al., 2013] Hubie Chen, Victor Dalmau, and Berit
Grußien. Arc Consistency and Friends. J Logic Computa-
tion, 23(1):87–108, 2013.

[Dechter and Pearl, 1987] R. Dechter and J. Pearl. The
cycle-cutset method for improving search performance in
ai applications. In Proceedings 3rd IEEE Conference on
AI Applications, pages 224–230, Orlando FL, 1987.

[Downey et al., 1999] R. G. Downey, M. R. Fellows, and
U. Stege. Parameterized complexity: A framework for
systematically confronting computational intractability. In
Contemporary Trends in Discrete Mathematics: From DI-
MACS and DIMATIA to the Future, volume 49 of DIMACS
Series in Discrete Mathematics and Theoretical Computer
Science, pages 49–99. 1999.

[Freuder, 1982] Eugene C. Freuder. A sufficient condition
for backtrack-free search. J. ACM, 29(1):24–32, 1982.

[Jeavons et al., 1997] Peter Jeavons, David A. Cohen, and
Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, 1997.

[Petke and Jeavons, 2009] Justyna Petke and Peter Jeavons.
Tractable benchmarks for constraint programming. Tech-
nical Report RR-09-07, OUCL, 2009.

[Roussel and Lecoutre, 2009] Olivier Roussel and
Christophe Lecoutre. Xml representation of con-
straint networks: Format xcsp 2.1. Technical report,
CoRR abs/0902.2362, feb 2009.

[Williams et al., 2003] Ryan Williams, Carla P. Gomes, and
Bart Selman. Backdoors to typical case complexity. In
Proceedings of the 18th international joint conference on
Artificial intelligence, IJCAI’03, pages 1173–1178, San
Francisco, CA, USA, 2003. Morgan Kaufmann Publishers
Inc.

