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Abstract. Given a fixed constraint language Γ , the conservative CSP over Γ (de-
noted by c-CSP(Γ )) is a variant of CSP(Γ ) where the domain of each variable can
be restricted arbitrarily. In [5] a dichotomy has been proven for conservative CSP:
for every fixed language Γ , c-CSP(Γ ) is either in P or NP-complete. However, the
characterization of conservatively tractable languages is of algebraic nature and
the recognition algorithm provided in [5] is super-exponential in the domain size.
The main contribution of this paper is a polynomial-time algorithm that, given a
constraint language Γ as input, decides if c-CSP(Γ ) is tractable. In addition, if Γ
is proven tractable the algorithm also outputs its coloured graph, which contains
valuable information on the structure of Γ .

1 Introduction

The Constraint Satisfaction Problem (CSP) is a powerful framework for solving combi-
natorial problems, with many applications in artificial intelligence. A CSP instance is a
set of variables, a set of values (the domain) and a set of constraints, which are relations
imposed on a subset of variables. The goal is to assign to each variable a domain value
in such a way that all constraints are satisfied. This problem is NP-complete in general.

A very active and fruitful research topic is the non-uniform CSP, in which a set of
relations Γ is fixed and every constraint must be a relation from Γ . For instance, if Γ
contains only binary Boolean relations then CSP(Γ ) is equivalent to 2-SAT and hence
polynomially solvable, but if all ternary clauses are allowed the problem becomes NP-
complete. The Feder-Vardi Dichotomy Conjecture states that for every finite Γ , CSP(Γ )
is either in P or NP-complete [10] (hence missing all the NP-intermediate complexity
classes predicted by Ladner’s Theorem [15]).

While this conjecture is still open, a major milestone was reached with the char-
acterization of all tractable conservative constraint languages, that is, languages that
contain every possible unary relation over their domain [5]. Conservativity is a very
natural property since it corresponds to the languages that allow arbitrary restrictions of
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variables domains, a widely used feature in practical constraint solving. It also includes
as a particular case the well-studied problem List H-Colouring for a fixed digraph H .

Now that the criterion for the tractability of conservative languages has been es-
tablished, an important question that arises is the complexity of deciding if a given
conservative language is tractable. An algorithm that decides this criterion efficiently
could be used for example as a preprocessing operation in general-purpose constraint
solvers, and prompt the use of a dedicated algorithm instead of backtracking search if
the instance is over a conservative tractable language.

This meta-problem can be phrased in two slightly different ways. The first would
take the whole language Γ as input and ask if CSP(Γ ) is tractable. However, conser-
vative languages always contain a number of unary relations that is exponential in the
domain size, which inflates greatly the input size for the meta-problem without adding
any computational difficulty. A more interesting question would take as input a lan-
guage Γ and ask if c-CSP(Γ ) is tractable, where c-CSP(Γ ) allows all unary relations
in addition to Γ (this is the conservative CSP over Γ ). Designing a polynomial-time
algorithm for this meta-problem is more challenging, but it would perform much better
as a structural analysis tool for preprocessing CSP instances.

Bulatov’s characterization of conservative tractable languages is based on the exis-
tence of closure operations (called polymorphisms) that satisfy a certain set of identities.
While the algebraic nature of this criterion makes the meta-problem delicate to solve,
it also shows that the meta-problem is in NP and can be solved in polynomial time if
the domain size is fixed. This hypothesis is however very strong because there is only a
finite number of constraint languages of fixed arity over a fixed domain. If the domain is
not fixed this algorithm becomes super-exponential, and hence is polynomial for neither
flavour of the meta-problem.

The contribution of our paper is twofold:

(i) We present an algorithm that decides the dichotomy for c-CSP in polynomial time.
This is the main result of this paper.

(ii) As a byproduct, we exhibit a general connection between the complexity of the
meta-problem and the existence of a semiuniform algorithm on classes of con-
servative languages defined by certain algebraic identities known as linear strong
Mal’tsev conditions. We obtain as a corollary a broad generalization of the result
about conservative Mal’tsev polymorphisms found in [7].

The necessary background for our proofs will be given in Section 2. In Section 3 we
will then present the proof of the contribution (ii), and in Section 4 we will show how
this result can be used to derive an algorithm that decides the dichotomy for c-CSP in
polynomial time. Finally, we will conclude and discuss open problems in Section 5.

2 Preliminaries

2.1 Constraint Satisfaction Problems

An instance of the constraint satisfaction problem (CSP) is a triple (X ,D, C) where X
is a set of variables, D is a finite set of values and C is a set of constraints. A constraint



C of arity k is a pair (SC , RC) where RC is a k-ary relation over D and SC ∈ X k
is the scope of C. The goal is to find an assignment φ : X → D such that for all
C = (SC , RC) ∈ C, φ(SC) ∈ RC . In this definition, variables do not come with
individual domains; any variable-specific domain restriction has to be enforced using a
unary constraint.

Given a constraint C = (SC , RC) andX1 ⊆ X , we denote by C[X1] the projection
of C onto the variables in X1 (which is the empty constraint if S does not contain any
variable in X1). The projection of a CSP instance I onto a subset X1 ⊆ X , denoted by
I|X1

, is obtained by projecting every constraint ontoX1 and then removing all variables
that do not belong to X1. A partial solution to I is a solution (i.e. a satisfying assign-
ment) to I|X1

for some subset X1 ⊆ X . A CSP instance is 1-minimal if each variable
x ∈ X has an individual domain D(x) (represented as a unary constraint) and the pro-
jection onto {x} of every constraint C ∈ C whose scope contains x is exactly D(x).
1-minimality can be enforced in polynomial time by gradually removing inconsistent
tuples from the constraint relations until a fixed point is reached [16].

Throughout the paper we shall use R(.) and S(.) as operators that return respec-
tively the relation and the scope of a constraint. A constraint language over a set
D is a set of relations over D, and the constraint language L(I) of a CSP instance
I = (X ,D, C) is the set {R(C) | C ∈ C}. Given a constraint language Γ over a set
D, we denote by Γ the conservative extension of Γ , that is, the language comprised
of Γ plus all possible unary relations over D. Finally, given a constraint language Γ
we denote by CSP(Γ ) (resp. c-CSP(Γ )) the restriction of CSP to instances I such that
L(I) ⊆ Γ (resp. L(I) ⊆ Γ ).

The algorithms presented in this paper will take constraint languages as input, and
the complexity analysis depends crucially on how relations are encoded. While practical
constraint solvers often represent relations intentionally through propagators, we shall
always assume that every relation is given as an explicit list of tuples (a very common
assumption in theoretical papers).

2.2 Polymorphisms

Given a constraint language Γ , the complexity of CSP(Γ ) is usually studied through
closure operations called polymorphisms. Given an integer k and a constraint language
Γ over D, a k-ary operation f : Dk → D is a polymorphism of Γ if for all R ∈ Γ of
arity r and t1, . . . , tk ∈ R we have

(f(t1[1], . . . , tk[1]), . . . , f(t1[r], . . . , tk[r])) ∈ R

A polymorphism f is idempotent if ∀x ∈ D, f(x, . . . , x) = x and conservative
if ∀x1, . . . , xk ∈ D, f(x1, . . . , xk) ∈ {x1, . . . , xk}. It is known that given a con-
straint language Γ , the complexity of CSP(Γ ) is entirely determined by its polymor-
phisms [13]. On the other hand, the conservative polymorphisms of Γ are exactly those
that preserve all unary relations, and hence determine the complexity of c-CSP(Γ ). A
binary polymorphism f is a semilattice if ∀x, y, z ∈ D, f(x, x) = x, f(x, y) = f(y, x)
and f(f(x, y), z) = f(x, f(y, z)). A majority polymorphism is a ternary polymor-
phism f such that ∀x, y ∈ D, f(x, x, y) = f(x, y, x) = f(y, x, x) = x and a mi-



nority polymorphism is a ternary polymorphism f such that ∀x, y ∈ D, f(x, x, y) =
f(x, y, x) = f(y, x, x) = y.

2.3 Conservative Constraint Satisfaction

In general, if Γ is a conservative language and there exists {a, b} ⊆ D such that every
polymorphism of Γ is a projection when restricted to {a, b} then CSP({R}) is polyno-
mially reducible to CSP(Γ ) [14], where

R =

a b b
b a b
b b a


It follows that CSP(Γ ) is NP-complete as CSP({R}) is equivalent to 1-in-3 SAT. The
Dichotomy Theorem for conservative CSP states that the converse is true: if for every
B = {a, b} ⊆ D there exists a polymorphism f such that f|B is not a projection, then
c-CSP(Γ ) is polynomial-time. By Post’s lattice [17], the polymorphism f can be chosen
such that f|B is either a majority operation, a minority operation or a semilattice.

Theorem 1 ([5]). Let Γ be a fixed constraint language over a domain D. If for every
B = {a, b} ⊆ D there exists a conservative polymorphism f such that f|B is either a
majority operation, a minority operation or a semilattice then c-CSP(Γ ) is in P. Other-
wise, c-CSP(Γ ) is NP-complete.

This theorem provides a way to determine the complexity of c-CSP(Γ ), since we
can enumerate all ternary operations overD and list those that are polymorphisms of Γ .
However, this procedure is super-exponential in time if the domain is part of the input.
Our paper presents a more elaborate, polynomial-time algorithm that does not impose
any restriction on Γ .

Three different proofs of Theorem 1 have been published [5][1][6], and two of them
rely heavily on a construction called the coloured graph of Γ and denoted by GΓ . The
definition of GΓ is as follows. The vertex set of GΓ is D, and there is an edge between
any two vertices. Each edge (a, b) is labelled with a colour following these rules:

– If there exists a polymorphism f such that f|{a,b} is a semilattice, then (a, b) is red;
– If there exists a polymorphism f such that f|{a,b} is a majority operation and (a, b)

is not red, then (a, b) is yellow;
– If there exists a polymorphism f such that f|{a,b} is a minority operation and (a, b)

is neither red nor yellow, then (a, b) is blue.

Additionally, red edges are directed: we have (a → b) if there exists f such that
f(a, b) = f(b, a) = b. It is possible to have (a ↔ b). By Theorem 1, GΓ is entirely
coloured if and only if c-CSP(Γ ) is tractable. The next theorem, from [5], shows that the
tractability of c-CSP(Γ ) is always witnessed by three specific polymorphisms (instead
of O(d2) in the original formulation).

Theorem 2 (The Three Operations Theorem [5]). Let Γ be a language such that c-
CSP(Γ ) is tractable. There exist three conservative polymorphisms f∗(x, y), g∗(x, y, z)
and h∗(x, y, z) such that for every two-element set B ⊆ D:



– f∗|B is a semilattice operation if B is red and f∗(x, y) = x otherwise ;
– g∗|B is a majority operation if B is yellow, g∗|B(x, y, z) = x if B is blue and
g∗|B(x, y, z) = f∗(f∗(x, y), z) if B is red ;

– h∗|B is a minority operation if B is blue, h∗|B(x, y, z) = x if B is yellow, and
h∗|B(x, y, z) = f∗(f∗(x, y), z) if B is red.

The original theorem also proves the existence of other polymorphisms, but we will
only use f∗, g∗ and h∗ in our proofs.

2.4 Meta-problems and identities

Given a class T of constraint languages, the meta-problem (or metaquestion [8]) for
T takes as input a constraint language Γ and asks if Γ ∈ T . In the context of CSP
and c-CSP, the class T is often defined as the set of all languages that admit a com-
bination of polymorphisms satisfying a certain set of identities; in this case the meta-
problem is a polymorphism detection problem. We will be interested in particular sets
of identities called linear strong Mal’tsev conditions. Given that universal algebra is not
the main topic of our paper, we will use a simplified exposition similar to that found
in [8]. A linear identity is an expression of the form f(x1, . . . , xk) ≈ g(y1, . . . , yc) or
f(x1, . . . , xk) ≈ yi where f, g are operation symbols and x1, . . . , xk, y1, . . . , yc are
variables. It is satisfied by two interpretations for f and g on a domain D if the equality
holds for any assignment to the variables. A strong linear Mal’tsev condition M is a
finite set of linear identities. We say that a set of operations satisfy M if they satisfy
every identity in M. A strong linear Mal’tsev condition is said to be idempotent if it
entails fi(x, . . . , x) ≈ x for all operation symbols fi. For a given linear strong Mal’tsev
condition, the number of operation symbols and their maximum arity are constant.

Example 1. The set of identities

f(x, x, y) ≈ x
f(x, y, x) ≈ x
f(y, x, x) ≈ x

is the idempotent linear strong Mal’tsev condition that defines majority operations. On
the other hand, recall that semilattices are binary operations f satisfying

f(x, x) ≈ x
f(x, y) ≈ f(y, x)

f(x, f(y, z)) ≈ f(f(x, y), z)

which does not form a linear strong Mal’tsev condition because the identity enforcing
the associativity of f is not linear.

By extension, we say that a constraint language satisfies a linear strong Mal’tsev
condition M if it has a collection of polymorphisms that satisfy M. The definability
of a class of constraint languages by a linear strong Mal’tsev conditionM is strongly



tied up with the meta-problem, because for such classes we can associate any constraint
language Γ with a polynomial-sized CSP instance whose solutions, if any, are exactly
the polymorphisms of Γ satisfyingM [8]. We will describe the construction below.

Given a constraint language Γ and an integer k the indicator problem of order k
of Γ , denoted by IPk(Γ ), is a CSP instance with one variable xf(d1,...,dk) for every
(d1, . . . , dk) ∈ Dk and one constraint CR

∗

f(t1,...,tk)
for each R∗ ∈ Γ , t1, . . . , tk ∈ R∗.

The constraintCR
∗

f(t1,...,tk)
hasR∗ as relation, and its scope S is such that for all i ≤ |S|,

S[i] = xf(t1[i],...,tk[i]). Going back to the definition of a polymorphism, it is simple to
see that the solutions to IPk(Γ ) are exactly the k-ary polymorphisms of Γ [13].

Now, let M denote a linear strong Mal’tsev condition with symbols f1, . . . , fm
of respective arities a1, . . . , am. We build a CSP instance PM(Γ ) that is the disjoint
union of IPa1(Γ ), . . . , IPam(Γ ). By construction, each solution φ to PM(Γ ) is a
collection of polymorphisms (f1, . . . , fm) of Γ . We can force these polymorphisms
to satisfy the identities in M by adding new constraints. If Ei ∈ M is of the form
fj(x1, . . . , xaj ) ≈ fp(y1, . . . , yap), we add an equality constraint between the vari-
ables xfj(φ(x1),...,φ(xaj

)) and xfp(φ(y1),...,φ(yap ))
for every possible assignment φ to

{x1, . . . , xaj , y1, . . . , yap}. Otherwise (i.e. if Ei is of the form fj(x1, . . . , xk) ≈ yi)
we can enforce Ei by adding unary constraints. Note that the language of PM(Γ ) is Γ
together with possible equalities and unary relations with a single tuple. This construc-
tion will be used frequently throughout the paper.

2.5 Uniform and semiuniform algorithms

Let M denote a strong linear Mal’tsev condition, and let CSP(M) denote the CSP
restricted to instances whose language satisfiesM.

Definition 1. A uniform polynomial-time algorithm forM is an algorithm that solves
CSP(M) in polynomial time.

The term “uniform” here refers to the fact that the language is not fixed (as in the
Feder-Vardi Dichotomy conjecture), but may only range over languages that satisfy
M. The existence of a uniform algorithm implies that CSP(Γ ) is in P for every Γ that
satisfiesM, but the converse is not guaranteed to be true. For instance, an algorithm for
CSP(M) that is exponential only in the domain size is polynomial for every fixed Γ that
satisfies M, but is not uniform. A weaker notion of uniformity called semiuniformity
has been recently introduced in [8], and will be central to our paper.

Definition 2. A semiuniform polynomial-time algorithm for M is an algorithm that
solves CSP(M) in polynomial time provided each instance I is paired with polymor-
phisms f1, . . . , fm of L(I) that satisfyM.

Observe that semiuniform algorithms are tied to the identities inM rather than the
class of languages it defines; even if CSP(M1) and CSP(M2) denote the exact same
set of instances, the polymorphisms satisfyingM2 can be more computationally useful
than those satisfyingM1.

The following observation has been part of the folklore for some time (see e.g. [4][2])
and has been recently formalized in [8].



Proposition 1 ([8]). LetM be an idempotent strong linear Mal’tsev condition. IfM
has a uniform algorithm, then the meta-problem forM is polynomial time.

We give here the proof sketch. The idempotency ofM ensures that we have a uni-
form algorithm for the search problem (i.e. decide if the instance is satisfiable and
produce a solution if one exists) because idempotent polymorphisms always preserve
assignments to variables, which can be seen as unary relations with a single tuple. Given
a relational structure Γ , to check if Γ satisfiesM we build the instance PM(Γ ) as in
Section 2.4 and invoke the uniform search algorithm. Since the language of PM(Γ )
is Γ plus equalities and unary relations with a single tuple, L(PM(Γ )) satisfiesM if
and only if Γ does. If PM(Γ ) is satisfiable then Γ satisfiesM and the algorithm must
produce a solution (which can be easily verified), and whenever the algorithm fails to
do so we can safely conclude that Γ does not satisfyM.

There is no intuitive way to make this approach work with semiuniform algorithms
because they will not run unless given an explicit solution to PM(Γ ) beforehand.

3 Semiuniformity in Conservative Constraint Languages

As seen in Section 2.5, in the case of idempotent linear strong Mal’tsev conditions a
uniform algorithm implies the tractability of the meta-problem. We will see that if the
problem is to decide if Γ satisfies M (i.e. to decide if Γ has conservative polymor-
phisms f1, . . . , fm that satisfyM) then semiuniformity is sufficient. This implies that,
surprisingly, uniformity and semiuniformity are equivalent for classes of conservative
languages definable by a strong linear Mal’tsev condition.

The general strategy to solve the meta-problem assuming a semiuniform algorithm
is to cast the meta-problem as a CSP and then compute successively partial solutions
φ1, . . . , φα of slowly increasing size until a solution to the whole CSP is obtained. The
originality of our approach is that φi+1 is not computed directly from φi, but by solving
a polynomial number of CSP instances whose languages admit φi as a polymorphism.
This algorithm can be seen as a treasure hunt, where each chest contains the key to open
the next one.

LetM be a strong linear Mal’tsev condition with operation symbols f1, . . . , fm of
respective arities a1, . . . , am. Let Γ be a constraint language overD and PM(Γ ) be the
CSP whose solutions are exactly the polymorphisms of Γ satisfyingM (as described
in Section 2.4). Recall that for every symbol fi in M and (d1, . . . , dai) ∈ Dai we
have a variable xfi(d1,...,dai

) that dictates how fi should map d1, . . . , dai , and for every
R∗ ∈ Γ and ai tuples t1, . . . , tai

∈ R∗ we have a constraint CR
∗

fi(t1,...,tai )
that forces

the tuple fi(t1, . . . , tai
) to belong to R∗ (where fi is the operation on tuples obtained

by componentwise application of fi). Our goal is to decide if Γ satisfies M, which
requires the polymorphisms of Γ satisfying M to be conservative. The solutions to
PM(Γ ) can easily be guaranteed to be conservative by adding the unary constraint
xfi(d1,...,dai

) ∈ {d1, . . . , dai} on each variable xfi(d1,...,dai
) ∈ X . We will denote this

new problem by PcM(Γ ), and each solution φ to PcM(Γ ) is a collection (f1, . . . , fm)
of conservative polymorphisms of Γ satisfyingM.



We need one more definition. Given a CSP instance I, a consistent restriction of I is
an instance obtained from I by adding new constraints that are either unary or equalities
and then enforcing 1-minimality. We will be interested in the consistent restrictions of
PcM(Γ ), and we will keep the same notations for constraints that already existed in
PcM(Γ ). The next lemma is a variation of ([7], Observation 2) adapted to our purpose.

Lemma 1. Let P = (X ,D, C) be a consistent restriction of PcM(Γ ). Let fi and fj be
operation symbols inM. If CR

∗

fi(t1,...,tai )
∈ C and t′1, . . . , t

′
aj
∈ R(CR∗fi(t1,...,tai )

) then

R(CR
∗

fj(t′1,...,t
′
aj

)) ⊆ R(C
R∗

fi(t1,...,tai )
)

Proof. Let S = S(CR∗fi(t1,...,tai )
) and S′ = S(CR∗fj(t′1,...,t

′
aj

)). Before 1-minimality was

enforced, we had R(CR∗fi(t1,...,tai )
) = R(CR∗fj(t′1,...,t

′
aj

)) = R∗. Thus, after enforcing

1-minimality we have R(CR∗fi(t1,...,tai )
) = R∗ ∩ (πx∈SD(x)) and R(CR∗fj(t′1,...,t

′
aj

)) =

R∗ ∩ (πx∈S′D(x)). However, since t′1, . . . , t
′
aj
∈ R(CR∗fi(t1,...,tai )

), the conservativity
constraints ensure that for each k,

D(S′[k]) = D(xfj(t′1[k],...,t′aj [k])
) ⊆ {t′1[k], . . . , t′aj

[k]} ⊆ D(S[k])

Therefore,R(CR∗fj(t′1,...,t
′
aj

)) ⊆ R(C
R∗

fi(t1,...,tai )
).

Given two sets of variables X1, X2 ⊆ X , we write X1 C X2 if for each symbol fi
inM, ∀x ∈ X2 and t ∈ D(x)ai we have xfi(t) ∈ X1. If X1 C X1, we say that X1 is
closed.

Proposition 2. Let P = (X ,D, C) be a consistent restriction of PcM(Γ ). If X1 and X2

are subsets of variables such that X1 C X2, then every solution to P|X1
is a collection

of polymorphisms of L(P|X2
).

Proof. Let fi, fj ∈ {f1, . . . , fm} be operation symbols inM. LetR∗ ∈ Γ , t1, . . . , tai
∈

R∗,C2 = (S2, R2) ∈ P|X2
be the projection ofCR

∗

fi(t1,...,tai )
ontoX2, and t21, . . . , t

2
aj
∈

R2. By the nature of projections, there must exist t′1, . . . , t
′
aj
∈ R(CR∗fi(t1,...,tai )

) such

that t21, . . . , t
2
aj

is the projection of t′1, . . . , t
′
aj

onto X2. Then, by Lemma 1 we have

R(CR
∗

fj(t′1,...,t
′
aj

)) ⊆ R(C
R∗

fi(t1,...,tai )
)

and in particular R(CR∗fj(t′1,...,t
′
aj

)[X2]) ⊆ R(CR
∗

fi(t1,...,tai )
[X2]) = R2. Now, note that

because X1 C X2 and P is 1-minimal, every variable xfj(t′1[k],...,t′aj [k]) in the scope of

CR
∗

fj(t′1,...,t
′
aj

)[X2] also belongs to X1. We denote this constraint by C1.

Let us summarize what we have: for every symbol fj , every relation R2 ∈ L(P|X2
)

other than equalities and unary relations (which are preserved by all conservative poly-
morphisms) and t21, . . . , t

2
aj
∈ R2, there is a constraintC1 = (S1, R1) ∈ P|X1

such that
|S1| = |S2|, R1 ⊆ R2 and for every k we have S1[k] = xfj(t21[k],...,t2aj [k])

. It follows

that for every solution (f1, . . . , fm) to P(Γ )|X1
, fj is also a solution to the indicator

problem of order aj of L(P(Γ )|X2
) and is therefore a polymorphism of L(P(Γ )|X2

).



Closed sets of variables allow us to turn partial solutions into true polymorphisms of
a specific constraint language, hence enabling us to make (limited) use of semiuniform
algorithms. A variable of PcM(Γ ) is a singleton if it is of the form xfi(v,...,v) for some
v ∈ D. The sets of variables corresponding to singletons and X constitute two closed
sets; the next Lemma shows that many intermediate, regurlarly-spaced closed sets exist
in PcM(Γ ) between these two extremes.

Lemma 2. Let PcM(Γ ) = (X ,D, C) after applying 1-minimality. There exist X0 ⊆
. . . ⊆ Xα = X such that X0 is the set of all singleton variables, each Xi is closed
and |Xi+1 − Xi| ≤ maa, where a and m denote respectively the maximum arity and
number of operation symbols inM.

Proof. Let (D1, . . . , Dα) denote an arbitrary ordering of the subsets of D of size a. We
define

X0 = {xfj(vi,...,vi) | fj ∈M, vi ∈ D}

and for all i ∈ [1..α]

Xi = Xi−1 ∪ {xfj(t) | fj ∈M, t ∈ (Di)
aj}

It is clear that X0 is the set of all singleton variables and for all i, |Xi+1 − Xi| ≤
m|(Di)

a| = maa. It remains to show that each set is closed. Let k ≥ 1 and suppose that
Xk−1 is closed. By induction hypothesis, we only need to verify that Xk C Xk\Xk−1.
Let xfj(v1,...,vaj

) be a variable in Xk\Xk−1. Because PcM(Γ ) is 1-minimal, we have
D(xfj(v1,...,vaj

)) ⊆ {v1, . . . , vaj} ⊆ Dk. By construction Xk contains all variables of
the form xfc(t) where t ∈ (Dk)

ac and because D(xfj(v1,...,vaj
)) ⊆ {v1, . . . , vaj} ⊆

Dk it contains in particular all variables xfc(t) such that t ⊆ D(xfj(v1,...,vaj
)). This

implies that Xk C Xk\Xk−1 and concludes the proof.

We now have every necessary tool at our disposal to start solving PcM(Γ ). It is
straightforward to see that if a subset of variables X ′ is closed in PcM(Γ ), then it is
closed in every consistent restriction as well.

Proposition 3. If a solution to PcM(Γ )|Xi
is known, then a solution to PcM(Γ )|Xi+1

can be found in polynomial time.

Proof. Let (f i1, . . . , f
i
m) be a solution to PcM(Γ )|Xi

. We assume that 1-minimality has
been enforced on PcM(Γ ). This ensures, in particular, that the domain of each xfj(t) ∈
Xi+1\Xi contains at most a elements. It follows that Xi+1\Xi has at most s = ama

a

possible assignments φ1, . . . , φs. For every j ∈ [1..s], we create a CSP instance Pj that
is a copy of PcM(Γ ) but also includes the constraints corresponding to the assignment
Xi+1\Xi ← φj(Xi+1\Xi). We enforce 1-minimality on every instance Pj .

Now, observe that each Pj is a consistent restriction of PcM(Γ ), soXi is still closed
in Pj . Moreover, every variable x ∈ Xi+1\Xi has domain size 1 in Pj ; since Xi

contains all singleton variables, if follows that in Pj we have Xi C Xi+1.
By Proposition 2, (f i1, . . . , f

i
m) is a collection of polymorphisms of L(Pj |Xi+1

).
We can then use the semiuniform algorithm to find in polynomial time a solution to



Pj |Xi+1
if one exists by backtracking search (every f iz is idempotent, so we can invoke

the semiuniform algorithm at each node to ensure that the algorithm cannot backtrack
more than one level). A solution to PcM(Γ )|Xi+1

exists if and only if Pj |Xi+1
has a

solution for some j ∈ {1, . . . , s}.

The above proof balances on the fact that every complete instantiation of the vari-
ables inXi+1\Xi (followed by 1-minimality) yields a residual instance over a language
that admits (f i1, . . . , f

i
m) as polymorphisms. In other terms, PcM(Γ )|Xi+1

has a back-
door [19] of constant size to (f i1, . . . , f

i
m).

Theorem 3. Let M be a linear strong Mal’tsev condition that admits a semiuniform
algorithm. There exists a polynomial-time algorithm that, given as input a constraint
language Γ , decides if Γ satisfiesM and produces conservative polymorphisms of Γ
satisfyingM if any exist.

Proof. The algorithm starts by building PcM(Γ ) and computes the sets X0, . . . , Xα as
in Lemma 2. We have a solution to PcM(Γ )|X0

for free because of the conservativity
constraints, and we can compute a solution to PcM(Γ ) by invoking repeatedly (at most
α ≤ |X | ≤ mda times) Proposition 3.

Corollary 1. IfM is a linear strong Mal’tsev condition that has a semiuniform algo-
rithm for conservative languages, thenM has also a uniform algorithm for conserva-
tive languages.

Proof. The uniform algorithm simply invokes our algorithm to produce the conserva-
tive polymorphisms satisfyingM, and then provides these polymorphisms to the semi-
uniform algorithm to solve the CSP instance.

An immediate application of Theorem 3 concerns the detection of conservative k-
edge polymorphisms for a fixed k. A k-edge operation on a set D is a (k + 1)-ary
operation e satisfying

e(x, x, y, y, y, . . . , y, y) ≈ y
e(x, y, x, y, y, . . . , y, y) ≈ y
e(x, y, y, x, y, . . . , y, y) ≈ y
e(x, y, y, y, x, . . . , y, y) ≈ y

. . .

e(x, y, y, y, y, . . . , x, y) ≈ y
e(x, y, y, y, y, . . . , y, x) ≈ y

These identities form a linear strong Mal’tsev condition. The algorithm given in [12]
is semiuniform, but in addition to e it must have access to three other polymorphisms



p, d, s derived from e and satisfying

p(x, y, y) ≈ x
p(x, x, y) ≈ d(x, y)

d(x, d(x, y)) ≈ d(x, y)
s(x, y, y, y, . . . , y, y) ≈ d(y, x)
s(y, x, y, y, . . . , y, y) ≈ y
s(y, y, x, y, . . . , y, y) ≈ y

. . .

s(y, y, y, y, . . . , y, x) ≈ y

The authors provide a method to obtain these three polymorphisms from e that requires
a possibly exponential number of compositions. However, conservative algebras are
much simpler and we can observe that

s(x1, x2, . . . , xk) = e(x2, x1, x2, x3, . . . , xk)

d(x, y) = e(x, y, x, . . . , x)

p(x, y, z) = e(y, d(y, z), x, . . . , x)

satisfy the required identities and are easy to compute. It follows that in the conservative
case their algorithm is semiuniform even if only a k-edge polymorphism e is given.

Corollary 2. For every fixed k, the class of constraint languages admitting a conser-
vative k-edge polymorphism is uniformly tractable and has a polynomially decidable
meta-problem.

Since conservative 2-edge polymorphisms are Mal’tsev polymorphisms, this corol-
lary is a broad generalization of the result obtained in [7] concerning conservative
Mal’tsev polymorphisms.

4 Deciding the Dichotomy

While the criterion for the conservative dichotomy theorem can be stated as a linear
strong Mal’tsev condition [18], none of the algorithms found in the literature are semi-
uniform. Still, Theorem 3 gives a uniform algorithm for constraint languages Γ whose
coloured graph contains only yellow and blue edges: if g∗(x, y, z) and h∗(x, y, z) are
the polymorphisms predicted by the Three Operations Theorem, then m∗(x, y, z) =
h∗(g∗(x, y, z), g∗(y, z, x), g∗(z, x, y)) is a generalized majority-minority polymorphism
of Γ (see [9] for a formal definition), which implies that Γ has a 3-edge polymor-
phism [3].

Our algorithm will reduce the meta-problem to a polynomial number of CSP in-
stances over languages with conservative 3-edge polymorphisms using a refined ver-
sion of the treasure hunt algorithm and a simple reduction rule. This reduction rule is



specific to indicator problems and allows us to avoid the elaborate machinery presented
in [6] to eliminate red edges in CSP instances over a tractable conservative language.

We start by the reduction rule. Recall that the Three Operations Theorem predicts
that if Γ is tractable then it has a conservative polymorphism f∗ such that for every
2-element set B, f∗|B is a semilattice if B is red and f∗|B(x, y) = x otherwise.

Proposition 4. If f∗ is known, then for every non-red 2-element subset B of D it can
be decided in polynomial time if there exists a conservative polymorphism p such that
p|B is a majority (resp. minority) operation.

Proof. We are looking for a ternary polymorphism p, so we start by building the in-
stance IP3c(Γ ), which is the indicator problem of order 3 of Γ with conservativity con-
straints. For i ∈ {1, 2, 3}, let πi be the solution to IP3c(Γ ) given by πi(xv1,v2,v3) = vi
for all v1, v2, v3 ∈ D. These solutions correspond to the three ternary polymorphisms of
Γ that project onto their ith argument. We enforce 1-minimality and apply the algorithm
Reduce.

Algorithm 1: Reduce

1 s1 ← π1 ;
2 s2 ← π2 ;
3 s3 ← π3 ;
4 while There exist i, j and x ∈ X such that {si(x), sj(x)} is red and
f∗(si(x), sj(x)) = sj(x) do

5 s1 ← f∗(s1, sj) ;
6 s2 ← f∗(s2, sj) ;
7 s3 ← f∗(s3, sj) ;
8 for all x ∈ X and v ∈ D(x) s.t. ∀k, sk(x) 6= v do
9 D(x)← D(x)\v ;

We denote by IP3c
R (Γ ) the resulting CSP instance. An important invariant of this

algorithm is that at the end of every iteration of the loop in Reduce, for every x ∈ X
and v ∈ D(x) there exists s ∈ {s1, s2, s3} such that s(x) = v. This is straightforward,
since we only remove v from D(x) if none of s1(x), s2(x), s3(x) takes value v. It then
follows from the loop condition that at the end of Reduce, no x ∈ X may have a
domain that contains a red pair of elements.

We now show that if IP3c(Γ ) has a solution that is majority (resp. minority) on a
non-red pair of values B, then so does IP3c

R (Γ ). We proceed by induction. Suppose
that at iteration i of the loop of Reduce, a solution pi that is majority (resp. minority)
on B exists. Let Di(x) denote the domain of a variable x at step i. We set pi+1 =
f∗(pi, sj). Because f always projects onto its first argument on non-red pairs, a value v
can only be removed fromDi(x) at iteration i+1 if {v, sj(x)} is red and f(v, sj(x)) =
sj(x). Therefore, if pi(x) is removed at iteration i then pi+1(x) = f∗(pi(x), sj(x)) =
sj(x), and otherwise pi+1(x) ∈ {pi(x), sj(x)} ⊆ Di+1(x); in any case pi+1(x) ∈



Di+1(x). Furthermore, since B is not red, pi+1(xf(v1,v2,v3)) = pi(xf(v1,v2,v3)) for all
{v1, v2, v3} ⊆ B and we can conclude that pi+1 is still majority (resp. minority) on B.

Now, we enforce 1-minimality again. We can ensure that every solution is a ma-
jority (resp. minority) polymorphism when restricted to B by assigning the 6 variables
concerned by the majority (resp. minority) identity. Since the remaining instance I is
red-free in GΓ , either c-CSP(Γ ) is intractable or L(I) admits a 3-edge polymorphism.
We test for the existence of a 3-edge polymorphism using Theorem 3. If one exists
we use the uniform algorithm given by Corollary 2 to decide if a solution exists and
otherwise we can conclude that c-CSP(Γ ) is intractable.

With this result in mind, the last challenge is to design a polynomial-time algorithm
that finds a binary polymorphism f∗ that is commutative on as many 2-element subsets
as possible, and projects onto its first argument otherwise. We call such polymorphisms
maximally commutative. This can be achieved using a variant of the algorithm presented
in Section 3 and the following Lemma.

Lemma 3. Let P = (X ,D, C) denote an 1-minimal instance such that ∀x ∈ X ,
|D(x)| ≤ 2. Suppose that we have a conservative binary polymorphism f of L(P)
and a partition (V1, V2) of the variables such that f(a, b) = f(b, a) = f(D(x)) when-
ever x ∈ V1, and f projects onto its first argument otherwise. Then, every variable
x ∈ V1 can be assigned to f(D(x)) without altering the satisfiability of P .

Proof. Let C = (S,R) ∈ C. Let S1 = S ∩ V1, S2 = S ∩ V2 and t ∈ R. We assume
without loss of generality that no variable in S is ground (i.e. has a singleton domain).
If x ∈ S, let t[x] = D(x)\t[x]. Because P is 1-minimal, for every x ∈ S1 there exists
tx ∈ R such that tx[x] = t[x]. Let x1, . . . , xs denote an arbitrary ordering of S1. Then,
let t(0) = t and for i ∈ {1, . . . , s},

t(i) = f(t(i−1), txi
)

It is immediate to see that if x ∈ S2, then t(s)[x] = t[x] since f will project onto its
first argument at each interation. On the other hand, if xk ∈ S1 and there exists j such
that t(j)[xk] = f(D(xk)) then t(i)[xk] = f(D(xk)) for all i ≥ j. This is guaranteed to
happen for j ≤ k, as either

– t[xk] = f(D(xk)), in which case it is true for j = 0, or
– t(k−1)[xk] = f(D(xk)), in which case it is true for j = k − 1, or
– t(k−1)[xk] = t[xk] 6= f(D(xk)), in which case t(k)[xk] = f(t(k−1)[xk], txk

[xk]) =

f(t[xk], t[xk]) = f(D(xk)) and thus it is true for j = k.

It follows that t(s) is a tuple or R that coincides with t on S2, and t(s)[x] = D(f(x))
whenever x ∈ S1. Therefore, assigning each x ∈ S1 to D(f(x)) is always compatible
with any assignment to S2; since this is true for each constraint, it is true for P as well.

We denote by IP2c(Γ ) the CSP instance obtained from IP2(Γ ) by adding the
unary constraints enforcing conservativity. We can interpret IP2c(Γ ) as the meta-
problem associated with an unconstrained conservative binary operation symbol f and
reuse the definitions and lemmas about closed sets of variables seen in the last section.
In the hierarchy of closed sets given by Lemma 2 applied to IP2c(Γ ), Xi+1 contains
the variables of Xi plus two variables xf(a,b), xf(b,a) for some Bi+1 = {a, b} ⊆ D.



Proposition 5. Suppose that we know a solution fi to IP2c(Γ )|Xi
that is maximally

commutative if c-CSP(Γ ) is tractable. A solution fi+1 to IP2c(Γ )|Xi+1
with the same

properties can be found in polynomial time.

Proof. The strategy is similar to the proof of Proposition 3. The two differences are that
we do not have a semiuniform algorithm in general, which can be handled by Lemma 3,
and the fact that we are not interested in any solution but in one that is maximally
commutative.

Observe that if c-CSP(Γ ) is tractable and IP2c(Γ )|Xi+1
is 1-minimal, then its lan-

guage is conservatively tractable as well and the order-2 conservative indicator prob-
lem of L(IP2c(Γ )|Xi+1

) is IP2c(Γ )|Xi+1
itself plus unconstrained variables (because

Xi+1 is closed). Therefore, by the Three Operations Theorem, a maximally commu-
tative solution to IP2c(Γ )|Xi+1

is commutative on some {u, v} if and only if there is
a solution to IP2c(Γ )|Xi+1

that is also commutative on {u, v}. It follows from this
same argument applied to Xi instead of Xi+1 that if fi is not commutative on some
(u, v) ∈ D2 then either c-CSP(Γ ) is NP-complete or Γ has a ternary conservative poly-
morphism pu,v that is either a majority or a minority operation on {u, v}.

LetXi+1 = Xi∪{xf(a,b), xf(b,a)}. We have only three assignments to examine for
(xf(a,b), xf(b,a)): (a, a), (b, b) and (a, b). The fourth assignment (b, a) is the projection
onto the second argument, which does not need to be tried since we are only interested in
the maximally commutative solutions to IP2c(Γ )|Xi+1

. For each of these assignments,
we build the CSP instances P1,P2,P3 by adding the constraints corresponding to the
possible assignments to (xf(a,b), xf(b,a)) to IP2c(Γ ) and enforcing 1-minimality.

For every j ∈ {1, 2, 3} and every pair {u, v} of elements in the domain ofPj|Xi+1
we

create an instance Pjuv by adding the constraint xf(u,v) = xf(v,u) to Pj and enforcing
1-minimality. Since the variables in Xi+1\Xi are ground in Pjuv , Xi is closed and Xi

contains all singleton variables, we have Xi+1 C Xi in Pjuv . By Proposition 2, fi is
a polymorphism of L(Pjuv |Xi+1

). Now, if a variable x in Pjuv |Xi+1
has domain size 2

and fi is commutative on D(x), by Lemma 3 we can assign x to fi(D(x)) without
losing the satisfiability of the instance. Once this is done, we can enforce 1-minimality
again; the polymorphisms pu′,v′ guarantee that if c-CSP(Γ ) is tractable, the remaining
instance has a conservative generalized majority-minority polymorphism and hence a
conservative 3-edge polymorphism. Using Corollary 2, we can decide if the language
of Pjuv |Xi+1

has a conservative 3-edge polymorphism. If it does not then c-CSP(Γ ) is
NP-complete, and otherwise we can decide if a solution exists in polynomial time.

At this point, for every pair (u, v) of elements in the domain of some variable in
IP2c(Γ )|Xi+1

we know if a solution to IP2c(Γ )|Xi+1
that is commutative on (u, v)

exists, except if (u, v) = (a, b). This problem can be fixed by checking if any of Pk|Xi+1

or Pn|Xi+1
has a solution, where Pk and Pn are the subproblems corresponding to the

assignments (xf(a,b), xf(b,a))← (a, a) and (xf(a,b), xf(b,a))← (b, b).
We then add the equality constraint xf(u,v) = xf(v,u) to IP2c(Γ )|Xi+1

for every
pair (u, v) (including (a, b) if applicable) such that a solution to IP2c(Γ )|Xi+1

that is
commutative on (u, v) exists. On all other pairs, we know that fi+1 must project on the
first argument, so we can ground the corresponding variables. If c-CSP(Γ ) is tractable,
then this new CSP instance P has a solution and it must be maximally commutative.



We can solve P by branching on the possible assignments to (xf(a,b), xf(b,a)) and the
usual arguments using fi, Proposition 2 and Lemma 3.

Theorem 4. There exists a polynomial-time algorithm A that, given in input a con-
straint language Γ , decides if c-CSP(Γ ) is in P or NP-complete. If c-CSP(Γ ) is in P,
then A also returns the coloured graph of Γ .

Proof. We use Proposition 5 to find in polynomial time a conservative polymorphism
f∗ of Γ that is maximally commutative if c-CSP(Γ ) is tractable. If the algorithm fails,
then we know that c-CSP(Γ ) is not tractable and the algorithm stops. Otherwise, we
label every pair {a, b} of domain elements with the colour red if f∗ is commutative on
{a, b}, and otherwise we use Proposition 4 to check if there is a conservative ternary
polymorphism that is either majority or minority on {a, b}. If a majority polymorphism
is found then we label {a, b}with yellow, else if a minority polymorphism is found then
{a, b} is blue, and otherwise we know that c-CSP(Γ ) is NP-complete. The orientation
of the red edges can be easily computed from IP2c(Γ ) using Lemma 3 and f∗.

5 Conclusion

We have shown that the dichotomy criterion for conservative CSP can be decided in
true polynomial time, without any assumption on the arity or the domain size of the in-
put constraint language. This solves an important question on the complexity of c-CSP
among the few that remain. On the way, we have also proved that classes of conser-
vative constraint languages defined by linear strong Mal’tsev conditions admitting a
semiuniform algorithm always have a tractable meta-problem. This result is a major
step towards a complete classification of meta-problems in conservative languages and
complements nicely the results of [8].

It is known that Proposition 1 does not hold in general if the linearity requirement
on the Mal’tsev condition is dropped, as semilattices are NP-hard to detect even in
conservative constraint languages despite having a uniform algorithm [11]. The same
happens if the idempotency of the Mal’tsev condition is dropped instead [8]. However,
the mystery remains if the requirement for a uniform algorithm is loosened since no
tractable idempotent strong linear Mal’tsev condition is known to have a hard meta-
problem. This prompts us to ask if our result on conservative constraint languages can
extend to the general case.

Question 1. Does there exist an idempotent strong linear Mal’tsev condition M that
has a semiuniform polynomial-time algorithm but whose meta-problem is not in P, as-
suming some likely complexity theoretic conjecture?

A negative answer would imply a uniform algorithm for constraint languages with
a Mal’tsev polymorphism, whose potential existence was discussed in [7].

Finally we believe that our algorithm, by producing the coloured graph in polyno-
mial time, would be very helpful in the design of a uniform algorithm that solves every
tractable conservative constraint language (should one exist).

Question 2. Does there exist a uniform polynomial-time algorithm for the class of all
tractable conservative constraint languages?
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