
On Redundancy in Constraint Satisfaction
Problems
Clément Carbonnel # Ñ

CNRS, LIRMM, University of Montpellier, France

Abstract
A constraint language Γ has non-redundancy f(n) if every instance of CSP(Γ) with n variables
contains at most f(n) non-redundant constraints. If Γ has maximum arity r then it has non-
redundancy O(nr), but there are notable examples for which this upper bound is far from the best
possible. In general, the non-redundancy of constraint languages is poorly understood and little is
known beyond the trivial bounds Ω(n) and O(nr).

In this paper, we introduce an elementary algebraic framework dedicated to the analysis of the
non-redundancy of constraint languages. This framework relates redundancy-preserving reductions
between constraint languages to closure operators known as pattern partial polymorphisms, which
can be interpreted as generic mechanisms to generate redundant constraints in CSP instances. We
illustrate the power of this framework by deriving a simple characterisation of all languages of arity
r having non-redundancy Θ(nr).

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Mathematics of computing → Discrete mathematics

Keywords and phrases Constraint satisfaction problem, redundancy, universal algebra, extremal
combinatorics

Acknowledgements This work was supported by the AI Interdisciplinary Institute ANITI, funded by
the French program “Investing for the Future – PIA3” under grant agreement no. ANR-19-PI3A-0004.
The author also received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 952215.

1 Introduction

The constraint satisfaction problem (CSP) is a fundamental computer science problem with
many applications in artificial intelligence and operational research. An instance of the CSP
is a set of variables, a set of domain values, and a set of constraints, which are relations
imposed upon certain sequences of variables. The goal is to decide whether it is possible to
assign domain values to variables in such a way that all constraints are satisfied. The CSP is
a natural common framework for a wide variety of well-studied combinatorial problems, such
as satisfiability and graph homomorphism, and is in general intractable.

Following early work of Schaefer on the Boolean domain [25], Feder and Vardi initiated
the systematic study of CSPs with fixed constraint languages and famously conjectured that
all these “non-uniform” CSPs are either polynomial-time solvable or NP-complete [14]. This
conjecture prompted a considerable research effort aimed at identifying generic sufficient
conditions for the tractability of non-uniform CSPs, which eventually coalesced into a
powerful, unified algebraic framework for analysing and classifying the complexity of constraint
languages [2, 4]. After more than two decades of research, the Feder-Vardi conjecture was
finally settled in the affirmative with two independent proofs by Bulatov [8] and Zhuk [26].

The success and flexibility of the algebraic framework motivated the study of constraint
languages from a broader perspective. Beyond the classical “P versus NP-complete” question,
classifications of constraint languages have been obtained for a wide variety of properties,
including solvability by specific classes of polynomial-time algorithms [3, 16], membership in

mailto:clement.carbonnel@lirmm.fr
http://www.lirmm.fr/~ccarbonnel/ 
https://orcid.org/0000-0003-2312-268


2 On Redundancy in Constraint Satisfaction Problems

fine complexity classes within P [12], learnability [10, 5], definability in certain logics [1, 22],
and more.

In this paper we will study non-uniform CSPs from a different perspective. The central
question we ask is the following: given a finite constraint language Γ of arity r, what is the
maximum number of non-redundant constraints in a CSP instance over Γ? If we denote by
n the number of variables, then this quantity (which we call the non-redundancy of Γ) is
O(nr), and if Γ is non-trivial (i.e. at least one relation is neither empty nor complete) then it
is Ω(n). As extreme examples, a set of affine relations over a finite field has non-redundancy
Θ(n), while sets of r-clauses are easily seen to have non-redundancy Θ(nr). Curiously, very
little is known beyond these trivial bounds, especially outside the Boolean domain. The
purpose of this paper is to describe an elementary algebraic framework for classifying the non-
redundancy of constraint languages, which we illustrate by deriving a simple combinatorial
characterisation of r-ary constraint languages with non-redundancy Θ(nr).

We draw motivation for studying non-redundancy from two different lines of work. The
task of learning a constraint network from answers to queries (sometimes called constraint
acquisition) has attracted considerable interest in the past decades [7, 10], and a significant
effort has been devoted to designing systems that can learn CSPs with as few queries as
possible. In this context, it was observed in [5, 6] that the non-redundancy of a language Γ
corresponds exactly to its VC-dimension, which is a lower bound on the number of yes/no
queries (of any kind) that is necessary in order to learn exactly a constraint network over
Γ. Therefore, any progress on lower bounds for non-redundancy immediately translates
into unconditional, universal lower bounds for constraint acquisition. More generally, for
applications where non-uniform CSPs are used to represent knowledge, the non-redundancy
of a constraint language is a good estimate of its representational power: if Γ has non-
redundancy f(n) and arity r, then the number of n-variable CSP instances over Γ with
pairwise distinct solution sets is Ω(2f(n)) and O(2f(n)r log n).

Our second motivation comes from a series of recent results on the sparsification of
non-uniform Boolean CSPs [9, 20]. In these papers, the goal is to determine whether there
exists a polynomial-time algorithm that takes as input an instance of CSP(Γ) (with up
to roughly nr constraints if Γ has arity r) and outputs an equisatisfiable instance of size
q(n), q(n) = o(nr). On the surface, this question looks quite different from estimating the
non-redundancy of Γ: sparsification is in essence an algorithmic question, and sparsification
algorithms are not limited to removing redundant constraints because they only have to
maintain equisatisfiability. Nevertheless, all sparsification algorithms for NP-hard Boolean
CSPs presented in [9, 20] operate purely by removing redundant constraints, and to the best
of our knowledge all CSPs whose non-redundancy is known to be O(nq) also have an O(nq)
sparsification algorithm. While non-redundancy and sparsifiability cannot be equivalent in
general (for instance, all polynomial-time non-uniform CSPs have a sparsification algorithm
that outputs an instance of size O(1)), this suggests that an improved understanding of
non-redundancy in constraint languages would help design sparsification algorithms.

Our results

Our first contribution is a generic algebraic framework for the asymptotic study of non-
redundancy in non-uniform CSPs. More precisely, we establish a tight connection between
redundancy-preserving reductions for constraint languages and pattern partial polymorphisms,
a type of closure operator that was recently introduced in the context of exponential algorithms
for certain classes of non-uniform Boolean CSPs [21]. A key property of this algebraic duality
is that both sides are easily interpretable in terms of non-redundancy. We observe that each



Clément Carbonnel 3

pattern partial polymorphism of a constraint language Γ describes a rule to identify (or
produce) redundant constraints in CSP instances over Γ. In some cases, knowledge of a single
non-trivial pattern partial polymorphism of Γ can be sufficient to establish an improved
upper bound on its non-redundancy.

Then, we combine our framework with a theorem of Erdős on the maximum cardinality of
Kr

2 -free hypergraphs [13] to obtain an explicit characterisation of those constraint languages
of arity r having non-redundancy Θ(nr). Incidentally, we show the existence of a small gap:
either a constraint language of arity r has non-redundancy Θ(nr), or it has non-redundancy
O(nr−ϵ) for ϵ = 21−r. This (improperly) extends a result of Chen et al. [9] for Boolean
languages, which was obtained using very different methods. Beyond non-redundancy, our
main result has direct consequences for sparsification, which will be discussed towards the
end of the paper.

Related work

A recent series of papers on the sparsification of Boolean languages have established a number
of results on the non-redundancy of constraint languages as byproducts. In [9], Chen et
al. show that every Boolean language of arity r that does not contain an r-clause can
be expressed using multivariate polynomials of total degree at most r − 1. Coupled with
elementary arguments on Boolean clauses (see e.g. the proof of Lemma 15 in Section 3),
this implies that the non-redundancy of any Boolean constraint language of arity at most
r is either Θ(nr) or O(nr−1). Other results in the same paper imply a non-redundancy
classification for Boolean constraint languages of arity at most 3, and a characterisation
of symmetric Boolean constraint languages with linear non-redundancy. The framework
presented in our paper is inspired from their methods, although it is extended to work
with arbitrary domains and adapted to study specifically the non-redundancy of constraint
languages.

Building upon these results, Lagerkvist and Wahlstrom [20] devised an O(n) sparsification
algorithm for the class of languages with a Mal’tsev embedding, which generalises linear
equations over finite fields. Their algorithm operates by removing redundant constraints,
and hence implies a similar bound on the non-redundancy of these languages. To the best
of our knowledge, all languages known to have non-redundancy O(n) belong to this class.
The same paper also provides a sufficient condition for having non-redundancy O(nq), q > 1
based on the closely related notion of k-edge embedding.

Bessiere et al. [5] initiated the direct study of non-redundancy of constraint languages,
with a focus on applications in machine learning. They established the equivalence between
non-redundancy and VC-dimension, classified the non-redundancy of constraint languages of
arity at most 2, and identified a class of ternary constraint languages whose non-redundancy
is o(n2) and cannot be fully determined using results based on algebraic embeddings.

2 Preliminaries

Relations, languages and constraint satisfaction problems

A relation R of arity r = ar(R) over a domain D is a subset of Dr. Given a tuple t of length
r and S ⊆ {1, . . . , r}, we denote by t[S] the tuple obtained from t by discarding elements
whose index is not in S. Similarly, the projection on S ⊆ {1, . . . , r} of a relation R of arity
r is denoted by R[S] = {t[S] | t ∈ R}. A (finite) constraint language Γ is a finite set of
relations over a finite domain D, and the arity of a constraint language Γ is defined as the



4 On Redundancy in Constraint Satisfaction Problems

maximum arity of its relations. Given a constraint language Γ, a CSP instance over Γ is a
pair (X,C), where X is a finite set of variables and C is a finite set of constraints, that is,
pairs (R,S) with R ∈ Γ and S ∈ Xar(R). A solution to a CSP instance (X,C) is a mapping
ϕ : X → D such that for every (R,S) ∈ C, we have ϕ(S) ∈ R. We will denote the set of all
solutions to a CSP instance I by sol(I). The constraint satisfaction problem over Γ, denoted
by CSP(Γ), takes as input a CSP instance I over Γ and asks whether sol(I) is non-empty.

Primitive-positive definitions and polymorphisms

Given a constraint language Γ, a relation R of arity r is primitive-positive definable (pp-
definable) over Γ if there exists a first-order formula ψ with r free variables x1, . . . , xr that
only uses existential quantification, conjunction, equality, and relations from Γ such that R =
{(f(x1), . . . , f(xr)) | f is a model of ψ}. In that case, we will often write R(x1, . . . , xr) ≡ ψ.
If ψ is quantifier-free, then R is qfpp-definable over Γ. We denote by ⟨Γ⟩ (resp. ⟨Γ⟩̸∃) the
set of all relations that are pp-definable (resp. qfpp-definable) from Γ. It is well-known
that CSP(Γ′) is log-space reducible to CSP(Γ) for all Γ′ ⊆ ⟨Γ⟩ [17]. If in addition we have
Γ′ ⊆ ⟨Γ⟩̸∃, then the reduction is tighter: if CSP(Γ) is solvable in time O(cn), then so is
CSP(Γ′) [18].

Given a set D, a partial operation over D of arity k is an operation f : Df → D with
Df ⊆ Dk. Given a relation R of arity r over D, f is a partial polymorphism of R if for
all tuples t1, . . . , tk ∈ R such that for all 1 ≤ i ≤ r we have (t1[i], . . . , tk[i]) ∈ Df , the
tuple f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[r], . . . , tk[r])) belongs to R. By extension,
an operation is a partial polymorphism of a language if it is a partial polymorphism of each
of its relations. A polymorphism of a relation over D is a partial polymorphism f with
Df = Dk. Given a language Γ, we denote by pol(Γ) the set of polymorphisms of Γ.

Geiger’s theorem [15] states that for any two languages Γ,Γ′ over the same domain, we
have Γ′ ⊆ ⟨Γ⟩ if and only if pol(Γ) ⊆ pol(Γ′). A similar duality was observed between qfpp-
definability and partial polymorphisms by Romov [24]. These results form the foundation of
the algebraic approach to non-uniform CSPs, in which the complexity of constraint languages
is studied through the lens of their (partial) polymorphisms. We refer the reader to recent
surveys for a more in-depth treatment of the subject [4][11].

Redundancy

In a CSP instance (X,C), a constraint c ∈ C is non-redundant if and only if (X,C) and
(X,C\{c}) have different solution sets. Given a constraint language Γ, the non-redundancy
of Γ, denoted by NRDΓ, is the function that maps each n ∈ N to the maximum number of
non-redundant constraints in an instance of CSP(Γ) with n variables. It is easily seen that if Γ
is a constraint language of arity r that does not contain only empty or complete relations, then
NRDΓ(n) = O(nr) and NRDΓ(n) = Ω(n). It is also known that the asymptotic behaviour of
the NRDΓ function for a finite language Γ is governed by that of its individual relations, as
witnessed by these two inequalities:

NRDΓ ≤
∑
R∈Γ

NRD{R} NRDΓ ≥ max
R∈Γ

(NRD{R})

The second inequality holds because each instance over {R} is also over Γ, and the first holds
because the property of being non-redundant is monotone. (If c = (S,R) is non-redundant
in I, then it is non-redundant in the subinstance of I consisting only of those constraints
with relation R. Repeating this reasoning with all R ∈ Γ provides the desired upper bound.)



Clément Carbonnel 5

Formal proofs can be found in [5]. In this paper we are only interested in the asymptotic
behaviour of the NRDΓ function up to constant factors; it follows from the inequalities above
that classifying single-relation languages is sufficient to deduce a classification for all finite
constraint languages.

3 Redundancy-preserving reductions

It is easily observed that primitive-positive definability does not preserve non-redundancy
in general, in the sense that two constraint languages Γ1 and Γ2 with Γ1 ⊆ ⟨Γ2⟩ and
Γ2 ⊆ ⟨Γ1⟩ may have very different non-redundancy asymptotics. (An extreme example is
Γ1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and Γ2 being the set of all ternary Boolean clauses. By
the results of [9], NRDΓ1(n) = Θ(n) but NRDΓ2(n) = Θ(n3). The pp-interdefinability of
these languages is well known and can be verified by inspecting Post’s lattice [23].) On
the other hand, qfpp-definitions do preserve non-redundancy, but have limited expressive
power. In this section, we attempt to construct an ideal notion of definability tailored for
non-redundancy, with three goals in mind: the corresponding reductions between constraint
languages must preserve non-redundancy bounds, a useful algebraic duality must exist, and
the framework should be as general as possible.

We start by presenting our proposed notion of definability.

▶ Definition 1. Let D be a set and Γ be a constraint language over D. We say that a relation
R of arity r has an fgpp-definition over Γ if R has a pp-definition

R(x1, . . . , xr) ≡ ∃y1, . . . , yq : ψ(x1, . . . , xr, y1, . . . , yq)

over Γ ∪ {Qg | g : D → D}, where Qg = {(d, g(d)) | d ∈ D}, and for each existentially
quantified variable yi there exists some xj such that Qg(xj , yi) is an atom in ψ.

In Definition 1, “fgpp-definition” stands for functionally guarded pp-definition. Note
that qfpp-definability implies fgpp-definability, but that fgpp-definability does not imply
pp-definability in general. (This is due to the functional atoms Qg, which may not belong to
Γ.) On the Boolean domain, fgpp-definitions are equivalent to the cone-definitions of Chen
et al. [9].

Given a constraint language Γ over D, let ⟨Γ⟩fg denote the set of relations over D that
are fgpp-definable over Γ. The next proposition is the first step towards proving that
fgpp-definitions are suitable for studying the NRD function.

▶ Proposition 2. Let Γ1 and Γ2 be two non-trivial languages over the same finite domain D.
If Γ2 ⊆ ⟨Γ1⟩fg, then NRDΓ2(n) = O(NRDΓ1(n)).

Proof. Let I be an instance of CSP(Γ2) with variable set X, |X| = n, and exactly NRDΓ2(n)
non-redundant constraints. Without loss of generality, we assume that no constraint in I is
redundant.

Let R ∈ Γ2 be some relation and R(x1, . . . , xr) ≡ ∃y1, . . . , yq : ψ(x1, . . . , xr, y1, . . . , yq) be
an fgpp-definition of R over Γ1. For each constraint ci = (R, (xi

1, . . . , x
i
r)) in I, we introduce

a set Y i of q fresh variables yi
1, . . . , y

i
q and replace ci with the set of constraints

Si = {(P, (z1
j , . . . , z

k
j )) | P (z1

j , . . . , z
k
j ) is an atom in ψ(xi

1, . . . , x
i
r, y

i
1, . . . , y

i
q)}

Repeating this process for all R ∈ Γ2 and constraint ci yields a CSP instance I∗ over
Γ1 ∪ {Qg | g : D → D} whose solution set, when projected onto X, is exactly sol(I).



6 On Redundancy in Constraint Satisfaction Problems

By construction, for each y ∈ Y = ∪iY
i there exist g : D → D and x ∈ X such that

for all ϕ ∈ sol(I∗), we have ϕ(y) = g(ϕ(x)). In particular, if there exist y1, y2 ∈ Y , x ∈ X
and g : D → D such that y1 = g(x) and y2 = g(x) then we have ϕ(y1) = ϕ(y2) for all
ϕ ∈ sol(I∗). It follows that y1 and y2 can be merged into a single variable without changing
the number of non-redundant constraints in I∗. After exhaustive application of this rule, we
have |Y | ≤ n · |D||D|.

Now, we greedily remove redundant constraints from I∗ until all constraints are non-
redundant. Observe that this process cannot remove all constraints from a set Si, for any i.
Indeed, by assumption, for each constraint ci in I there exists an assignment ϕ : X → D that
only violates ci in I. This assignment can be extended to an assignment ϕ∗ : X ∪ Y → D

that is not a solution to I∗ and may only violate constraints in Si. Therefore, removing
all of Si would increase the solution set of I∗, which cannot happen since only redundant
constraints are removed.

In addition, the language {Qg | g : Dc → D} contains only functional constraints and
hence has linear non-redundancy. (This follows, for example, from [5, Theorem 13].) Since
|X|+ |Y | ≤ n · (1 + |D||D|), we deduce that I∗ contains O(n) constraints that are not from
Γ1.

By the three paragraphs above, I∗ has at most n · (1 + |D||D|) variables and at least
NRDΓ2(n)− O(n) non-redundant constraints from Γ1. By definition of NRD this implies
NRDΓ2(n) = O(NRDΓ1(n)) + O(n), and finally NRDΓ2(n) = O(NRDΓ1(n)) since Γ1 is
non-trivial. ◀

▶ Example 3. Let p > 1 be a prime number, D = {0, . . . , p− 1} and consider the relation
R = {(x, y, z) | x3 + y3 + z2 = 1}, where sum and product are understood as operations over
the finite field of order p. If we let Rlin = {(x, y, z) | x+ y + z = 1} and f, g : D → D such
that f(d) = d3 and g(d) = d2, we can equivalently define R as

R(x, y, z) ≡ ∃a, b, c : Rlin(a, b, c) ∧Qf (x, a) ∧Qf (y, b) ∧Qg(z, c)

which implies that R ∈ ⟨{Rlin}⟩fg. From Proposition 2 and the fact that linear equations
over finite fields have linear non-redundancy, we deduce that {R} has non-redundancy O(n).

▶ Example 4. Following [20], a language Γ1 over non-empty domain D1 has an embedding
over a language Γ2 over domain D2 ⊇ D1 if there exists a bijective function h : Γ1 → Γ2
such that for all R ∈ Γ1, ar(R) = ar(h(R)) and R = h(R) ∩D1. If we interpret both Γ1 and
Γ2 as languages over D2 and define g : D2 → D2 such that g(d) = d if d ∈ D1 and g(d) = d∗

1
otherwise (where d∗

1 is an arbitrary value in D1), then each R ∈ Γ1 can be written as

R(x1, . . . , xr) ≡ h(R)(x1, . . . , xr)
∧

1≤i≤r

Qg(xi, xi)

and hence Γ1 ⊆ ⟨Γ2⟩fg. Therefore, by Proposition 2, embeddings preserve the non-redundancy
asymptotics of constraint languages.

We will establish an algebraic duality for fgpp-definitions based on pattern partial poly-
morphisms, which were introduced by Lagerkvist and Wahlstrom [21] in a different context
(the study of exponential algorithms for sign-symmetric Boolean languages).

A polymorphism pattern of arity k is a set of pairs (t, x), where t is a sequence of variables
of length k and x occurs in t. A k-ary partial operation f : Df → D satisfies a k-ary
polymorphism pattern P if

Df = {(ϕ(x1), . . . , ϕ(xk)) | ((x1, . . . , xk), x) ∈ P, ϕ : {x1, . . . , xk} → D}



Clément Carbonnel 7

and f(ϕ(x1), . . . , ϕ(xk)) = ϕ(x) for all ((x1, . . . , xk), x) ∈ P , ϕ : {x1, . . . , xk} → D. It follows
from definition that for any pattern P and finite set D, there is at most one partial operation
on D that satisfies P . We denote this function by fD

P and call it the interpretation of P on
D.

We say that a partial operation f is a pattern partial operation if it satisfies some
polymorphism pattern P . We will often use the following equivalent characterisation.

▶ Observation 5. Let D be a finite set, k be a nonnegative integer and Df ⊆ Dk. A partial
operation f : Df → D is a pattern partial operation if and only if for every t ∈ Df and
g : D → D, we have that g(t) ∈ Df and f ◦ g(t) = g ◦ f(t).

Proof. Suppose that f is a pattern partial operation because it satisfies a certain polymorph-
ism pattern P . In particular, for every t ∈ Df there exists some ((x1, . . . , xk), x) ∈ P and
ϕ : {x1, . . . , xk} → D such that t = (ϕ(x1), . . . , ϕ(xk)). Then, for any mapping g : D → D we
have g(t) = (g(ϕ(x1)), . . . , g(ϕ(xk))), which must belong to Df as witnessed by the mapping
ϕ′ = g ◦ ϕ. Furthermore, by definition we have f(ϕ′(x1), . . . , ϕ′(xk)) = ϕ′(x), or equivalently
f ◦ g(t) = g ◦ f(t).

Conversely, suppose that for every t ∈ Df and g : D → D, we have that g(t) ∈ Df

and f ◦ g(t) = g ◦ f(t). Let DP = {x1, . . . , xq} be a set of variables in bijection with
D = {d1, . . . , dq}, and let P denote the pattern

{((xi1 , . . . , xik
), xj) | (di1 , . . . , dik

) ∈ Df , f(di1 , . . . , dik
) = dj}

Then, we must have xj ∈ {xi1 , . . . , xik
} for any ((xi1 , . . . , xik

), xj) ∈ P . Indeed, if it were not
the case then there would exist a tuple t = (di1 , . . . , dik

) ∈ Df such that f(t) /∈ {di1 , . . . , dik
},

and we would have f ◦ g(t) ̸= g ◦ f(t) for the mapping g : D → D such that g(d) = d if
d ∈ {di1 , . . . , dik

} and g(d) = di1 otherwise.
Furthermore, mappings ϕ from DP to D can be identified with mappings from D to D,

so with a slight abuse of notation we have

f(ϕ(xi1), . . . , ϕ(xik
)) = ϕ(f(xi1 , . . . , xik

)) = ϕ(xj)

for all ϕ : DP , ((xi1 , . . . , xik
), xj) ∈ P and f satisfies P . ◀

On the Boolean domain, pattern partial operations are called pSDI operations [21] (for
partial self-dual idempotent operations). Beyond the Boolean domain, notable examples
of pattern partial operations are the first Pixley partial operation of [5] and the universal
Mal’tsev partial operations of [20], the simplest of which is presented in Example 6.

▶ Example 6. Let PM
2 denote the polymorphism pattern

((x, x, y), y)
((y, x, x), y)

and consider the partial operation fD
P M

2
over some set D, which is an example of a pattern

partial operation with domain {(d1, d2, d3) ∈ D3 | (d1 = d2) or (d2 = d3)}. By definition, a
binary relation R admits fD

P M
2

as a partial polymorphism if and only if it is rectangular, that
is, R does not contain three tuples (a, b), (a, c), (d, c) such that (d, b) /∈ R. It can be further
observed (although it is not immediately obvious) that a binary relation admits fD

P M
2

as a
partial polymorphism if and only if it is fgpp-definable from the empty constraint language.
This polymorphism pattern plays a critical role in the characterisation of the non-redundancy
of binary constraint languages obtained in [5], and we will revisit it in the next section.



8 On Redundancy in Constraint Satisfaction Problems

Throughout this note we will use p2pol(Γ) to denote the set of all pattern partial
polymorphisms of Γ. The following proposition shows that p2pol(Γ) determines precisely the
set of relations that are fgpp-definable over Γ.
▶ Proposition 7. Let Γ1 and Γ2 be two constraint languages over the same finite domain D.
Then, p2pol(Γ1) ⊆ p2pol(Γ2) if and only if Γ2 ⊆ ⟨Γ1⟩fg.
Proof. We first prove the backward implication. Suppose that Γ2 ⊆ ⟨Γ1⟩fg but there exists
some pattern partial operation f ∈ p2pol(Γ1) of arity k that is not a partial polymorphism
of some relation R ∈ Γ2. Let R(x1, . . . , xr) ≡ ∃y1, . . . , yq : ψ(x1, . . . , xr, y1, . . . , yq) be an
fgpp-definition of R over Γ1 and define R̸∃(x1, . . . , xr, y1, . . . , yq) ≡ ψ(x1, . . . , xr, y1, . . . , yq).
First, observe that for all g : D → D and k tuples t1 = (d1, g(d1)), . . . , tk = (dk, g(dk)) of Qg

such that f(t1, . . . , tk) is defined, it holds that

f(t1, . . . , tk) = (f(d1, . . . , dk), f(g(d1), . . . , g(dk))) = (f(d1, . . . , dk), g(f(d1, . . . , dk))) ∈ Qg

so f is a partial polymorphism of Γ1 ∪ {Qg | g : D → D}. Since R̸∃ is qfpp-definable over
Γ1 ∪ {Qg | g : D → D}, this implies that f is a partial polymorphism of R̸∃. However,
f is not a partial polymorphism of R, so there exist k = ar(f) tuples t1, . . . , tk ∈ R such
that f(t1, . . . , tk) is defined and does not belong to R. Let t′1, . . . , t′k ∈ R ̸∃ be such that
t′l[1, . . . , r] = tl for all l ≤ k. By Definition 1, there exists for each r < i ≤ r + q an index
j ≤ r and a mapping g : D → D such that t′l[i] = g(t′l[j]) for all l ≤ k. Since the domain of
f is closed under all unary operations from D to D, tf = f(t′1, . . . , t′k) is defined and belongs
to R ̸∃, a contradiction since tf [1, . . . , r] = f(t1, . . . , tk) /∈ R = R ̸∃[1, . . . , r].

The forward implication is a bit more difficult. Let R denote the set of all relations
R over D such that R /∈ ⟨Γ1⟩fg and every pattern partial polymorphism of Γ1 is a partial
polymorphism of R. Towards a contradiction, suppose that R is non-empty. Let R be a
relation in R with minimum arity r. Note that ⟨Γ1⟩fg contains all unary relations over D, so
we may assume that r ≥ 2. Now, we define

R̂ =
⋂

Q∈⟨Γ1⟩fg
R⊆Q

Q

and observe that R̂ is well defined (because Dr ∈ ⟨Γ1⟩fg) and strictly contains R. In particular,
there exists a certain tuple t ∈ R̂\R. We pick an arbitrary ordering t1, . . . , tm of the tuples of
R, and for all l ≤ r we define the lth column of R as cl = (t1[l], . . . , tm[l]). Then, we define

Df = {g(cl) | 1 ≤ l ≤ r, g : D → D}

and let p = |Df |, as well as σ : Df → {1, . . . , p} be an arbitrary bijection such that σ−1(i) = ci

for i ≤ r. Now, consider the relation Rf (y1, . . . , yr) ≡ ∃yr+1, . . . , yp : ψ(y1, . . . , yp), where
ψ(y1, . . . , yp) is given by∧

Q∈Γ1
(tq

1,...,tq
m)∈Q

Q(yσ(tq
1[1],...,tq

m[1]), . . . , yσ(tq
1[ar(Q)],...,tq

m[ar(Q)]))
∧

i,j≤p, g:D→D:
σ−1(i)=g(σ−1(j))

Qg(yi, yj)

and the first conjunction is restricted to tuples of variables that are well-defined with respect
to σ. By construction, the tuples of Rf are in one-to-one correspondance with the pattern
partial polymorphisms of Γ1 of arity m whose domain is the closure of c1, . . . , cr under
all unary operations D → D. In particular, Rf contains the tuples corresponding to the
m partial projection operations on Df and hence Rf contains R. Then, since Rf is fgpp-
definable over Γ1, it follows that t ∈ Rf . This particular tuple t corresponds to a certain
pattern partial polymorphism ft of Γ1, of arity m, domain Df and such that f(cl) = t[l] for
all l ≤ r. Since t /∈ R, ft is not a partial polymorphism of R, which concludes the proof. ◀



Clément Carbonnel 9

4 Pattern partial polymorphisms and redundancy

Recall from Section 2 that in order to study the function NRDΓ, we can assume without
loss of generality that Γ contains a single relation R. Then, it will be convenient to rephrase
CSP(Γ) as a homomorphism problem: given a relation RX over some finite set X of the
same arity as R, is there a homomorphism from RX to R? Here, a homomorphism is a
mapping ϕ from X to D such that ϕ(t) ∈ R for all t ∈ RX . We will use hom(RX , R) to
denote the set of all homomomorphisms from RX to R. In this formulation, the constraint
scopes are given by the tuples of RX and a constraint (R, t), t ∈ RX , is redundant if and
only if hom(RX , R) = hom(RX\{t}, R).

▶ Lemma 8. Let RX , R be relations with respective domains X,D and let fD
P be a k-ary

partial polymorphism of R that satisfies a pattern P . If t, t1, . . . , tk are tuples of RX such
that t /∈ {t1, . . . , tk} and t = fX

P (t1, . . . , tk), then hom(RX , R) = hom(RX\{t}, R).

Proof. For the sake of contradiction, suppose that there exists a homomorphism h : X → D

such that h(t) /∈ R but h(t1), . . . , h(tk) ∈ R. Observe that fX∪D
P is a partial polymorphism

of R (when interpreted as a relation over X ∪D) and define g : X ∪D → X ∪D such that
g(u) = h(u) if u ∈ X and g(u) = u otherwise. Since fX∪D

P is a pattern partial operation, we
have that

fX∪D
P (g(t1), . . . , g(tk)) = g(fX∪D

P (t1, . . . , tk)) = g(fX
P (t1, . . . , tk)) = g(t) = h(t) /∈ R

which contradicts the fact that fX∪D
P is a partial polymorphism of R. ◀

In essence, a (partial) polymorphism is an operator that combines solutions (tuples of
values) to produce new ones. What this lemma says is that pattern partial polymorphisms
can also be used to combine constraints and produce new ones that are valid for the instance,
i.e. redundant. The is particularly interesting in light of the algebraic duality uncovered in
Proposition 7: if Γ can fgpp-define a relation R with high non-redundancy, then Γ has high
non-redundancy by Proposition 2, and if it cannot then Proposition 7 and Lemma 8 provide
a non-trivial mechanism to identify redundant constraints that is valid for CSP(Γ) but not
for CSP({R}).

▶ Example 9. Let R be a relation with the operation fD
P M

2
of Example 6 as partial poly-

morphism. Consider a CSP instance (RX , R) and suppose that there exist four variables
x1, x2, y1, y2 ∈ X such that (x1, y1), (x1, y2), (x2, y2), (x2, y1) are tuples of RX (i.e. are scopes
of constraints with relation R). Then, the pattern partial polymorphism fD

P M
2

combined with
Lemma 8 implies that the constraint (R, (x2, y1)) is redundant, as it is the image through
fX

P M
2

of the first three constraints.

Given a relation R over a set X and a set F of partial operations on X, we denote by
F(R) the transitive closure of R under operations from F . If no tuple t of R can be generated
from tuples in R\{t} via an operation in F , we say that R is F-independent. The following
two propositions are natural consequences of Lemma 8 regarding upper bounds on the NRD
function.

▶ Proposition 10. Let R be a relation over a set D, PR be the set of polymorphism patterns
that are satisfied by partial polymorphisms of R, and PS

R denote the set of interpretations of
PR on set S. If for every relation RX over a set X of n elements such that ar(RX) = ar(R)
there exists a relation R∗

X of cardinality at most f(n) such that R∗
X ⊆ RX ⊆ PX

R (R∗
X), then

NRD{R}(n) ≤ f(n).



10 On Redundancy in Constraint Satisfaction Problems

Proof. Suppose that such a relation R∗
X exists for every relation RX . Let (RX , R) be

an instance of CSP({R}) and R1 ⊂ R2 ⊂ . . . ⊂ Rq be the sequence of distinct relations
obtained by transitive closure of R∗

X under PX
R , with R1 = R∗

X and Rj = RX . For every
1 ≤ i < q, there exists a pattern P ∈ PR and tuples t1, . . . , tk in Ri such that Ri+1 = Ri∪{t},
t = fX

P (t1, . . . , tk). By Lemma 8, we have hom(Ri, R) = hom(Ri+1, R). This is true for all
i, so in particular we have hom(R∗

X , R) = hom(RX , R). Therefore, every non-redundant
constraint in (RX , R) must be of the form (R, t) with t ∈ R∗

X , and their total number is at
most f(n). ◀

▶ Example 11. Consider a relation R of arity r over a set D, and suppose that R has the
pattern partial polymorphism fD

P M
2

of Examples 6 and 9. We will use Proposition 10 to show
that NRD{R}(n) ≤ 2nq, where q = ⌈r/2⌉.

Let (RX , R) be an instance of CSP({R}) with n variables and no redundant constraint.
Let R1

X denote the projection of RX onto its first q indices and R2
X be its projection

onto the remainder. For simplicity, we will interpret RX as a binary relation over disjoint
domains R1

X and R2
X . Let GX be the bipartite graph with domain R1

X ∪ R2
X and edge

relation RX . Observe that for any path (v1, v2), (v2, v3), . . . , (vk−1, vk) in GX with an odd
number of edges, repeated application of fX

P M
2

on the corresponding tuples of RX eventually
produces the edge (v1, vk). Therefore, the smallest subrelation R∗

X of RX that contains RX

in its transitive closure via fX
P M

2
corresponds to a forest subgraph FX of GX . In particular,

|R∗
X | = |E(FX)| ≤ |R1

X |+ |R2
X | ≤ 2nq, and by Proposition 10, NRD{R}(n) ≤ 2nq.

▶ Proposition 12. Let R be a relation over a set D, PR be the set of polymorphism patterns
that are satisfied by partial polymorphisms of R, and PS

R denote the set of interpretations of
PR on set S. If every relation RX over a set X of n elements that is PX

R -independent and
such that ar(RX) = ar(R) has cardinality at most f(n), then NRD{R}(n) ≤ f(n).

Proof. Follows immediately from Proposition 10 as every minimal relation R∗
X with R∗

X ⊆
RX ⊆ PX

R (R∗
X) is PX

R -independent. ◀

We conclude this section with a straightforward lower bound on the non-redundancy
of constraint languages that do not admit a certain polymorphism pattern related to the
fgpp-definability of k-clauses, whose properties are well known on the Boolean domain.

▶ Definition 13. Let k ≥ 2 and c1, . . . , c2k−1 be the lexicographic ordering of the relation
{x, y}k\{(y, . . . , y)} with respect to y > x. The k-universal polymorphism pattern Pu

k is the
set of all pairs (ti, y) with ti = (c1[i], . . . , c2k−1[i]), i ≤ k.

The interpretation of Pu
k on the Boolean domain is called the Boolean k-universal partial

operation [21]. In the definition above, the ordering of {x, y}k\{(y, . . . , y)} is not important:
a different ordering would produce a different pattern, but it would be equivalent in the sense
that it would have the same interpretation on all sets, up to a permutation of the arguments.
(For instance, the pattern PM

2 of Example 6 is equivalent to Pu
2 .)

▶ Example 14. Pu
3 is the pattern given by the following pairs:

((x, x, x, x, y, y, y), y)
((x, x, y, y, x, x, y), y)
((x, y, x, y, x, y, x), y)

Observe that the left-hand side of these pairs corresponds to the three columns of the relation
corresponding to a 3-clause with no negated literals, modulo the renaming x ← 1, y ← 0.
The right-hand side is the missing tuple (0, 0, 0) in the clause.



Clément Carbonnel 11

▶ Lemma 15. Let R be a relation of arity r over a domain D and r ≥ k ≥ 2. If fD
P u

k
/∈

p2pol({R}), then NRD{R}(n) = Ω(nk).

Proof. Suppose that fD
P u

k
/∈ p2pol({R}). For simplicity of notation we write f = fD

P u
k

and
assume that {0, 1} ⊆ D. (Note that |D| > 1 since otherwise we would have f ∈ p2pol(R).)
We claim that Ck ∈ ⟨{R}⟩fg, where Ck(x1, . . . , xk) ≡ x1 ∨ . . . ∨ xk. Let p = |Df | and
σ : Df → {1, . . . , p} be a bijection such that σ−1(i) = ϕ(ti) for all i ≤ k, where (ti, y) ∈ Pu

k

is as in Definition 13 and ϕ : {x, y} → D is such that ϕ(x) = 1 and ϕ(y) = 0. We define

ψ(y1, . . . , yp) ≡
∧

(t∗
1 ,...,t∗

k)∈R
∀i, (t∗

1 [i],...,t∗
k[i])∈Df

R(yσ((t∗
1 [1],...,t∗

k
[1])), . . . , yσ((t∗

1 [r],...,t∗
k

[r])))

and note that the set of models of this formula are in one-to-one correspondance with the
partial polymorphisms of R with domain Df . Then, the formula

ϕ(y1, . . . , yk) ≡ ∃yk+1, . . . , yp : ψ(y1, . . . , yp)
∧

i,j≤p:
∃g:D→D : σ−1(i)=g(σ−1(j))

Qg(yj , yi)

is an fgpp-definition of a relation of arity k that contains every tuple of Ck (as projections with
domain Df are pattern partial operations) and cannot contain the tuple (0, . . . , 0) (otherwise
this tuple would extend to the model of ψ that corresponds to f , and by assumption
f /∈ p2pol({R})). Since the unary relation {(0), (1)} is fgpp-definable from any language, we
have Ck ∈ ⟨{R}⟩fg, as claimed.

Now, by Proposition 2 we need only prove that the language {Ck} has non-redundancy
Ω(nk). A simple argument is to define for any n a CSP instance In = (X,C) over {Ck}
with n variables and such that C contains one constraint (Ck, (x1, . . . , xk)) for all distinct
x1, . . . , xk in X. This instance has Ω(nk) constraints, and none is redundant: for any
constraint c = (Ck, (x1, . . . , xk)) ∈ C, the assignment that maps every variable to 1 except
x1, . . . , xk satisfies every constraint except c. ◀

▶ Example 16. Let p > 2, D = {1, . . . , p} and consider the relation R = {(x, y, z) ∈ D3 |
max(x, y) > z}. Observe that the set of tuples S = ({1, 2}2 × {2, 3})\{(2, 2, 2)} is a subset
of R, while the missing tuple (2, 2, 2) does not belong to R. It follows that there exist some
ordering t1, . . . , t8 of S such that fD

P u
3

(t1, . . . , t8) is defined and is equal to (2, 2, 2), and hence
fD

P u
3
/∈ p2pol({R}). By Lemma 15, {R} has non-redundancy Ω(n3), which is tight since R

has arity 3.

In general, the largest value k for which Lemma 15 applies on a relation R gives a simple
lower bound on its non-redundancy. This bound is unlikely to be tight in general, although
we do not know any counter-examples.

5 A classification for languages with maximum non-redundancy

In this section, we will combine the lower bound of Lemma 15 with an upper bound derived
from Proposition 12 and a well-known theorem in extremal hypergraph theory to prove our
main result: a characterisation of constraint languages of arity r whose non-redundancy has
the fastest possible asymptotic growth Θ(nr). Our approach suggests a simple connection
between the non-redundancy of constraint languages and hypergraph Turán numbers.



12 On Redundancy in Constraint Satisfaction Problems

▶ Definition 17 ([19]). Let H be a family of r-uniform hypergraphs. The nth Turán number
of H, denoted by ex(n,H), is the maximum number of edges in an r-uniform hypergraph with
n vertices that does not contain any hypergraph in H as a subgraph.

The following theorem of Erdős is a fundamental result on this topic.

▶ Theorem 18 ([13]). If Kr
2 be the complete r-uniform r-partite hypergraph with vertex

classes of size two and Kr
2 ∈ H, then ex(n,H) = O(nr−ϵ), where ϵ = 21−r.

We will link relations and hypergraphs in a slightly unusual way. If R is a relation over
X, then we define HM (R) as the r-partite r-uniform hypergraph over vertex set X1, . . . , Xr,
where each Xi = {xi | x ∈ X} is a copy of X, and edge set {{x1

1, . . . , x
r
r} | (x1, . . . , xr) ∈ R}.

Note that HM (R) has cardinality exactly |R|, and its vertex set is of size r · |X| = O(|X|).

▶ Lemma 19. Let R be a relation of arity r ≥ 2 over a domain D with partial polymorphism
fD

P u
r

. If I = (RX , R) is an instance of CSP({R}) and HM (RX) contains Kr
2 as a subgraph,

then I contains a redundant constraint.

Proof. Suppose that Kr
2 occurs in HM (RX) as a subgraph. Let t1, . . . , t2r be 2r tuples of

RX whose images in HM (RX) are the edges of a subgraph H isomorphic to Kr
2 . Because

both HM (RX) and Kr
2 are r-uniform r-partite hypergraphs and Kr

2 contains for each vertex
class {x, y} two edges e1, e2 with e1 = e2\{x} ∪ {y}, the vertex classes of H are subsets of
the vertex classes of HM (RX). This implies that for each j ≤ r, there exist two elements
xj , yj such that ti[j] ∈ {xj , yj} for all i ≤ 2r. Furthermore, all tuples ti are distinct,
so {ti | i ≤ 2r} = Πj≤r{xj , yj} and some tuple, say t1, is exactly (y1, . . . , yr). After
reordering lexicographically the other tuples t2, . . . , tr2 with respect to yj > xj , we obtain
that fX

P u
r

(t2, . . . , t2r ) = t1, so by Lemma 8 the constraint (R, t1) is redundant in I and the
claim follows. ◀

▶ Corollary 20. Let R be a relation of arity r ≥ 2 over a domain D. If fD
P u

r
∈ p2pol({R}),

then NRD{R}(n) = O(nr−ϵ), where ϵ = 21−r > 0.

Proof. Let I = (RX , R) be an instance of CSP({R}) with exactly NRD{R}(n) constraint,
all of which are non-redundant. By Lemma 19, HM (RX) does not contain Kr

2 as a subgraph.
Since HM (RX) has O(n) vertices, by Theorem 18 it has O(nr−ϵ) edges. By construction we
have |RX | = |HM (RX)|, so |RX | = O(nr−ϵ) and finally NRD{R}(n) = O(nr−ϵ). ◀

Combining Corollary 20 with Lemma 15, we can fully characterise constraint languages
with worst-case non-redundancy Θ(nr).

▶ Theorem 21. Let Γ be a constraint language with domain D and maximum arity r ≥ 2.
If fD

P u
r
/∈ p2pol(Γ) then NRDΓ(n) = Θ(nr), and otherwise NRDΓ(n) = O(nr−ϵ), where

ϵ = 21−r > 0.

Proof. Recall from Section 2 that the non-redundancy of a constraint language is asymp-
totically determined by the non-redundancy of its individual relations, i.e. NRDΓ(n) =
Θ(maxR∈Γ NRD{R}(n)). If fD

P u
r
/∈ p2pol(Γ) then there exists R ∈ Γ such that fD

P u
r
/∈

p2pol({R}), and by Lemma 15 we have NRDΓ(n) = Θ(nr). If instead fD
P u

r
∈ p2pol(Γ), then

by Corollary 20 we obtain NRDΓ(n) = O(nr−ϵ). ◀

It is unlikely that the literature on Turán numbers can be used to derive tight upper
bounds. Most results on this topic focus on forbidding a single fixed subhypergraph, while
in our case the list of forbidden structures in irredundant instances is typically infinite and



Clément Carbonnel 13

equipped with an algebraic structure; this discrepancy makes any bound obtained this way
quite loose. For instance, on the elementary case r = 2, Corollary 20 only produces an upper
bound of O(n3/2) for binary rectangular relations while more direct arguments (Example 11)
easily establish the tight bound Θ(n). Similarly, on Boolean languages the same result holds
for ϵ = 1, but proving such a bound using Lemma 8 (rather than polynomials, as in [9])
would necessitate a much deeper analysis of the pattern partial polymorphisms of constraint
languages preserved by fD

P u
r

.
Finally, we remark that the proof of Corollary 20 implies a simple polynomial-time

sparsification algorithm for all languages Γ of arity r with NRDΓ(n) = o(nr).

▶ Theorem 22. Let Γ be a constraint language with domain D and maximum arity r ≥ 2.
If fD

P u
r
∈ p2pol(Γ), then there exists a polynomial time algorithm that takes an instance of

CSP(Γ) as input and outputs an equisatisfiable instance of CSP(Γ) with O(nr−ϵ) constraints,
where ϵ = 21−r > 0.

Proof. Let I = (X,C) be an instance of CSP(Γ). For each relation R ∈ Γ, the algorithm
constructs the relation RX = {(x1, . . . , xr) | (R, (x1, . . . , xr)) ∈ C} and enumerates all
sequences t1, . . . , t2r of tuples of RX . For each sequence, it tests whether t1 = fX

P u
r

(t2, . . . , t2r )
and discards the constraint (R, t1) from I when the test succeeds. By Lemma 8, this process
only removes redundant constraints. The algorithm then outputs the residual instance.

After this algorithm has terminated, for each relation R the corresponding relation RX

contains at most O(nr−ϵ) tuples because the r-uniform r-partite hypergraph HM (RX) has
cardinality |RX | and does not contain Kr

2 as a subhypergraph. There are O(1) distinct
relations in Γ, so the total number of remaining constraints is O(nr−ϵ). ◀

6 Conclusion

We have presented an algebraic framework based on fgpp-definitions and pattern partial
polymorphisms dedicated to the study of non-redundancy of constraint languages, extending
earlier work on Boolean languages [9, 21]. Based on this framework, we have established
a loose connection with extremal hypergraph theory and deduced a characterisation of
constraint languages of arity r with non-redundancy Θ(nr). The progress we have made in
this paper is modest, and much is still unknown on this topic. We believe that the following
challenges are the natural next steps towards a better understanding of non-redundancy.

Find a characterisation of constraint languages with non-redundancy O(n). In this paper
we have characterised constraint languages whose non-redundancy is the highest possible
with respect to their arity, so it would be interesting to do the same for languages whose
non-redundancy is the lowest possible. It is conceivable that this class coincides with that of
languages with a finite Mal’tsev embedding [21] since no counter-example is known. However,
proving that it is the case will likely require a better understanding of the pattern partial
polymorphisms of these languages and lower bounds more sophisticated than those based on
Boolean clauses.

Determine whether all r-ary constraint languages with non-redundancy o(nr) have non-
redundancy O(nr−1). This is known to be true for the Boolean domain by the results of
Chen et al. [9], but for larger domains we are only able to prove the existence of a considerably
smaller gap which vanishes as r grows. Both our approach and that of Chen et al. have
intrinsic limitations when dealing simultaneously with large domains and large arities, so it
would be interesting to see how they could be combined.



14 On Redundancy in Constraint Satisfaction Problems

Determine the non-redundancy of all ternary constraint languages. A classification is
known for binary languages (see [5], although a more direct proof follows from Example 11
and Lemma 15) and ternary Boolean languages [9], but not on ternary languages with
arbitrary domains.

Clarify the relationship between non-redundancy, sparsification, and learnability. In
particular, it would be interesting to determine whether non-redundancy O(nq) implies
sparsification algorithms with output size O(nq) and whether non-redundancy is asymptotic-
ally equivalent to chain length, a closely related measure that characterises the efficiency of
a class of learning algorithms for constraint acquisition [5].

References
1 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and

counting infinitary logic. Theoretical Compututer Science, 410(18):1666–1683, 2009. doi:
10.1016/j.tcs.2008.12.049.

2 Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin Kozik, and Dmitriy Zhuk. Minimal
taylor algebras as a common framework for the three algebraic approaches to the CSP. In
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’21), pages 1–13.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470557.

3 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. Journal of the ACM, 61(1):3:1–3:19, 2014. doi:10.1145/2556646.

4 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In
Dagstuhl Follow-Ups, volume 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

5 Christian Bessiere, Clément Carbonnel, and George Katsirelos. Chain length and csps learnable
with few queries. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI’20), pages 1420–1427, 2020. doi:10.1609/aaai.v34i02.5499.

6 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI’13), pages 475–481, 2013.

7 Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artificial Intelligence, 244:315–342, 2017. doi:10.1016/j.artint.2015.08.001.

8 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS’17), pages 319–330.
IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.37.

9 Hubie Chen, Bart M. P. Jansen, and Astrid Pieterse. Best-case and worst-case sparsifiability
of Boolean csps. Algorithmica, 82(8):2200–2242, 2020. doi:10.1007/s00453-019-00660-y.

10 Hubie Chen and Matthew Valeriote. Learnability of solutions to conjunctive queries. Journal of
Machine Learing Research, 20:67:1–67:28, 2019. URL: http://jmlr.org/papers/v20/17-734.
html.

11 Miguel Couceiro, Lucien Haddad, and Victor Lagerkvist. A survey on the fine-grained
complexity of constraint satisfaction problems based on partial polymorphisms. J. Multiple
Valued Log. Soft Comput., 38(1-2):115–136, 2022.

12 László Egri, Pavol Hell, Benoît Larose, and Arash Rafiey. Space complexity of list H -
colouring: a dichotomy. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’14), pages 349–365. SIAM, 2014.
doi:10.1137/1.9781611973402.26.

13 P Erdös. On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics,
2(3):183–190, 1964.

https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1109/LICS52264.2021.9470557
https://doi.org/10.1145/2556646
https://doi.org/10.1609/aaai.v34i02.5499
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1007/s00453-019-00660-y
http://jmlr.org/papers/v20/17-734.html
http://jmlr.org/papers/v20/17-734.html
https://doi.org/10.1137/1.9781611973402.26


Clément Carbonnel 15

14 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

15 David Geiger. Closed systems of functions and predicates. Pacific journal of mathematics,
27(1):95–100, 1968.

16 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM Journal on
Computing, 39(7):3023–3037, 2010. doi:10.1137/090775646.

17 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, jul 1997. doi:10.1145/263867.263489.

18 Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno Zanuttini. Strong partial
clones and the time complexity of SAT problems. J. Comput. Syst. Sci., 84:52–78, 2017.
doi:10.1016/j.jcss.2016.07.008.

19 Peter Keevash. Hypergraph turán problems. Surveys in combinatorics, 392:83–140, 2011.
20 Victor Lagerkvist and Magnus Wahlström. Kernelization of constraint satisfaction prob-

lems: A study through universal algebra. In Proceedings of the 23rd Conference on
Principles and Practice of Constraint Programming (CP’17), pages 157–171, 2017. doi:
10.1007/978-3-319-66158-2\_11.

21 Victor Lagerkvist and Magnus Wahlström. Which np-hard SAT and CSP problems admit
exponentially improved algorithms? CoRR, abs/1801.09488, 2018. URL: http://arxiv.org/
abs/1801.09488, arXiv:1801.09488.

22 Benoît Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order constraint
satisfaction problems. Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/
LMCS-3(4:6)2007.

23 Emil L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematics
studies, 1941. doi:10.2307/2268608.

24 Boris A Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–
167, 1981.

25 Thomas J. Schaefer. The complexity of satisfiability problems. In STOC ’78: Proceedings
of the tenth annual ACM Symposium on Theory of Computing (STOC’78), page 216–226.
Association for Computing Machinery, 1978. doi:10.1145/800133.804350.

26 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78,
2020. doi:10.1145/3402029.

https://doi.org/10.1137/090775646
https://doi.org/10.1145/263867.263489
https://doi.org/10.1016/j.jcss.2016.07.008
https://doi.org/10.1007/978-3-319-66158-2_11
https://doi.org/10.1007/978-3-319-66158-2_11
http://arxiv.org/abs/1801.09488
http://arxiv.org/abs/1801.09488
http://arxiv.org/abs/1801.09488
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.2307/2268608
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/3402029

	1 Introduction
	2 Preliminaries
	3 Redundancy-preserving reductions
	4 Pattern partial polymorphisms and redundancy
	5 A classification for languages with maximum non-redundancy
	6 Conclusion

