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Abstract

We study multivariate decision trees (MDTs), in par-
ticular, classes of MDTs determined by the language
of relations that can be used to split feature space.
An abductive explanation (AXp) of the classification
of a particular instance, viewed as a set of feature-
value assignments, is a minimal subset of the in-
stance which is sufficient to lead to the same deci-
sion. We investigate when finding a single AXp is
tractable. We identify tractable languages for real,
integer and boolean features. Indeed, in the case
of boolean languages, we provide a P/NP-hard di-
chotomy.

1 Background

Decision trees (DTs) are a classical family of ML
models. There is considerable interest in their mul-
tivariate extension (MDTs) in which feature-space
is split according to conditions on several features
rather than on a single feature (Brodley and Utgoff
1995; Zhu et al. 2020; Canete-Sifuentes, Monroy,
and Medina-Pérez 2021). For example, in oblique
DTs these conditions are linear inequalities (Heath,
Kasif, and Salzberg 1993; Murthy, Kasif, and
Salzberg 1994; Barros et al. 2014; Wickramarachchi
et al. 2016; Carreira-Perpifidn and Tavallali 2018).
In this paper we study families of MDTs, parame-
terized by the language of possible multivariate con-
ditions, from the point of view of the tractability of
explaining decisions.

A multivariate condition can be seen as a con-
straint which can be decomposed into its scope (a
list £ of features) and its relation of arity |¢|. This al-
lows us to study multivariate decision trees accord-
ing to the language of possible constraint relations.

Definition 1. A multivariate decision tree is a deci-
sion tree in which the condition tested at a node is
a constraint on any number of features. An L-DT is
a multivariate decision tree in which the constraint
relations belong to the language L.

A multivariate DT may be exponentially smaller
than a DT. Consider the case of a parity function s
on n boolean features: trivially an £-DT of depth
one can capture this function provided x € L,
whereas a classical DT would necessarily be of ex-
ponential size.

Tractable constraint languages have been investi-
gated in the context of the Constraint Satisfaction
Problem (CSP). A CSP instance consists of a set of
n variables, each with its domain, together with a
set of constraints, where each constraint is defined
by its scope (a list of variables) and the relation that
must hold on the variables in this scope. The de-
cision version of the CSP consists in determining
whether there exists some assignment to all n vari-
ables in the cartesian product of the domains that
satisfies all the constraints. Given a language £ of
relations, CSP(L) is the subproblem of the decision
version of the CSP in which all relations belong to
the language £. The languages £ we consider are,
as is classical in CSPs, arbitrary sets of relations that
can apply to any variables/features.

As we will see later, testing whether a subset of
the feature assignments comprising the instance is
sufficient to explain the decision involves solving
a constraint satisfaction problem consisting of the
conditions along each path to a leaf corresponding
to a different decision. In classical DT’s these con-
ditions are unary and the resulting CSP is trivial, but
for multivariate conditions, the resulting CSP is, in
general, NP-hard. We will see the close relation-
ship between tractability of explaining £-DTs and
the tractability of CSP(L). However, there is an im-
portant difference. In an MDT, for each edge corre-
sponding to the satisfaction of a relation R there is
an alternate edge corresponding to its complement
relation —R. It follows that in the context of MDTs,
it is important to study languages closed under com-
plement: languages £ such that R € L = —-R € L.
There is large body of work on the characterisa-
tion of languages £ for which CSP(L) € P, culmi-
nating in a dichotomy theorem in the finite-domain



Figure 1: A decision tree corresponding to the classifier
K(x) = -1 V (22 A (mx3 V 24)).

case (Bulatov 2017; Zhuk 2020). This result implies
a similar dichotomy for finite languages closed un-
der complement, but the dichotomy criterion does
not provide an explicit description of the tractable
cases.

Although DTs are sometimes considered to be in-
herently interpretable, it has recently been shown
that DT paths can exhibit significant redundancy,
both in theory and in practice, when considered
as explanations of decisions (Izza, Ignatiev, and
Marques-Silva 2022). In this paper, we there-
fore study the notion of abductive explanation
(AXp) (Shih, Choi, and Darwiche 2018; Ignatiev,
Narodytska, and Marques-Silva 2019) which can
provide a more succinct explanation of a particular
decision than the (M)DT path corresponding to the
decision (Izza, Ignatiev, and Marques-Silva 2022).

Definition 2. Let k be a classifier and v a feature-
vector. A weak AXp (weak abductive explanation)
of the decision k(v) = cis a subset S of the features
such that any assignment y that agrees with v on
the features in S satisfies k(y) = c¢. An AXp of a
decision is a subset-minimal weak AXp.

Example 1. Consider the classifier k(x) = -1 V
(2 A (mx3 V 24)) Wwhere 21, o, 23,24 € {0,1} are
boolean features. kK can be represented by the de-
cision tree in Figure 1. An abductive explanation
(AXp) for the decision x(1,1,1,1) = 1is {xo, 24}
since any feature-vector 'y with yo = y4 = 1 satis-
fies k(y) = 1 (but neither yo = 1 nor ys, = 1 alone
is sufficient to guarantee k(y) = 1). This AXp is
half the length of the path in the DT of Figure I cor-
responding to this decision (i.e. the leftmost path).

The need to apply formal reasoning to explainable
artificial intelligence (XAI), and in particular to de-
cisions taken by ML models, has been pointed out
by many researchers (Guidotti et al. 2019; Miller
2019; Marques-Silva and Ignatiev 2022; Amgoud
and Ben-Naim 2022). The computational complex-
ity of finding abductive explanations is an active

field of research in the application of formal reason-
ing to explaining decisions taken by classifiers (Au-
demard et al. 2022; Barcel6 et al. 2020; Cooper and
Marques-Silva 2023; Huang et al. 2022; Ignatiev,
Narodytska, and Marques-Silva 2019; Wildchen et
al. 2021). Izza et al (Izza, Ignatiev, and Marques-
Silva 2022) showed that finding an AXp of a deci-
sion taken by a DT is in P. (This corresponds to the
case in which all constraints are unary , i.e. of the
form x; € S for some subset S of the domain of
x;). In this paper we explore the tractability of this
problem for MDTs parameterised by the constraint
language £. We show that, in general, this problem
is NP-hard, but that there are nonetheless many in-
teresting tractable cases.

Let WAXPDT(L) denote the problem of deciding
whether a set of features is a weak AXp for a given
decision taken by a £-DT, where L is a language
of constraint relations. As we show in Section 2,
whenever WAXPDT (L) € P, there is a polynomial-
time algorithm to find an AXp: starting with the set
of all features, for each feature test whether deleting
the feature still leaves a weak AXp (Chen and Toda
1995; Cooper and Marques-Silva 2023).

When L is the set of unary constraints, then an £-
DT can be viewed as a classical DT. In this case,
WAXPDT(L) is known to be tractable (Izza, Ig-
natiev, and Marques-Silva 2022). After identify-
ing, in Section 2, several languages £ for which
WAXPDT(L) is tractable, in Sections 3 and 4, we
describe a dichotomy theorem in the case of boolean
languages. In Section 5 we consider a different
type of abductive explanation and show that the di-
chotomy theorem for boolean languages also holds
for this type of explanation.

2 Tractable explaining of decision tree
decisions

We begin by recalling a simple algorithm to
find minimal subsets satisfying a monotone prop-
erty (Chen and Toda 1995). We say that a property
H is monotone if for all sets S C T, H(S) = H(T).

Lemma 1. Given an initial finite set So and a mono-
tone property H that can be tested in polynomial
time, a minimal subset S of Sy satisfying H can be
found in polynomial time.

Proof. The following so-called ‘deletion’ algorithm
finds a minimal S C Sj by testing |Sp| times the
property .

for each element e € S :
if H(S\ {e}) then S « S\ {e}



The following corollary follows from the fact that
being a weak AXp is a monotone property and that
the set of all features is trivially a weak AXp (and
hence can be used as the initial set Sy in the deletion
algorithm).

Corollary 1. For any family of classifiers, finding a
single AXp is polytime if testing whether a subset of
features is a weak AXp is in P.

We assume that an MDT in £-DT is represented
as a binary tree in which each leaf node is labelled
by a class and each internal node is linked to its two
child-nodes by edges labelled respectively by a rela-
tion R € L and its complement =R € L. The as-
sumption of an explicit representation of —R avoids
technical issues related to the possible large dispar-
ity between the sizes of the explicit representation
of =R and its implicit representation as the comple-
ment of R. In the following proposition, we do not
impose a fixed representation of relations (as a table
of tuples or as a formula) but we do assume the same
representation of relations in CSP(£) and in MDTs
in £L-DT.

Given an MDT, we use the notation path(a) to
represent the set of conditions satisfied on the path
from the root to a leaf a. Let Asst represent
all unary constraints consisting of assignments, i.e.
x; = u for some feature x; and some constant w.
We can view a feature-vector v as a set of liter-
als (i.e. variable-value assignments). For a fixed
feature-vector v, it will be convenient to interpret a
set X of features as a partial assignment, i.e. the set
of literals corresponding to the subset of v on these
variables.

Proposition 1. Let L be a language such that L is
closed under complement. Suppose that L U Asst
C C where CSP(C) € P. Then WAXPDT(L) € P
and an AXp of any decision taken by an L-DT can
be found in polynomial time.

Proof. Let  be the classifier defined by an £-DT
and consider a decision k(v) = c¢ to be explained.
By Corollary 1, we only need to show that we can
test that a set X is a Weak AXp in polynomial time.
Testing whether X is a Weak AXp can be achieved
by testing whether for all leaves « corresponding to a
decision different to ¢, X (considered as a partial as-
signment) is incompatible with the set of constraints
path(a). The constraints of path(«) are in £. Fur-
thermore, the partial assignment X can be viewed
as a set of constraints in Asst, so this test of incom-
patibility is a CSP with constraints in £ U Asst, and
hence, by the hypotheses £ U Asst C C and CSP(C)
€ P, is solvable in polynomial time. O

In all the following examples, L is closed under
complement, £ U Asst C C and CSP(C) € P, and so
Proposition 1 applies.

Boolean domains We begin with examples in
which features are boolean. Two well-known
boolean languages C for which CSP(C) is tractable
are conjunctions of Horn clauses and conjunctions
of 2-clauses.

Example 2. Let L be the class of Horn clauses and
their negations. The complement (negation) of a
Horn clause is a conjunction of unary clauses and
unary clauses are trivially Horn. C is the class of
conjunctions of Horn clauses, and hence CSP(C) €
P since it corresponds to HORNSAT.

Note that, in general, the complement of a con-
Jjunction of Horn clauses is not the conjunction of
Horn clauses. In Section 4.1 we identify the max-
imal generalisation of the class in Example 2. It
consists of a specific form of conjunctions of Horn
clauses.

Example 3. Let L be the class of 2-conjunctions of
2-clauses (i.e. the conjunction of at most two clauses
each of which contains at most two literals) together
with the complements of such constraints. The com-
plement of a 2-conjunction of 2-clauses is also the
conjunction of 2-clauses, since =((a VvV b) A (¢ V d))
= (maV -e)A(maV=d) A (=bV —e) A (=bV —d).
L U Asst C C where C is the set of conjunctions of
2-clauses. CSP(C) € P by tractability of 2SAT.

In general, the complement of an arbitrary con-
junction of 2-clauses is not the conjunction of 2-
clauses. We identify the maximal generalisation of
this example in Section 4.3.

Finite domains We now consider finite feature-
domains of arbitrary size. Define a two-fan con-
straint to be a constraint of the form z; = aVx; = b,
where a, b are constants.

Example 4. Let L be the class of two-fan con-
straints and their complements, together with all
unary constraints x; € S where S is any sub-
set of the domain of x;. The complement of the
two-fan x; = a V x; = b is the constraint
x; # a ANz # b which is the conjunction of
two unary constraints. Let maj : D® — D be
the function defined by maj(a,b,c) = bifb = ¢
and maj(a,b,c) = a if b # c. It returns the
majority value among its arguments, if it exists,
and its first argument otherwise. A binary rela-
tion R is maj-closed if (a1, as), (b1, b2), (c1,c2) €
R = (maj(a1,b1, c1),maj(az, b, c2)) € R, and all
unary constraints are maj-closed. All two-fan con-
straints and conjunctions of unary constraints are
maj-closed. It is well known that CSP(C) € P where
C is the set of maj-closed relations (Cooper, Cohen,
and Jeavons 1994; Jeavons, Cohen, and Gyssens
1995).



Now suppose that all domains are finite and to-
tally ordered. Define a generalised interval con-
straint (GIC) to be a constraint of the form z; <
a V x; > b, where a, b are constants.

Example 5. Let L be the set of GIC’s and their com-
plements, together with all unary constraints x; € S
where S is any subset of the domain of x. The com-
plement of the GIC x; < a V xz; > b is the con-
straint x; > a A x; < b, which is the conjunc-
tion of unary constraints. A binary relation R is
said to be max-closed if (a1,as),(b1,b2) € R =
(max(aq,b1), max(az, b2)) € R, and all unary con-
straints are max-closed (Jeavons and Cooper 1995).
It is easy to check that GIC’s and their complements
are max-closed. Let C be the class of conjunctions
of max-closed constraints of arity at most two. Then
L U Asst C C and CSP(C) € P since instances in
this class are solved by arc consistency (Jeavons and
Cooper 1995).

Infinite domains We now consider infinite do-
mains, firstly integer domains and then real domains.

Example 6. A unit two variable per inequality
(UTVPI) constraint is of the form ax; + br; < d
where x; and x; are integer variables, the coeffi-
cients a,b € {—1,0,1} and the bound d is an in-
teger constant. The negation of such a constraint is
—ax; —bx; < —(d+1) and is hence also an UTVPI
constraint. A unary assignment x; = d is equivalent
tox; <d N —x; < —d, a conjunction of UTVPI
constraints. Let L be the set of UTVPI constraints
and C the class of constraints consisting of conjunc-
tions of UTVPI constraints. Then LU Asst C C and
it is known that CSP(C) € P (Lahiri and Musuvathi
2005).

Example 7. Let L be the class of linear inequalities
(< or <) over the reals. The complement of a linear
inequality is again a linear inequality and assign-
ments x; = u can be viewed as two linear inequali-
ties (r; < wand —x; < —u). C is the set of systems
of linear inequalities over R. Hence LU Asst C C
and it is well known that CSP(C) € P.

Since an oblique decision tree is an MDT in which
all conditions are linear inequalities, we can deduce
that there is a polynomial-time algorithm to find
an AXp of a decision taken by an oblique decision
tree. The dual of an abductive explanation is a con-
trastive explanation, a minimal set of features that
if changed changes the output of the classifier. It
has been observed that an optimal contrastive ex-
planation, known as a counterfactual explanation or
adversarial example, can be found for oblique deci-
sion trees in polynomial time for a linear error func-
tion, by reduction to Linear Programming (Carreira-
Perpinan and Hada 2021).

Figure 2: A decision tree 77 which has a non-empty AXp
if and only if the constraints C,...,C. are simultane-
ously satisfiable.

3 Tractable boolean languages: the
algebraic approach

Recall that we are interested in languages £ closed
under taking complements, i.e. R € L= —-R € L.

We first study the characterisation of tractable lan-
guages £ for WAXPDT(L) from an abstract alge-
braic point of view, before looking for a detailed
characterisation.

Let f : D*¥ — D be a function. A relation R
has f as a polymorphism (we say that R is closed
under f)if Vt1,...,tx € R, the tuple f(t1,...,tx)
obtained by applying f componentwise to the k vec-
tors t1,...,t; belongs to R (Jeavons, Cohen, and
Gyssens 1997). We say that a language £ has the
polymorphism f if all relations in £ are closed un-
der f.

In the following, let max (min) be the binary func-
tion which returns the maximum (minimum) of its
two arguments. Let maj : {0,1}® — {0, 1} be the
ternary majority function (already introduced in Ex-
ample 4) defined by

) B y ify==z
maj(z,y,z) = { x otherwise

Let miny : {0,1}3 — {0, 1} be the ternary minority
function defined by

miny(x,y,z) = @ ife=y
YT Y o —z otherwise

It returns the minority value if the three values z, y, z
are not all equal.

Theorem 1. Let L be a finite boolean language
closed under taking complements. Then, assuming
P#£NP, WAXPDT(L) € P iff L has either max, min,
maj or miny as a polymorphism.

Proof. <: Suppose that £ has either max, min, maj
or miny as a polymorphism. It is well known that
this implies that CSP(L) € P (Jeavons, Cohen, and



Gyssens 1997). Furthermore, all unary constraints
have these four polymorphisms. Thus, we also have
CSP(L U Asst) € P, and hence by Proposition 1,
WAXPDT(L) € P.

=: We first give a polynomial reduction from
CSP(L) to WAXPDT(L). Let I be an instance of
CSP(L) consisting of constraints C1p,...,C.. We
build a DT T}, shown in Figure 2, as a sequence
of tests corresponding to these constraints. C' is the
test at the root of 77, and each C; (1 = 2,...,¢e) is
the test at the positive child of C;_; (i.e. the node
attained after a positive response to the test C;_1).
The positive child of C, is a leaf node labelled 0. All
negative children of all nodes of T are leaf nodes la-
belled 1. Let x be the function defined by the DT
T;. Now consider any decision k(v) = 1. The
empty set is a weak AXp of this decision iff it is
impossible to simultaneously satisfy the constraints
Ci,...,C,, since the only leaf node labelled 0 can
only be reached if all these constraints are satisfied.
Thus deciding whether ) is a weak AXp amounts to
solving I € CSP(L).

Thus, assuming P#NP, WAXPDT(L) € P only if
L is a sublanguage of one of Schaefer’s tractable
boolean constraint languages (Schaefer 1978). By
Schaefer’s theorem, assuming P#NP, CSP(L) € P
iff £ has (at least) one of the six polymorphisms O,
1, max, min, maj or miny. A relation R is a-closed,
where a € {0, 1}, iff the tuple (a,...,a) (of length
the arity of ) belongs to R. So it is clear that R and
=R cannot both be a-closed. Thus there is no non-
empty language L closed under complement which
is a-closed. Thus £ has either max, min, maj or miny
as a polymorphism. The empty language £ = () triv-
ially has all polymorphisms. O

Theorem 1 shows that there is a complexity di-
chotomy. In the next section we provide a more ex-
plicit characterisation of the tractable boolean lan-
guages.

4 Characterisation of tractable
boolean languages

We now study tractable boolean languages closed
under taking complements, in order to gain a better
insight into the tractable classes identified in Theo-
rem 1. Let £ be the language of boolean relations
having the polymorphism f. It is well known (Jeav-
ons, Cohen, and Gyssens 1995; Jeavons and Cooper
1995; Jeavons, Cohen, and Gyssens 1997) that

1. L, is the set of conjunctions of Horn clauses.

2. Lyax is the set of conjunctions of anti-Horn
clauses.

3. Luiny is the set of conjunctions of affine con-
straints (i.e. linear equations).

4. Lmaj 1s the set of conjunctions of 2-clauses.

In all four cases, L is not closed under complement
and so we require extra work to identify the (unique)
maximal sublanguage closed under complement.

4.1 Horn and anti-Horn

We start with the language £,,;,. By the discussion
above we need to characterise the maximal sublan-
guage of L, closed under complement, or equiva-
lently the Horn formulas whose negation is express-
ible by a Horn formula. We will prove that these
formulas are exactly those in which the sets of neg-
ative literals appearing in clauses are totally ordered
with respect to set inclusion. We call such formulas
star-nested.

Definition 3. A Horn formula 1) is star-nested if and
only if there exist sets of literals L and ) = Sy C
S1 C S C ... C Sy such that

* all literals in L are positive, and

* all literals in S, are negative, and

e every clause C' in 1) is of the form C = \/seSi s

orC=1V (\/Sesi s) withl € L.

To clarify the definition, we point out that each
set .S; may occur more than once in the formula (in
clauses with different positive literals [). In particu-
lar, star-nested Horn formulas may contain any num-
ber of unit clauses with positive literals (which cor-
respond to the set Sy = ). Clearly, since the sets
S, are nested, a star-nested formula with no redun-
dant clauses contains at most one clause consisting
of only negative literals and at most one clause for
each positive literal [ € L.

Proposition 2. Let 1) be a star-nested Horn formula.
Then, —) is equivalent to a star-nested Horn for-
mula.

Proof. We proceed by induction on the number of
sets S;. For ¢ = 0, we have =) = \/,.; =l and
hence — is a star-nested Horn formula. Now, let
q > 0 and 1 be a star-nested Horn formula with sets
L, So,...,Sq. Suppose that the claim is true for all
formulas with strictly fewer sets. If we denote by Lg
the subset of literals in L that appear in unit clauses
of 1, then 9 can be rewritten as

o= (A1) (v ave)

where ¢ is Horn and star-nested with sets L\ Lo, S7\
51,82\ S1,...,8; \ Si. In particular, ¢ is star-
nested with one fewer set than . By induction, —¢
can be assumed to be Horn and star-nested with sets
L', S, ..., S, Then, we have

—) = (\/ ﬁl> v <( N ﬁs)AﬁqS)
l€Lg s€S1



and hence —) is star-nested with sets S = 0, S} =
Spu{-l |l e Lo},..., S8 = S,U{=l|l¢€ Lo},
and L = L' U{-s|s € 51} O

Proposition 3. Let R be a boolean relation such that
min is a polymorphism of both R and —R. Then
R(z1,...,xr) = Y(x1,...,2,.), where ¥ is a star-
nested Horn formula.

Proof. We proceed by induction on the arity r of
R. The claim is true for » = 1 since R is either
empty, complete, or equivalent to a unit clause; in
all cases it is expressible by a star-nested Horn for-
mula. Let » > 1 and suppose that the claim is
true for all relations whose arity is strictly smaller
than r. Let R be a relation of arity r such that
min is a polymorphism of both R and -R. We as-
sume without loss of generality that the all-zeroes
tuple of length r belongs to R. (If this is not the
case, then —R contains this tuple and we prove the
claim on —R instead.) If R is complete then we are
done. Otherwise, its negation =R = {t1,...,tn}
is not empty. Since —R has the polymorphism min
(which we can assume to be of any arity), we have
t = min(¢y,...,t,) € —R. Note that each t; is
a tuple, so here the operation min is applied com-
ponentwise to the set of tuples ¢, ...,t,. The tu-
ple (0,...,0) does not belong to —R, so the set
P = {i < r | t[i] = 1} is not empty. We as-

sume without loss of generality that P = {1,. .., c}.
Since t;[i] = 1forall j € {1,...,n}andi € P,
there exists a relation ) such that = R(x1, ..., x,) =

1 Ao ANxe A Q(Zet,- -, 2). Both @ and —Q
have the polymorphism min (because () is a pro-
jection of =R and —() is a projection of a conjunc-
tion of R with unit clauses; the polymorphism min
is invariant under these transformations) and the ar-
ity of @ is strictly smaller than r. By induction,
there exists a star-nested Horn formula ¢ such that

“Q(Xet1y - &) = W(Teq1,-..,2). Then, we
have
Ry, )
=(z A AT AQ(Tegt, -, X))
=21 V...V VoQ(Tey1, .- Tr)

=21 V...V V(g ..., )

and hence R is equivalent to a star-nested Horn for-
mula by distributivity of V over A. 0

Theorem 2. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism min and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a star-
nested Horn formula

Proof. Follows from Proposition 2 and Proposi-
tion 3. O

We also note that, given in input the list of tuples
of a relation R, star-nested formulas for R and its
complement - R can be constructed in polynomial
time if they exist. The algorithm is given by the re-
cursive constructions used in the proofs of Proposi-
tion 2 and Proposition 3.

An anti-Horn formula is star-nested if replacing
each literal by its negation yields a star-nested Horn
formula. The following directly follows from the ar-
guments above, with only slight adaptations.

Theorem 3. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism max and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a star-
nested anti-Horn formula

4.2 Affine

We now turn our attention to the case of Lyiny, which
is straightforward.

Theorem 4. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism miny and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a linear
equation over GF(2), the finite field of two ele-
ments.

Proof. The fact that any language satisfying (ii) is
closed under taking complements is trivial, as the
complement of the equation a1x1 + ...+ a,x, = b
is ajxy + ...+ a,xz, = 1 — b. In addition, rela-
tions equivalent to linear equations over GF(2) have
the minority polymorphism (Jeavons, Cohen, and
Gyssens 1995). This establishes (ii) = (i).

Now, let R be a relation of arity r such that both
R and —R have the minority polymorphism. If R is
either empty or complete then it is expressible as a
linear equation (0 = 1 or 0 = 0, respectively). Oth-
erwise, both R and —R correspond to the solution
sets of systems of linear equations over GF(2) that
are not degenerate (i.e. at least one equation has a
nonzero coefficient). Since any nondegenerate lin-
ear equation over GF(2) over r variables has exactly
271 solutions, we have |R| = |-R| = 2”71 and
only one equation will remain in both systems after
discarding all redundant equations. This establishes
(i) = (ii) and concludes the proof. O



4.3 Conjunctions of 2-clauses

As mentioned above, over boolean domains a rela-
tion has the polymorphism maj if and only if it is a
conjunctions of 2-clauses (clauses containing up to
two literals). Thus, to complete the study of tractable
cases identified in Theorem 1, we now characterise
those formulas @ such that both & and —=® are ex-
pressible as conjunctions of 2-clauses.

A 2-clause is a clause consisting of at most two
literals and a 2-term is a term consisting of at most
two literals. The following lemma follows immedi-
ately from De Morgans’ theorem.

Lemma 2. A boolean formula ® such that —~® is ex-
pressible as conjunction of 2-clauses is expressible
as a disjunction of 2-terms.

Lemma 3. Suppose that a boolean formula ® is
such that ® is expressible as conjunctions of 2-
clauses and also as a disjunction of 2-terms. Sup-
pose, furthermore, that ® = (a V b) A &1 and
® = (¢ Ad)V Dy. Then there is a non-empty in-
tersection between the two sets of literals {a, b} and

{c,d}.

Proof. With the assignments ¢ = b = 0 and ¢ =
d = 1 we have a contradiction. This can only be
avoided if the sets of literals {a, b} and {c, d} inter-
sect.

Lemma 4. Suppose that a boolean formula ® is
such that ® is expressible as a conjunction of 2-
clauses and also as a disjunction of 2-terms of the
form ® = a V ®y, where a is a literal. Then ®
is of one of the three forms (1) a, (2) a V' b, or (3)
(aVb)A(aVec).

Proof. Suppose that ® = (bV¢) AP,. Settinga = 1
and b = ¢ = 0 leads to a contradiction, so to render
this impossible we must have a = b or a = c. Since
this is true for any conjunct, when ® is expressed
as a conjunction of 2-clauses, we can deduce that
® = A\~ (aVb;) for some literals by, . . ., by,. Since
® is also expressible as a disjunction of 2-terms, we
only need to consider the cases in which m < 2.
When we include the case & = a we have the three
cases (1) a, Q) a Vb, (3) (aVbd)A(aVec). O

We give without proof the analogous lemma ob-
tained by exchanging conjunction and disjunction.

Lemma 5. Suppose that a boolean formula ® is
such that ® is expressible as a disjunction of 2-terms
and also as a conjunction of 2-clauses of the form
® = a APy, where a is a literal. Then ® is of one of
the three forms (1) a, (2) aAb, or (3) (aAb)V (aAc).

Observe that case (3) in Lemma 5 when written as
a conjunction of 2-clauses is a A (b V ¢).

A binary term is a 2-term that contains exactly
two distinct literals.

Lemma 6. Suppose that a boolean formula ® # 1
is such that ® is expressible as a conjunction of 2-
clauses and also as a disjunction of binary terms of
the form ® = (aNc)V(bAd)V ®q, where a, b, ¢, d are
distinct literals. Then ® is of one of the three forms
(1) (aVvd)A(eVd), (2)(aVOADBVe)A(cVd),
or(3) (aVb)A(bVe)A(aVd)A(cVd) for distinct
literals a, b, ¢, d.

Proof. Applying Lemma 3 twice, we know that all
conjuncts, when @ is expressed as a conjunction of
2-clauses, must contain one of a, ¢ and one of b, d.
Since a, b, ¢, d are distinct literals, we can deduce
that the only possible 2-clauses are (a V b), (b V c¢),
(aVd) and (cVvd). Eliminating symmetrically equiv-
alent cases, by exhaustive search, we easily obtain
only three distinct cases, namely @ is of one of the
three forms (1) (aVb)A(cVd), (2) (aVD)A(bVe) A
(evd),or(3) (aVO)A(BVe)A(aVd)A(evd). O

Observe that although a, b, c,d are distinct liter-
als, the variables are not necessarily distinct. For
example, if d = —a then case (1) becomes (a V b) A
(ma V).

Lemma 7. Suppose that a boolean formula ®, ex-
pressible as a non-empty conjunction of 2-clauses,
is also expressible as a non-empty disjunction of bi-
nary terms in which each pair of terms share a lit-
eral. Then either ® is of the form ® = a A\ ®1, where
a is a literal, or ® is of the form (a vV b) A (bV ¢) A
(a V).

Proof. If ® can be expressed as a disjunction of 2-
terms with only one term or two terms (which share
a literal), then P is of the form & = a A ®4, for some
literal a. If ® can be expressed as a disjunction of
three distinct binary terms (where each pair of terms
shares a literal), then @ is of the form (a V b) A (bV
¢) A (a V ¢). There is no set of four distinct binary
terms which satisfy the property that each pair shares
a literal. O

We now obtain the following characterisation the-
orem.

Proposition 4. Let ® be a boolean formula such
that both ® and —® are expressible as non-empty
conjunctions of 2-clauses. Then ® has one of the
following forms (in which a, b, c, d are distinct liter-
als):

(1) a

(2) aVb,

(3) aNb,

(4) an(bVc),
(5) (aVb)A(aVe),

(6) (aVb)A(cVd),
A(bVe)A(evd),

(7) (aVb)
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aVd)A(cVd).

Proof. By Lemma 2, we are interested in ¢ that can
be expressed as a conjunction of 2-clauses and a dis-
junction of 2-terms. If ®, when written as a disjunc-
tion of 2-terms, has a unary term (i.e. ¢ can be writ-
ten in the form a V @), then Lemma 4 applies (cases
(D), (2), (5)). If ® can be expressed as a disjunction
of binary terms, two of which share no literals, then
Lemma 6 applies (cases (6), (7), (9)). If ® can be
expressed as a disjunction of binary terms, each pair
of which share a literal, then Lemma 7 applies (case
(8)). In the subcase of Lemma 7 in which ® can be
written in the form a A ®1, Lemma 5 applies (cases

D), 3), (4)).

The following corollary is simply a more succinct
rewriting of Proposition 4.

Corollary 2. If ® is a boolean formula such that
both ® and —® are expressible as non-empty con-
Junctions of 2-clauses, then ® has one of the three
following forms (in which the four literals are not
necessarily distinct):

(i) (aVb)A(cVd),
(i) (aVO)A(bVe)A(eVd),
(iii) (aVb)A(DVe)A(aVd)A(cVd).

Proof. We can obtain the nine cases listed in Propo-
sition 4 as follows: (1) set a = b = ¢ in (iii), (2) set
a=cand b = din (iii), 3) seta = band ¢ = d in
(iii), (4) set a = d in (iii), (5) set a = c in (iii), (6)
is case (i) (7) is case (ii), (8) set a = d in (ii), (9) is
case (iii). O

It is straightforward to verify that the converse to
Corollary 2 holds, that is, any formula & satisfying
at least one of items (i), (ii) or (iii) is such that both ¢
and —® are expressible as conjunctions of 2-clauses.
In the following, we use the name square 2CNF for
formulas that are expressible as both conjunctions of
2-clauses and disjunctions of 2-terms (characterised
in Proposition 4 and Corollary 2). The name reflects
the fact these formulas are the subformulas of the
square given by item (iii) of Corollary 2 (seeing lit-
erals a,b,c,d as vertices and clauses as edges).

It is worth observing that square 2CNF formulas
include all binary relations. For example, the rela-
tion a # b can be obtained by setting ¢ = —b and
d=-ain(aVb)ADVe)A(cVd).

Theorem 5. Let L be a boolean constraint lan-
guage. The following are equivalent:

(i) L has the polymorphism maj and is closed un-
der taking complements

(ii) Each relation in L is equivalent to a square
2CNE, i.e. either empty, complete, or express-
ible in one of the three following forms (in
which the four literals are not necessarily dis-
tinct): (i) (aVb)A(cVd), (i) (aVD)A(bVe) A
(eVvd), (iii) (aVD) A (bVe)A(aVd)A(cVd).

4.4 The dichotomy for boolean languages

Bringing together what we have learnt in this sec-
tion, we have the following theorem.

Theorem 6. Let L be a finite boolean language
closed under taking complements. Then, assuming
P#NP, WAXPDT(L) € P iff at least one of the con-
ditions holds:

1. Each relation in L is equivalent to a star-nested
Horn formula

2. Each relation in L is equivalent to a star-nested
anti-Horn formula

3. Each relation in L is equivalent to a linear equa-
tion over GF(2)

4. Each relation in L is equivalent to a square 2CNF
Sformula.

The requirement that £ is finite in Theorem 6
arises from technicalities related to the representa-
tion of infinite languages. Indeed, certain degen-
erate representations for the relations of an infinite
language £ may be problematic from an algorith-
mic perspective. For example, the promise that the
relations of £ are equivalent to star-nested Horn for-
mulas might not be sufficient to ensure tractability
(or even membership in NP) if they are encoded in a
way that makes even the most elementary relational
operations NP-hard. However, this theorem is still
true for infinite languages if one makes the mild as-
sumptions that (i) relations equivalent to linear equa-
tions are always represented as such, and (ii) the
representation used for relations equivalent to star-
nested Horn/anti-Horn formulas allows for checking
in polynomial time whether a given assignment ex-
tends to a tuple.

Example 8. Consider the language L of Exam-
ple 3, which consists of all 2-conjunctions of 2-
clauses. Now, extend L with pseudo-boolean con-
straints a + b + ¢ > 2 for any literals a, b, c, where
summation is over 7. This larger language L' is
closed under taking complements (the complement
ofa+b+4+c>2is—a+-b+—-c>2), and all con-
straints in L' can be expressed as square 2CNF for-
mulas because a+b+c > 2 = (aVb)A(bVe)A(eVa).
Therefore, by Theorem 6 we have WAXPDT(L') € P.
However, no quaternary pseudo-boolean constraint
a+b+c+d>kwithl <k < 4can be expressed
as a square 2CNF formula. In fact, adding any
such constraint to L would cause the correspond-
ing WAXPDT problem to become NP-complete by



Theorem 6 as the resulting language would violate
each of the four tractability conditions.

5 Path-based explanations

Izza et al. (Izza, Ignatiev, and Marques-Silva 2022)
introduced the notion of path-based explanations for
decision trees: a path-based explanation is a subset
of the conditions on a path to a leaf. Since they
study DT’s in which conditions are arbitrary unary
constraints of the form x; € S, this is also the ba-
sic building block of path explanations. Such expla-
nations are potentially more useful to the user than
an AXp which is composed of literals of the form
x; = u. We generalize the notion of path-based ex-
planations to MDT’s, before showing that the P/NP-
hard dichotomy for boolean languages also holds for
this alternative notion of explanation. Recall that we
use path(cv) to represent the set of conditions satis-
fied on the path from the root to a leaf o of a MDT.

Definition 4. Let k be a classifier calculated by an
MDT, v a feature-vector, and « the leaf of the MDT
attained when calculating k(v). A weak APXp
(weak abductive path explanation) of the decision
k(x) = c is a subset P of the conditions path(c)
such that any assignment y that satisfies the condi-
tions P also satisfies k(y) = c¢. An APXp (abductive
path explanation) of a decision is a subset-minimal
Weak APXp.

Let wAPXpDT(L) denote the problem of decid-
ing whether a set of constraints is a weak APXp
for a given decision taken by an L£-DT. We can
deduce from Lemma 1 that finding an APXp of a
decision taken by an L£-DT is polynomial-time if
wAPXpDT(L) € P. We omit the proof of the fol-
lowing theorem since its proof is almost identical to
the proof of Theorem 1.

Theorem 7. Let L be a finite boolean language
closed under taking complements. Then, assuming
P#£NP, WAPXPDT(L) € P iff L has either max, min,
maj or miny as a polymorphism.

Corollary 3. Let L be a finite boolean lan-
guage closed under taking complements. Then
WAPXPDT(L) € P iff WAXPDT(L) € P

It follows that we have the same tractable-
explainability dichotomy for boolean languages for
path-based explanations (APXp’s) as for instance-
based explanations (AXp’s) (Theorem 6).

6 Conclusion

We have shown the close link between classes of
multivariate decision trees for which decisions can
be explained in polynomial time and tractable con-
straint languages closed under complement. We
have shown that tractable explainability applies to

existing and well-studied classes of MDTs, such as
oblique DTs, but also to novel classes of MDTs.
Such novel classes provide generalisations of clas-
sical DTs in that branching is possible not only on
the value of a single variable but also according to
specific (non-linear) conditions on two or more vari-
ables.

Interesting open questions concern the evalua-
tion of the practical utility (Cafiete-Sifuentes, Mon-
roy, and Medina-Pérez 2021; Li, Dong, and Kothari
2005) and the theoretical computational power of
such generalised DTs. There is a rich history
of the study of MDTs with linear conditions as
a computational model, such as bounds on the
depth of such decision trees to test the equality of
two sets (Reingold 1972). An avenue of future
work is a similar theoretical study of the compu-
tational power of MDTs with generalised interval
constraints, two-fan constraints, UTVPI constraints,
star-nested Horn constraints (studied in Section 4.1),
or square 2CNF formulas (studied in Section 4.3)
to determine whether there is a substantial gain in
depth or size when compared with classical DTs.

Our P/NP-hard dichotomy for boolean languages
closed under complement is an interesting theoreti-
cal result which may find applications in other do-
mains. This dichotomy for boolean languages can
also be seen as a foundation on which to build a
characterisation of tractable finite-domain languages
closed under complement.

An independent question is the so-called recog-
nition problem: given an arbitrary multivariate DT,
determine whether the set of constraints it uses is
a sublanguage of one of the tractable languages we
have identified. It is reasonable to assume that this
problem would be solved off-line, if at all.
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