Learning Compact Representations
of Constraint Networks

Christian Bessiere, Clément Carbonnel and Areski Himeur

University of Montpellier, CNRS, LIRMM, Montpellier, France

Abstract. Passive constraint acquisition aims to learn constraint
networks from examples of solutions and non-solutions. There typi-
cally exist many constraint networks that are consistent with a given
set of examples, so the performance of an acquisition system is crit-
ically dependent on its ability to determine which network will gen-
eralize the best to unseen data. We introduce a framework for repre-
senting constraint networks in compressed form and present a novel
method for constraint acquisition. Our method learns a constraint
network that achieves a high compression ratio, with the idea that
such networks are highly structured and therefore less prone to over-
fitting. Experiments demonstrate that this approach significantly re-
duces the number of examples needed for training and achieves a
high accuracy on unseen data.

1 Introduction

Constraint programming (CP) is a powerful paradigm for solving
combinatorial problems. A significant bottleneck in the use of CP
is the modeling process itself: translating a problem into a constraint
network typically requires expertise in both the problem domain and
CP. Constraint acquisition aims to alleviate this limitation by auto-
matically learning a model. This paper focuses on passive constraint
acquisition, where the input of the learning process is a set of solu-
tions and non-solutions to the problem.

Several approaches exist for passive acquisition. Given exam-
ples (solutions and non-solutions) and a set of candidate constraints,
CONACQ.1 computes a SAT formula representing all the constraint
models consistent with the examples [2, 3]. BAYESACQ takes as
input a set of examples and a set of candidate constraints and fol-
lows a statistical approach to identify for each candidate constraint
whether or not to include it in the output model [11]. LANGUAGE-
FREE AcCQ learns from examples without a set of candidate con-
straints [4]. It computes a suitable constraint language and a consis-
tent network as part of the learning process. MODELSEEKER iden-
tifies relations from the global constraints catalog and tries to apply
them to common structures while being consistent with the given
examples [1]. The method presented in [9] produces a set of linear,
quadratic and trigonometric constraints that minimizes the number
of terms involved and is consistent with given examples.

A fundamental challenge is that given a set of examples, there of-
ten exist many possible networks that are consistent with them. Then
an important question is: which network will generalize best to un-
seen data, avoiding overfitting to the specific training examples? This
paper proposes that learning compact representations of constraint
networks, rather than unstructured lists of constraints, is key to better
generalization. We hypothesize that compact models can capture the

underlying structure of the problem more effectively than simply fit-
ting the provided examples with a classic constraint network, making
them less prone to overfitting.

We first introduce a novel representation that can capture some
structured constraint networks, which we call templates. A template
associates each variable with a set of attributes and contains a set of
rules, which can be understood as mechanisms for generating con-
straints based on these attributes. Importantly, each individual rule
has the potential to generate many constraints at once. We then de-
scribe a framework that learns a template directly from a set of ex-
amples (rather than an explicit constraint network) with a two-step
acquisition pipeline. First, a baseline acquisition method is used to
learn an initial network that is consistent with the training set but may
contain a large number of constraints. In the second step, this net-
work is refined using a heuristic of our design that computes a small
template (i.e. with few rules and attributes) capable of generating
a large sub-network that is consistent with the training set. We run
experiments on a wide array of benchmarks and show that combin-
ing the passive acquisition algorithm LANGUAGE-FREE ACQ with
our framework yields constraint networks that are more interpretable
and achieve significantly higher accuracy on unseen examples.

The notion of templates is conceptually similar to several inter-
mediate representations used in the literature, such as the rule-based
language learned using Inductive Logic Programming in [8], first-
order constraints in COUNT-CP [7], and constraint specifications in
GENCON [13]. However, a key distinction is that templates encode
all variable attributes and constraint-generating rules in the same
mathematical object. This property is critical in our setting because
we learn attributes and rules simultaneously from raw examples, us-
ing the specific structure of templates to formulate this joint learning
problem as a series of CP optimization models.

The rest of the paper is organized as follows. Section 2 provides
background definitions. Section 3 introduces templates as a means to
represent constraint networks concisely. Section 4 describes our al-
gorithm for learning templates. Section 5 details the CP models used
within our learning algorithm. Section 6 presents our experimental
evaluation. Finally, Section 7 concludes and discusses perspectives.

2 Background

Constraint programming consists in expressing a problem as a con-
straint network and finding solutions, that is, assignments of values
to all the variables so that no constraint is violated. A vocabulary is
a pair (X, D), where X is a finite set of variables and D is a finite
domain. Given a vocabulary (X, D), a constraint is a pair (R, S),
where R is a relation of arity r over D (that is, R is a subset of



D7") and S is a sequence of r variables (called the scope of the con-
straint). An assignment A : X — D satisfies a constraint (R, S) if
A[S] € R; otherwise, the assignment violates the constraint.

Definition 1 (Constraint network). A constraint network is a tuple
N = (X, D,C), where (X, D) is a vocabulary and C is a set of
constraints. An assignment A : X — D satisfies N if A satisfies all
constraints in C.

Given two constraint networks N1 = (X, D,C1) and No =
(X, D, C>) over the same vocabulary, we write N1 C N if and
only if C1 C Cs. A constraint language 1" is a set of relations over a
finite domain. The arity of I' is the maximum arity over all relations
in I'. A constraint network N is over a constraint language I if the
relation R of each constraint of NV is such that R € I'.

Given a vocabulary (X, D), an example on this vocabulary is a
pair e = (a(e), b(e)), where a(e) is an assignment, and b(e) is a
Boolean. We say that e is a positive example if b(e) is true; oth-
erwise e is a negative example. We say that a constraint network
N accepts (resp. rejects) an example e if a(e) satisfies (resp. does
not satisfy) N. A constraint network NN is consistent with a positive
(resp. negative) example e if and only if IV accepts (resp. rejects)
e. A training set E is a set of examples over a given vocabulary. A
constraint network NN is consistent with a training set E if and only
if N is consistent with every example in E. Given a training set E,
E (resp. E™) denotes the subset of all positive (resp. negative) ex-
amples of E. The constraint acquisition task is to find a constraint
network that is consistent with a given training set.

3 Compact representations of constraint networks

In this section, we introduce a new compact representation of con-
straint networks and generalize the constraint acquisition task with
this new representation. Our representation is based on the obser-
vation that many constraint networks can be efficiently represented
using a rule-based formalism, where variables are labeled with at-
tributes and constraints are applied to sequences of variables if and
only if their attributes follow certain rules. For example, attributes
may correspond to coordinates in a matrix (as in the usual constraint
programming model of Sudoku) or specify the type of a variable
(day, teacher, room, etc.). In our framework, an attribute is simply
a mapping that assigns natural numbers to variables.

Definition 2 (Attribute). Given a set of variables X, an attribute ¢
over X is a function ¢ : X — N.

The width of an attribute ¢ is the maximum value of its range
and is denoted by w(¢). Given a sequence of attributes & =
(¢1,-..,0m) over X, we denote w(®) = (w(p1),...,w(Pm)).
Given a constant w € N, we denote w™ the attribute ¢ such that
Yz € X, ¢(z) = w.

Definition 3 (Rule). Given a set of variables X and a sequence
of attributes ® = (¢1,...,dm) over X, a rule over ® is a triple
(R, J, f) where R is a relation of arity r, J is a sequence of pairs
(4, k) from {1,...,m} x {1,...,r} called the selector, and f is
a function f : NV — {0,1} called the trigger. Given a scope
S = (x1,...,x,) € X" without repetition, we say that the con-
straint (R, S) is produced by the rule iff f((¢:(S[k]))¢,k)es) = L.

For clarity, we will slightly abuse notation by writing selectors for
a given scope (z1, T2, ...) as (¢, xy) instead of (¢, k) to make ex-
plicit which attribute and which variable are being referenced. Intu-
itively, a rule (R, J, f) acts as a conditional generator of constraints:

it specifies when a relation R should be applied to a scope of vari-
ables. The sequence J selects which attribute-variable pairs to ex-
amine, and the trigger function f determines whether the constraint
should be produced based on the selected attributes and variables.

Definition 4 (Template). A template T is a quadruple (X, D, ®, P)
where X is a set of variables over the domain D, ® is a sequence of
attributes and P is a set of rules.

We denote P(7T') the set of rules of a template 7. The interpre-
tation of a template T = (X, D, ®, P) denoted N(T') is the con-
straint network (X, D, C) such that (R, S) € C iff (R, S) is pro-
duced by a rule in P. The interpretation of a specific rule (R, J, f)
within a template 7" is denoted N(T', (R, J, f)) and is defined as
N((X,D,®,{(R,J, [)})). We denote T' + (R, J, f) the template
obtained by adding the rule (R, J, f) to T', and we denote T" + ¢ the
template obtained by adding the attribute ¢ at the end of the sequence
of attributes of 7.

Example 1. Let us consider a basic constraint network for the Su-
doku problem with 81 variables X = {z; ; | 4,5 € [1, 9]} of domain
D = [1,9]. The constraints impose that every pair of variables in the
same row (that is, sharing the same index %), same column (same in-
dex 7) or 3 x 3 square must be different. This network has a very
concise representation as a template.

First, we define three attributes for each cell variable x: its row
index ¢;, its column index ¢, and its square index ¢3. All three
attributes range from 1 to 9. Let # be the not-equal relation. We
can generate all constraints with three simple rules, each applying to
distinct pairs of variables (., T, ).

Row Rule: (#, ((61, ), (61,%0)), f) with f(a,b) =1 a =
b. The selector ((¢1,w), (¢1,Tv)) indicates we compare the first
attribute (row) of both variables (i.e. ¢1 () and ¢1(zy)). The trig-
ger function f returns true iff the two observed attributes are equal.
This rule produces the constraint (#, (2w, ©v)) iff 2, and z, belong
to the same row.

Column Rule: (#, ((¢2,%w), (¢2,2v)), f), where the trigger
function f is the same as the row rule. This rule produces the con-
straint (#, (zw, zv)) iff 2, and z, belong to the same column.

Square Rule: (#, ((¢3,xw), (¢3,2v)), f), again with the same
trigger function f. This rule produces the constraint (#, (Zw, Zv))
iff z,, and z,, belong to the same 3 X 3 square.

Thus, a template with just three attributes and three rules is
sufficient to generate the entire Sudoku constraint network. This
representation of the Sudoku model as a template is not unique.
For example, an alternative template would only contain the first
two attributes (row and column) but use a more intricate trigger
for the third rule: f3(ri,r2,c1,c2) = 1 & ([(r1—1)/3] =
[(re —1)/3])A(l(c1 — 1)/3] = [(c2 — 1)/3]) with selector J3 =
(((blv l’u), (‘bla xv)7 (¢27 Iu)((b?v xv))

As Example 1 illustrates, multiple templates can represent the
same constraint network. If only the attribute values change, we say
that the templates are equivalent.

Definition 5 (Template equivalence). Two templates Tv =

(X,D,®1,P1) and T> = (X, D, ®2, P>) are equivalent, denoted

Tl = Tg, lff

o P, = P; (identical rules),;

o w(P1) = w(P2) (identical attribute widths);

® V(R> J, f) € Pi,N(1I1, (R7 J, f)) = N(Tz, (Rv J, f)) (each
rule produces identical constraints).



For instance, permuting the row indices in the first template of
Example 1 will always result in an equivalent template.

We now extend constraint acquisition to template-based represen-
tations. A template 7" is consistent with a set of examples F if its in-
terpretation N (7T") is consistent with . Given a training set £/ over a
vocabulary (X, D), the task of constraint acquisition using templates
is to learn a template that is consistent with E. Note that learning a
template requires learning not only rules, but also attributes.

In general, there always exists a template consistent with any given
training set. However, some of these templates are clearly unsatisfac-
tory from a practical point of view; for example, the template might
contain as many rules as there are constraints in its interpretation.
Instead, we will try to learn templates that are fairly compact (in par-
ticular, we impose that each rule produces a significant fraction of
the constraints) and that rely on trigger functions with interpretable
semantics (e.g. based on integer comparisons and other basic arith-
metical relations). We present our approach in the next section.

4 Learning templates

Given a training set F over a vocabulary (X, D), our goal is to find
a template 7" that is consistent with E. We propose a two-step ap-
proach. First, we use a constraint acquisition method that tends to
learn very dense networks to learn an initial constraint network N
consistent with E. Second, we learn a template consistent with E
whose interpretation is a subset of the network NV learned in the first
step. This section details the algorithm for this second step.

4.1 Overview

Our algorithm takes three inputs: a training set £/, an initial constraint
network N consistent with £ and a trigger language A. The network
N must be consistent with the training set £ and provides a super-
set of constraints from which the template will be constructed. The
trigger language A is a set of functions that can be used as triggers
in the rules. Algorithm 1 describes our algorithm for learning a tem-
plate. It starts with an empty template (line 1) and greedily learns
new attributes and rules (lines 3-10) until the interpretation of the
template is consistent with the training set. The process to add new
rules (SaturateWithNewRules) to the template is described in
Section 4.2 and the process to guess a suitable width for a new at-
tribute (GuessAtiributeWidth) is described in Section 4.3.

Bear in mind that we aim to learn highly compact templates, i.e.,
templates that produce many constraints using few attributes and
rules. For this reason, we do not allow the addition of arbitrary rules
or attributes. Instead, we define a set of admissible new rules (Sec-
tion 4.2) and a heuristic to determine a suitable width for new at-
tributes (Section 4.3). We use a parameter « that controls the min-
imum number of new constraints that must be produced by a new
rule and update it dynamically to allow the search to explore more
complex templates as needed. In each iteration of the loop, the algo-
rithm adds a new attribute if a suitable one exists (line 6). Whenever
anew attribute is added, the algorithm updates the template with new
rules greedily until it is no longer possible to find a new admissible
rule (line 7). The algorithm then checks if the interpretation of the
template is consistent with the training set £ (line 8). If the template
is not consistent with F, the parameter « is decreased (line 9). The
algorithm then attempts to update the template with admissible rules
again (line 10). If 7' is still not consistent with E, the algorithm goes
into the next iteration of the main loop; otherwise, the termination
condition is met and the algorithm returns 7" (line 11).

Algorithm 1: Learning a template

Input: A training set E'; a constraint network
N = (X, D, C) consistent with F; a set of triggers A.
Output: A template 7" such that N(7') C C and N(T) is
consistent with F.

1T+ (X7D7®7®),
2 a+0.3;
3 while N (T) is not consistent with E do

4 w < GuessAttributeWidth(T, N, A, «);

5 if w > 0 then

6 T« T+ (w*)™;

7 T + SaturateWithNewRules(T, N, A, a);
8 if N(T) is not consistent with E then

9 a+— ax0.9;

10 T + SaturateWithNewRules(T, N, A, a);
11 return 7';

4.2 The procedure SaturateWithNewRules

To promote compactness and ensure correctness, we only accept ad-
missible rules that produce more than a given number of new con-
straints.

Definition 6 (Admissible rules). Given a template 'T', a constraint

network N = (X, D, C), a set of triggers A, and a real lb, the set

Adm(T, N, A, 1b) consists of all rules (R, J, f) such that:

o f € A: the trigger f is a member of the set of triggers \;

e N(T,(R,J, f)) C C: constraints produced by the rule are in C;

o |[N(T,(R,J, f))\ N(T')| > lb: the rule produces more than b
new constraints.

If we restrict the algorithm to add rules to the current template
without flexibility, this prevents the discovery of certain rules that
could become admissible with different attribute value assignments.
To illustrate this limitation, consider a timetabling problem where
an attribute representing days is learned first. Initially, days might
be assigned arbitrary numerical values (e.g., Dayl = 3, Day2 =
1, Day3 = 2) based on a rule that only requires variables to be
scheduled on the same day. If we later need to add a rule requiring
constraints between consecutive days (Dayl before Day2, Day2
before Day3), the arbitrary initial numbering would make this rule
inadmissible. To overcome this, we consider all admissible rules that
can be added to any equivalent template (Definition 5) and formalize
it through the concept of admissible rules modulo equivalence.

Definition 7 (Admissible rules modulo equivalence). Given a tem-
plate T, a constraint network N, a set of triggers A, and a threshold
Ib, AdmEq(T, N, A, 1b) is the set of tuples (T', R, J, f) such that
T =Tand (R, J, f) € Adm(T’, N, A, 1b)

Algorithm 2 describes how we add rules to a template 7. It iter-
atively adds admissible rules modulo equivalence that produce the
maximum number of new constraints, replacing at each iteration the
template with an equivalent one if needed. The minimum number
of new constraints [b required for a rule to be admissible is defined
as lb = a x |N(T)|/|P(T)| (with |N(T)| the number of con-
straints in the interpretation of 7" and |P(T")| the number of rules
in T') when |P(T)| > 0, and [b = 0 otherwise. This threshold en-
sures that the new rule achieves a compression ratio comparable to
the average of existing rules in the template. We recall that « is up-
dated dynamically in the main algorithm (Algorithm 1) to relax the



threshold for admissibility when the template is not consistent with
the training set. Algorithm SaturateWithNewRules terminates
when no admissible rule can be added to the template, i.e., when
AdmEq(T, N, A, 1b) = 0.

Algorithm 2: SaturateWithNewRules(T, N, A, a):

Input: A template 7'; A constraint network N = (X, D, C);
a set of triggers A; areal a.
Output: An updated template with new rules added.

IN(TY| .
1b < a X s ey

2 while AdmFEq(T, N, A, 1b) # 0 do
3 (T/7 R? J7 f) %

argmax
(T',R,J, )

€AdmEq(T,N,A,lb)

4 | T+ T + (R, J,f);
IN(T)]| .
[P(T)|>

(M@ + (R, 4, )] = IN(T)]):

5 Ib <+ a X

6 return 7’

4.3 The procedure GuessAttributeWidth

In each iteration of the main loop, Algorithm 1 attempts to add a new
attribute to the template. When adding this attribute, a key difficulty
is to find a suitable width w™ that balances the need for expressive-
ness with the goal of keeping the template compact. In our algorithm,
we set the possible widths to be 0 < w < |X|. Let cov(w, T, N, A)
denote the maximum number of constraints that can be newly pro-
duced by a new rule when adding an attribute of width at most w:

max (IN@"+ (R, .1 - IN(T)))
(T',R,J,f)€Adm Eq((T+(w')X),N,A,0)

For notational clarity, in the following discussion we omit the pa-
rameters 7', N, and A from the function notation of cov(w, T, N, A)
as they are fixed during the process of adding an attribute, i.e.,
cov(w) = cov(w, T, N, A). As w grows from 0 to | X | — 1, the func-
tion cov(w) is non-decreasing but will typically grow in a non-linear
fashion. Assuming the data contains a hidden feature, we may expect
that cov(w) grows quickly as w approaches the width of that feature
and slowly afterwards. We propose the maximum cover above ex-
pectation (MCAE) as a heuristic criterion for determining when that
happens. For 0 < w < | X], let covi;n (w) denote the approximation
of cov(w) obtained by linear interpolation between 0 and | X |—1, i.e.
covyin (w) = cov(0)+w- (cov(|X|—1)—cov(0))/(|X|—1).If cov
grows unexpectedly fast when approaching a value w’ and slowly be-
tween w’ + 1 and | X | — 1, then the gap cov(w’) — coviin (w’) will be
large. Therefore, if we return w* = arg max(cov(w) — coviin(w)),
we have an increased chance of returning the domain size of a hidden
feature.

In order to make progress, we impose that a new attribute makes
it possible to add at least one new admissible rule. This translates
into a constraint cov(w™) > b, with [b being the lower bound on
the number of new constraints produced by a rule described in the
previous section. Computing the optimum value w™ for the above
criterion requires solving three optimization problems: two for com-
puting cov(0) and cov(]X| — 1) and then one for computing w*. In
order to avoid computing cov(0) we crudely approximate it with 0.
The complete procedure to compute the optimum width w™ is de-
scribed in Algorithm 3.

Algorithm 3: GuessAttributeWidth(T, N, A, «)

Input: A template T; a constraint network N = (X, D, C); a
set of triggers A; a real .
Output: The optimal width w™ for a new attribute, or —1 if
no admissible attribute exists.

1 COUmaz < cov(|X| —1,T,N,A);
[N(T)|

2 Ib < a X TR
3 if covmaz > (b then
4 w*
argmax (cov(w7 T,N,A) — ‘X‘%l . COUmaz);
0<w<|X|
cov(w,T,N,A)>lb
5 return w*;
6 return —1;

4.4 Termination and correctness

For any integer r > 1, let fi,. : N — {0,1} be the function
given by fr..(a1,az2,...,ar) =1 (a1 +1=a2)A(az+1=
ag) N+ A(ar—1+1 = a,). Wecall fl,. the successor function of
arity r.

Proposition 1. Algorithm 1 is guaranteed to terminate and return
a template consistent with E if fl,. is in A for all v such that N
contains a constraint of arity r, and N contains at least rmaz + 2
variables with ry,qq the maximum arity of a constraint in N.

Proof. Correctness is immediate as Algorithm 1 can only exit (or
skip) the main loop if N(7') is consistent with E.

For termination, the loop in Algorithm 2 can only iterate at most
|C| times in total (where C'is the set of constraints in N) because
an admissible rule must produce at least one new constraint in V.
In addition, the parameter « strictly decreases at each iteration of
the main loop. Eventually, any rule producing at least one constraint
from N \ N(T') becomes admissible.

Consider a constraint (R, (z1,...,z,)) of arity 7 in N but not al-
ready in N (7). We show that a rule producing only this constraint al-
ways exists provided A contains the successor function of arity r and
a new attribute ¢; of width r 41 can be introduced at line 6 (which is
guaranteed by our assumption that | X | > r+2). We set ¢;(z1) = 0,
o¢i(z2) =1,...,¢i(xr) =r—1,and ¢;(y) = r+1 for all other vari-
ables y. The rule (R, ((¢i,x1), (¢i,22), ..., (¢:,%r)), fiue) pPro-
duces (R, (z1, ..., x,)) and no other constraint.

It follows from the argument above that each iteration of the main
loop of Algorithm 1 will add at least one new constraint to N (T)
once the threshold becomes strictly below 1. Together with the in-
variant N(7') C N and the fact that N is consistent with F, this
implies that N (T") will eventually be consistent with E as well. At
this point, the algorithm will exit the main loop and return 7. O

5 Model

This section details the CP models used to solve the optimization
subproblems of our learning algorithm: finding an optimal new at-
tribute width (line 4 of Algorithm 3) and the most impactful new rule
(line 3 of Algorithm 2).

Our models assume that the trigger language A is composed of
all functions expressible as the conjunction of two elementary bi-
nary Boolean functions taken from a base set A’. (This is the set-
ting we chose for our experiments, see Section 6 for more details.)



We represent a rule over A as a tuple (R, Ji, f1, J2, f2), where

fi, f2 € A’ and Jy, Jo are the attribute selectors for f1 and fo,

respectively. The rule produces a constraint (R,.S) if both trigger
functions evaluate to true, i.e., iff f1((#:(S[k])),k)es,) = 1 and

Fo(6:(STR) sy ss) = 1.

The CP model searches for a rule of this kind and (optionally) a
new attribute ¢new. For the remainder of the section, let:

e T =(X,D,®, F) be the current template with ® the set of exist-
ing attributes and F’ the set of existing rules;

e N = (X,D,C) be the initial constraint network (over a con-
straint language ") learned by the baseline constraint acquisition
method;

e A’ be the language allowed for the trigger functions fi, f2 in a
rule;

e 7 be the set of all possible attribute selectors J =
((¢1, k1), (32, k2)) using attributes from ® U {¢new };

e (' be the set of constraints from the initial network N that are
not yet produced by the current template 7';

e C_ be the set of constraints (R',S) (where S € X", R' € T of
arity 7) such that (R’,S) ¢ C. This is the set of constraints that
must not be produced by any rule.

The variables of the model are:

e Attribute values: For each variable x € X:

— For each existing attribute ¢; € ®, an integer variable v ;

representing ¢; (x) of domain [0, w(¢;)].

— For the new attribute ¢new, an integer variable v, new represent-

ing ¢new(z) of domain [0, n — 1].

e New attribute width: An integer variable d representing the width
of the new attribute ¢new. We set d € [0,n — 1] with n the to-
tal number of variables in the network /N. We add constraints to
ensure vz new < d for each variable x € X.

e New rule: Boolean variables to define the new rule
(Rv Jl?fh JQ:fQ):

- Xgr(R') foreach R’ € T}

- Xp1(f), Xpa(f) foreach f € A';

- Xj1(J), Xy2(J) foreach J € J.

We ensure that exactly one variable is true in each group (e.g.,

ZR’GF XR(R,) = 1). We denote selectedJl(R'7 Jl, fl) =

Xr(R') A X51(f1) A Xg1(J1) and selected o (R, Jo, f2) =

Xr(R') A Xg2(f2) A Xs2(J2) that indicate which rule is cur-

rently selected for each possible (R', J1, f1) € I' x A’ x J and

(R/,Jz,fz) el x A x J.

e Constraints produced: For each target constraint (R, S) € C, a
Boolean variable c(r,s) indicating whether the new rule produces
this constraint.

We also define a helper predicate trigger(S,J) which eval-
uates to true iff ¢(¢i, (S[k1]),. .., ¢ (S[ke])), where J =
((41,k1), ..., (i, ke)) and the attribute values ¢;, (S[kz]) corre-
spond to the value of vs(x,],i, -

New constraints produced For each (R', S) € Cy, we force that
¢(r,s) 1s true iff the new rule produces the constraint (R’, S). For
each rule part (J, f) € A’ x J:

C(R!,S) = —selected i (R, J, f) V trigger(S, J, f)
C(R!,S) = —selected 2 (R, J, f) V trigger(S, J, f)

We do not have to ensure the opposite direction of the implication
because it will be implicitly enforced by the maximization objectives
(described below).

Forbidden constraints For each forbidden constraint (R, S) €
C_ we introduce a corresponding boolean variable ¢(r/ gy. Then,
for each rule part (J, f) € J x A’ we ensure that:

—selected 1 (R, J, f) V —trigger(S, J, ) V t(rr.s)
—selected 2 (R, J, f) V —trigger(S, J, ) V —t(rs.s)

Existing rules For each existing rule (R, Ji, f1, J2, f2) € F,
and for every scope S with arity matching R we ensure that
trigger(S, Ji, f1)Atrigger(S, Jz, f2) is trueif (R, S) is produced
by the rule in the initial 7" and false otherwise.

Threshold and objective function As described in Section 4.2,
we only seek solutions in which the new rule produces a minimum
number of new constraints. Given the current value of o, we add:

> ews) > ax |[N(T)|/|F
(R',S)eC

The MCAE heuristic involves two optimization phases using this
CP model. During the first phase, we compute the maximum number
cov(n — 1) of new constraints that can be produced if the width of
the new attribute is at most n — 1. This is done by maximizing

> s

(R',S)eC

without additional constraints. During the second phase, we compute
the width w™ for the new attribute that maximizes the MCAE crite-
rion. For this, we use the value cov(n — 1) calculated in the first
phase and maximize

d
Z crs) | =g -cov(n — 1).
(R/,5)€C,

The solution to this second CP model yields the optimal width
d = w", the variable-value assignments for the new attribute @new
(and potentially updated values for ¢; € ®), and the description of
an admissible rule that produces that maximum number of new con-
straints.

The CP model can be readily adapted for the task of adding a new
rule without introducing a new attribute (line 3 of Algorithm 2). This
is achieved by removing all variables and constraints related to @pew
and using the objective function of the first phase (maximization of
newly produced constraints).

6 Experimental evaluation

In this section, we evaluate our method that we call TACQ (which
includes both Algorithm 1 and the baseline acquisition method used
to learn the initial network V) experimentally on several benchmark
problems. For each benchmark, we will compare the classification
accuracy of the interpretation of the template learned by TACQ and
that of the network learned by the baseline acquisition method. We
will then dive deeper into the details, using the nurse rostering prob-
lem as an example, to assess the effectiveness of MCAE for deter-
mining attribute widths and examine the structure of the template
learned by TACQ.

As the method used to generate the initial network N, we could
use any constraint acquisition method, such as CONACQ.1 [2, 3]
(with the most specific network it suggests) or BAYESACQ [11].
We chose to use LANGUAGE-FREE AcCQ (LFA) [4] because it



only needs a training set as input, whereas both CONACQ.1 and
BAYESACQ require background knowledge in the form of a con-
straint language. This allows our full framework to only need a train-
ing set and a trigger language as input. Since our template acqui-
sition algorithm acts as a refinement step over the output of LFA,
we will use LFA as baseline for comparison. We fix the trigger lan-
guage A to be the set of all trigger functions that can be expressed
as conjunctions of two binary Boolean functions taken from the set
{f1, f=, fz, f<, f<, f2.c}, where fi is the constant binary function
that always returns 1, fr(z,y) = 1iff Ry for R € {=,#,<, <},
and f2,. is the successor function defined in Section 4.4.

We have implemented the framework described in Section 4 as
well as the LFA algorithm in the Python programming language.
The underlying CP solver is Google OR-Tools [10]. All experiments
were conducted on an AMD Epyc 9554 processor (utilizing 8 cores
per run) and 16GB of RAM.

6.1 Benchmark problems

For each benchmark instance, unless otherwise mentioned, we gen-
erated independently a training and a test set. The solutions are gen-
erated by finding solutions to a constraint network representing the
target concept using a CP solver with a randomized value selection
strategy. Negative examples are generated from solutions, with half
of the negative examples created by randomly permuting the values
assigned to two variables in a solution. The other half was created by
randomly altering the value assigned to a single variable in a solu-
tion. All the benchmarks used in the experimental evaluation of the
baseline method LFA [4] (Sudoku, Jigsaw Sudoku, Schur’s Lemma,
Subgraph Isomorphism, N-Queens and Golomb Ruler) are included
in our benchmarks, with identical parameters.

Sudoku The problem involves filling a 9 x 9 grid with digits from
1 to 9 such that each row, column, and 3 x 3 square contains all the
digits exactly once. The variables are the 81 cells of the grid with
domain the digits from 1 to 9. The constraints are that each pair of
variables in the same row, column, and 3 X 3 square must be different.

Jigsaw Sudoku This problem is the same as Sudoku, but instead
of the standard 3 x 3 squares, the grid is divided into irregular shapes,
called jigsaw pieces. The variables are the cells of the grid with do-
main the digits from 1 to 9. The constraints are that each pair of vari-
ables in the same row, column, and jigsaw piece must be different.
There exists significant variance in experimental results depending
on the shape of the jigsaw pieces. To reflect this, we used the three
different layouts ([#1], [#2] and [#3]) from [4].

Schur’s Lemma The Schur’s Lemma problem consists of putting
n balls labeled from 1 to n into 3 boxes such that for any triple of
balls (x,y, z) such that x + y = z, not all three balls are in the
same box. The variables {x1, ..., %, } are the n balls with domain
{1, 2, 3}. The constraints are Not All Equal(x;, zj, i) forall i, j, k
such that 7 + j = k. We ran experiments on this problem with n = 9
which is the parameter with the highest number of solutions (546).

Subgraph Isomorphism Given two graphs G and H, the subgraph
isomorphism problem involves determining whether G contains a
subgraph that is isomorphic to H. For this problem, the target con-
straint network consists of | H| variables 1, . . . , x,, with domains of
size |G|. Binary constraints z; # x; for all 4, j ensure that the map-
ping between the vertices of H and G is a one-to-one function. Ad-
ditionally, another binary constraint ensures that for any edge (a, b)
in H, the pair (x4, ) is an edge in G. In our experiments, H is a
cycle of size 5 and G is a random graph with 20 vertices and 100

edges. For this benchmark, negative examples are generated as paths
and closed walks of G computed using a randomized value selection.

N-Queens (coordinate-based) The N-Queens problem involves
placing N queens on an N X N chessboard such that no two queens
threaten each other according to chess rules. We employ the stan-
dard coordinate-based representation with one variable per column.
The constraint network consists of N variables x1, . .., T,, Where x;
represents the row position of the queen in the sth column. Each vari-
able has domain {1, ..., N}. Forall 4, j where ¢ # j, the constraints
are x; # x; (ensuring that no two queens share the same row) and
|z; — xj| # |i — j| (ensuring no diagonal attacks). This formula-
tion yields a binary constraint language of size IV, corresponding to
the possible diagonal distance values. Our experiments used N = 8,
which produces a problem with 92 distinct solutions. For training
data, positive examples were generated by computing random solu-
tions to the constraint network out of the 92 possible solutions.

Golomb Ruler The Golomb Ruler problem involves finding a set
of marks on a ruler such that the difference between any two marks
is unique. The target constraint network consists of n variables, each
representing the position of a mark on the ruler, with domains of
fixed size {0, ..., m}. The network includes a quaternary constraint
|z; — ;] # |k — x| forall ¢ < j and k < [. For our experiments,
we use n = 10 and m = 60. Positive examples are generated by
computing a random solution of the target constraint network with
the symmetry-breaking constraint x; < z; for all 7+ < j, followed
by randomly permuting the values of this solution. For this bench-
mark, non-solutions are generated by randomly altering one value in
a solution.

Exam Timetabling This problem (used as a benchmark in [14,
15, 12, 13]) involves scheduling exams for a set of courses across
multiple semesters within a specified period, with the goal of assign-
ing each course to a unique timeslot while adhering to specific con-
straints. An instance of the problem is defined by five parameters: s
the number of semesters, n the courses per semester, ¢ the timeslots
per day, d the number of days and r the number of rooms. The vari-
ables are the s X n courses with domain the ¢ X d X r timeslots. The
constraints are that each course must be assigned to a unique times-
lot and that courses from the same semester must be scheduled on
different days to avoid conflicts.

[#1] 3 semesters and 2 courses with 3 days, 2 slots and 1 room;
[#2] 4 semesters and 3 courses with 3 days, 2 slots and 2 rooms;
[#3] 5 semesters and 4 courses with 5 days, 2 slots and 2 rooms.

Nurse Rostering This problem is used in [12, 13] and also present
in [7, 6] with slight differences. It involves scheduling nurses for a
set of shifts over a specified period, with the goal of assigning each
shift to a nurse while adhering to specific constraints. An instance of
the problem is defined by three parameters: n the number of nurses,
s the number of shifts per day, k£ the number of slots per shift and d
the number of days. The variables are the k X s x d slots with domain
the n nurses. The constraints are that no two slots of the same day
are assigned the same nurse and slots in the last shift of a day and the
first shift of the next day cannot be assigned the same nurse. For this
problem, we have selected three instances with different parameter
configurations.

[#1] 4 days, 2 shifts and 4 nurses per shift with 12 nurses;

[#2] 5 days, 3 shifts and 5 nurses per shift with 18 nurses;

[#3] 7 days, 3 shifts and 3 nurses per shift with 15 nurses.

All benchmark instances can be modeled with constraints of ar-
ity at most 3 (even Golomb Ruler with n = 10, as shown in [4]).
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Figure 1: Accuracy over independently generated examples of the network learned by LANGUAGE-FREE AcQ [LFA] and with our method
[TACQ] as a function of the number of examples in the training set. We circle the points where the template found is equivalent to the target.

The LFA algorithm, which generates the initial network N, priori-
tizes learning lower arity constraints so N also meets this maximum
arity. Our trigger language A includes the successor function f2,.,
and f3,.. can be expressed by a conjunction of two binary successor
functions. As a result, the conditions of Proposition 1 are satisfied,
guaranteeing termination in our experiments.

6.2 Accuracy and equivalence

Protocol For each benchmark instance, we executed both LFA and
our method TACQ. The performance of a model is measured in terms
of its accuracy, which is computed on a separate set of 2000 examples
generated independently. All training and test sets contain an equal
number of positive and negative examples. We conduct a series of ex-
periments with increasing numbers of examples in the training sets,
systematically selected within an interval such that the upper bound
allows LFA to achieve 100% accuracy or run out of solutions for
the training set. We also record for each instance whether the learned
network is equivalent to the model used for data generation. We set
a timeout of 3 hours for each call to the CP solver.'

Accuracy A summary comparing the learning curves of TACQ
and LFA for representative benchmarks is shown in Figure 1. We
omit the smallest instances of Exam Timetabling and Nurse Roster-
ing from the figure due to space constraints. We also omit Schur’s
Lemma, Subgraph Isomorphism, N-Queens and Golomb Ruler as the
accuracy curves of both LFA and TACQ are exactly the same.

We observe that our method consistently yields accuracy results
that are either equivalent or superior to those of LFA across all exper-
iments. For Sudoku, TACQ achieves 100% accuracy for all runs with
at least 80 examples in the training set, whereas LFA requires 120
examples. Across the Jigsaw Sudoku instances, TACQ required on
average 25% fewer examples than LFA to consistently reach 100%
accuracy. For Nurse Rostering, TACQ reduced the required number

1 Complete results, code and data of the experiments are available online [5]

of examples by 21% on average. For the Exam Timetabling bench-
mark, the average reduction was 41%, peaking at 80% for the in-
stance [#2].

Several benchmarks (Schur’s Lemma, Subgraph Isomorphism,
N-Queens, Golomb Ruler) have identical accuracy progression for
both TAcQ and LFA. Concerning the Subgraph Isomorphism, N-
Queens and Golomb Ruler, this occurs primarily because LFA fails
to learn a constraint network over the same language as the target
model. As TACQ learns a template whose interpretation is a sub-
set of the network NN provided by LFA, no fundamental improve-
ment is possible in this case. For Schur’s Lemma, the natural tem-
plate representation of the target model (a single rule that produces
NotAllEqual(zi, yj, z) iff « + 7 = k) is not expressible with our
trigger language. This causes TACQ to learn many rules that over-
fit the initial network NN returned by LFA. To summarize, if we ig-
nore the 8-Queens problem where 100% accuracy is never reached
by neither LFA nor TACQ, we need on average over all benchmark
instances 22% fewer examples than LFA to consistently learn a net-
work with 100% accuracy.

Equivalence and runtimes The learned model is equivalent to
the target model for all experiments where TACQ reached 100%
accuracy, with the exception of the Jigsaw Sudoku benchmark. In
these three instances, TACQ fails to consistently learn an equivalent
model. Only 6 out of the 13 templates achieving 100% accuracy had
their interpretation equivalent to the target network. We believe this
behavior is caused by two distinct factors. First, we use a biased
training set, as row and column constraints are sufficient to reject
all negative examples. This bias occasionally causes the main loop
of Algorithm 1 to exit early, with 100% accuracy achieved but not
equivalence. Second, the model learned by LFA in the first step
contains a large number of redundant constraints. This makes the
constraint optimization models for new rules and attributes more
difficult to solve, with OR-Tools frequently reaching the timeout and
failing to consistently return an optimal solution.



Benchmark | E| LFA TACQ
Sudoku 80 Im 15h 32m 9s
Jigsaw [#1] 400 39s 31h 36m 27s
Jigsaw [#2] 240 46s 27h 20m 9s
Jigsaw [#3] 490 41s 33h 54m 58s
Schur’s Lemma 560 4s 1h 45m 4s
Subgraph Isomorphism 640 12s 19s
8-Queens 184 10s 1m 22s
Golomb ruler 2100  3m 59s 2h 42m 20s
Exam Timetabling [#1] 119 Is 2s
Exam Timetabling [#2] 300 22s 27s
Exam Timetabling [#3] 500 4m 24s 4m 43s
Nurse Rostering [#1] 100 37s 21m 11s
Nurse Rostering [#2] 280 S5m 12s 9h 51m 51s
Nurse Rostering [#3] 210 33s 2h 11m 21s

Table 1: Comparison of runtimes for LFA and TAcQ. Runtimes for
TACQ include the time taken by LFA to learn the initial network N.

More generally, we noted that TACQ is significantly slower than
LFA on all benchmarks except Exam Timetabling, sometimes by or-
ders of magnitude as illustrated in Table 1. This is not surprising be-
cause TACQ solves multiple difficult optimization problems as part
of the learning process. This makes TACQ most suited for applica-
tions where examples are scarce (or costly to obtain) and learning
can be done off-line.

6.3 Learned attributes

A key component of our template learning algorithm is the MCAE
heuristic, which we use to determine the width of a new attribute.
This heuristic aims to find a width that balances maximizing the po-
tential for new rules to produce constraints against the risk of overfit-
ting introduced by a large attribute domain. To illustrate the behavior
and effectiveness of MCAE, we analyze its application during the
learning process for the instance [#3] of Nurse Rostering (7 days, 3
shifts and 3 nurses per shift with 15 nurses) with 210 examples in
the training set. In this setting, our algorithm learns two attributes
¢1, ¢2 and two rules. For each attribute, Figure 2 shows the value
of cov(w) (defined as the maximum number of new constraints that
can be produced by a rule when the new attribute has width w) and
the value of the MCAE objective function for each potential width
w. Our algorithm selects the width w™ that maximizes the MCAE
objective.

Attribute ¢ The function cov increases stepwise, with minor
gains at widths 3 and 5, followed by a very sharp increase at width
w = 6, where 252 new constraints can be produced. For w > 6, cov
plateaus completely until w = 62 which corresponds to the maxi-
mum width possible (the graph stops at 20 for brevity). The MCAE
objective function reaches a global maximum at w = 6, a width that
matches a hidden feature in the data (the number of days). This width
corresponds to the 7 days in the problem data, as the attribute values
are indexed from O to 6.

Attribute ¢ For the second attribute, cov increases rapidly be-
tween w = 0 and w = 3, reaching 54 new constraints produced.
Beyond w = 3, the coverage enters a long plateau, remaining at 54
until w = 6. A very small increase occurs at w = 7, where the
maximum observed coverage reaches 55 constraints, after which it
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Figure 2: Evolution of cov(w) and value of the MCAE objective
function depending on the width of the first and second attributes
for the instance [#3] of Nurse Rostering.

plateaus again until w = 62 (i.e. n — 1). The MCAE heuristic cor-
rectly identifies the smallest attribute width w = 3 that enables the
creation of a rule producing all the constraints in the target model
missing from the interpretation of the template.

We could observe from the learned template that the first attribute
¢1 correctly partitions the slots into seven days (numbered from 6
to 0, hence corresponding to a width of 6). Similarly, the second
attribute ¢ groups the slots within each day into numbered shifts
such that the last shift of a day is equal to the first shift of the next
day plus one. The two rules learned on these attributes correspond
respectively to “no nurse can be assigned to two slots on the same
day” and “no nurse can be assigned to the last shift of a day and
the first shift of the next day”. These interpretations can be directly
recovered from the trigger functions of each rule.

7 Conclusion

We introduced templates, a compact representation of constraint net-
works, to capture recurring structures within CP models. We devel-
oped a novel framework for constraint acquisition that learns tem-
plates, optimizing for a high compression ratio. Our experiments val-
idate this approach. On various structured benchmarks (Sudoku, Jig-
saw Sudoku, Nurse Rostering, and Exam Timetabling), our method
significantly reduced the number of training examples needed to
achieve high accuracy compared to the baseline LANGUAGE-FREE
AcQ (LFA) algorithm. Furthermore, as seen in the Nurse Rostering
example, the learned templates can be highly interpretable.

A promising research direction is to investigate how these inter-
pretable rules can be leveraged to learn parameterized CP models,
which can generalize to different instances of the same problem. Ex-
periments also highlight that our method does not improve upon LFA
for certain benchmarks; we believe that this limitation can be allevi-
ated by integrating background knowledge (e.g. known variable at-
tributes or information on the target constraint language).
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