
Propagation via Kernelization: the Vertex Cover
Constraint

Clément Carbonnel and Emmanuel Hebrard

LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France

Abstract. The technique of kernelization consists in extracting, from an instance
of a problem, an essentially equivalent instance whose size is bounded in a pa-
rameter k. Besides being the basis for efficient parameterized algorithms, this
method also provides a wealth of information to reason about in the context of
constraint programming. We study the use of kernelization for designing prop-
agators through the example of the Vertex Cover constraint. Since the classic
kernelization rules often correspond to dominance rather than consistency, we
introduce the notion of “loss-less” kernel. While our preliminary experimental
results show the potential of the approach, they also show some of its limits. In
particular, this method is more effective for vertex covers of large and sparse
graphs, as they tend to have, relatively, smaller kernels.

1 Introduction

The fact that there is virtually no restriction on the algorithms used to reason about
each constraint was critical to the success of constraint programming. For instance,
efficient algorithms from matching and flow theory [2, 14] were adapted as propagation
algorithms [16, 18] and subsequently lead to a number of successful applications. NP-
hard constraints, however, are often simply decomposed. Doing so may significantly
hinder the reasoning made possible by the knowledge on the structure of the problem.
For instance, finding a support for the NVALUE constraint is NP-hard, yet enforcing
some incomplete propagation rules for this constraint has been shown to be an effective
approach [5, 10], compared to decomposing it, or enforcing bound consistency [3].

The concept of parameterized complexity is very promising in the context of prop-
agating NP-hard constraints. A study of the parameterized complexity of global con-
straints [4], and of their pertinent parameters, showed that they were a fertile ground for
this technique. For instance, a kernelization of the NVALUE constraint was introduced
in [12], yielding an FPT consistency algorithm. A kernel is an equivalent instance of a
problem whose size is bounded in a parameter k. If a problem has a polynomial-time
computable kernel, then it is FPT since brute-force search on the kernel can be done
in time O∗(f(k)) for some computable function f . Moreover, kernelization techniques
can provide useful information about suboptimal and/or compulsory choices, which can
be used to propagate. In this paper we consider the example of the vertex cover prob-
lem, where we want to find a set of at most k vertices S of a graph G = (V,E) such
that every edge of G is incident to at least one vertex in S. This problem is a long-time

favourite of the parameterized complexity community and a number of different ker-
nelization rules have been proposed, along with very efficient FPT algorithms (the most
recent being the O(1.2738k + k|V |) algorithm by Chen, Kanj and Xia [7]).

Since the complement of a minimum vertex cover is a maximum independent set,
a VERTEXCOVER constraint can also be used to model variants of the maximum in-
dependent set and maximum clique problems with side constraints modulo straightfor-
ward modeling tweaks. Among these three equivalent problems, vertex cover offers the
greatest variety of pruning techniques and is therefore the most natural choice for the
definition of a global constraint. Through this example, we highlight the “triple” value
of kernelization in the context of constraint programming:

First, some kernelization rules are, or can be generalized to, filtering rules. Since the
strongest kernelization techniques rely on dominance they cannot be used directly for
filtering. Therefore, we introduce the notion of loss-less kernelization which preserves
all solutions and can thus be used in the context of constraint propagation. Moreover,
we show that we can use a more powerful form of kernel, the so-called rigid crowns to
effectively filter the constraint when the lower bound on the size of the vertex cover is
tight. We discuss the various kernelization techniques for this problem in Section 3.

Second, even when it cannot be used to filter the domain, a kernel can be sufficiently
small to speed up lower bound computation, or to find a “witness solution” and some-
times an exact lower bound. We also show that such a support can be used to obtain
stronger filtering. We introduce a propagation algorithm based on these observations in
Section 4. Along this line, the kernel could also be used to guide search, either using
the witness solution or the dominance relations on variable assignments.

Third, because a kernel garantees a size at most f(k) for a parameter k, one can
efficiently estimate the likelihood that these rules will indeed reduce the instance. We
report experimental results on a variant of the vertex cover problem in Section 5. These
experiments show that, as expected, kernelization techniques perform better when the
parameter is small. However, we observe that the overhead is manageable, even in unfa-
vorable cases. Moreover, one could dynamically choose whether costly methods should
be applied by comparing the value of the parameter k (in our case, the upper bound of
the variable standing for the size of the cover) to the input size.

2 Background and Notations

An undirected graph is an ordered pair G = (V,E) where V is a set of vertices and
E is a set of edges, that is, pairs in V . We denote the neighborhood N(v) = {u |
{v, u} ∈ E} of a vertex v, its closed neighborhood N+(v) = N(v)∪{v} andN(W) =⋃

v∈W N(v). The subgraph ofG = (V,E) induced by a subset of verticesW is denoted
G[W] = (W, 2W ∩E). An independent set is a set I ⊆ V such that no pair of elements
in I is in E. A clique is a set C ⊆ V such that every pair of elements in C is in E.
A clique cover T of a graph G = (V,E) is a collection of disjoint cliques such that⋃

C∈T C = V . A matching is a subset of pairwise disjoint edges. A vertex cover of G
is a set S ⊆ V such that every edge e ∈ E is incident to at least one vertex in S, i.e.,
S ∩ e 6= ∅. The minimum vertex cover problem consists in finding a vertex cover of
minimum size. Its decision version is NP-complete [11].

The standard algorithm for solving this problem is a simple branch and bound proce-
dure. There are several bounds that one can use, in this paper we consider the minimum
clique cover of the graph (or, equivalently, a coloring of its complement). Given a clique
cover T of a graph G = (V,E), we know that all but one vertices in each clique of T
must be in any vertex cover of G. Therefore, |V | − |T | is a lower bound of the size of
the minimum vertex cover ofG. The algorithm branches by adding a vertex to the cover
(left branch) or adding its neighborhood to the cover (right branch).

A constraint is a predicate over one or several variables. In this paper we consider
the vertex cover problem as a constraint over two variables: an integer variable K to
represent the bound on the size of the vertex cover, and a set variable S to represent
the cover itself. The former takes integer values in a domain D(K) which minimum
and maximum values are denoted K and K, respectively. The latter takes its values
in the sets that are supersets of a lower bound S and subsets of an upper bound S.
Moreover, the domain of a set variable is also often constrained by its cardinality given
by an integer variable |S|. We consider a constraint on these two variables and whose
predicate is the vertex cover problem on the graph G = (V,E) given as a parameter:

Definition 1 (VERTEXCOVER constraint).
VERTEXCOVER[G](K,S) ⇐⇒ |S| ≤ K & ∀{v, u} ∈ E, v ∈ S ∨ u ∈ S

A bound support for this constraint is a solution of the VERTEXCOVER problem.
Since enforcing bound consistency would entail proving the existence of two bound
supports for each element in S \ S and one for the lower bound of K, there is no
polynomial algorithm unless P=NP. In this paper we consider pruning rules that are not
complete with respect to usual notions of consistencies.

3 Kernelization as a Propagation Technique

3.1 Standard Kernelization

A problem is parameterized if each instance x is paired with a nonnegative integer k,
and a parameterized problem is fixed-parameter tractable (FPT) if it can be solved in
time O(|x|O(1)f(k)) for some function f . A kernelization algorithm takes as input a
parameterized instance (x, k) and creates in polynomial time a parameterized instance
(x′, k′) of the same problem, called the kernel, such that

(i) (x′, k′) is satisfiable if and only if (x, k) is satisfiable;
(ii) |x′| ≤ g(k) for some computable function g, and

(iii) k′ ≤ h(k) for some computable function h.

While this formal definition does not guarantee that the kernel is a subinstance of
(x, k), in graph theory kernelization algorithms often operate by applying a succession
of dominance rules to eliminate vertices or edges from the graph. In the case of vertex
cover, the simplest dominance rule is the Buss rule: if a vertex v has at least k+1 neigh-
bors, then v belongs to every vertex cover of size at most k; we can therefore remove
v from the graph and reduce k by one. Applying this rule until a fixed point yields an
elementary kernel that contains at most k2 edges and 2k2 non isolated vertices [6]. A

more refined kernelization algorithm works using structures called crowns. A crown of
a graph G = (V,E) is a partition (H,W, I) of V such that

(i) I is an independent set;
(ii) There is no edge between I and H , and

(iii) There is a matching M between W and I of size |W |.

Every vertex cover of G[W ∪ I] has to be of size at least |W | because of the match-
ing M . Since I is an independent set, taking the vertices of W over those of I into the
vertex cover is always a sound choice: they would cover all the edges between W and
I at minimum cost and as many edges in G[H ∪W] as possible. A simple polynomial-
time algorithm that finds a crown greedily from a maximal matching already leaves an
instance G[H] with at most 3k vertices [1]. A stronger method using linear program-
ming yields a (presumably optimal) kernel of size 2k [15].

3.2 Loss-less Kernelization

The strongest kernelization rules correspond to dominance relations rather than incon-
sistencies. However, the Buss rule actually detects inconsistencies, that is, vertices that
must be in the cover. We call this type of rules loss-less as they do not remove solutions.
We can extend this line of reasoning by considering rules that do not remove solutions
close to the optimum: for the VERTEXCOVER constraint, the variable K is likely to be
minimized and the situation where all solutions are close to the optimum will inevitably
arise. This can be formalized in the context of subset minimization problems, which ask
for a subset S with some property π of a given universe U such that |S| ≤ k. In the next
definition we denote by opt the cardinality of a minimum-size solution.

Definition 2. Given an integer z and a subset minimization problem parameterized by
solution size k, a z-loss-less kernel is a partition (H,F,R, I) of the universe U where

– F is a set of forced items, included in every solution of size at most opt+z;
– R is a set of restricted items, intersecting with no solution of size at most opt+z;
– H is a residual problem, whose size is bounded by a function in k and
– I is a set of indifferent elements, i.e., if i ∈ I , then φ is a solution of size at most
k − 1 if and only if φ ∪ i is a solution.

An∞-loss-less kernel is simply said to be loss-less. The Buss kernel is a loss-less
kernel for vertex cover that never puts any vertices in R (F contains vertices of degree
strictly greater than k, and I contains isolated vertices). In the case of vertex cover, the
setR is always empty unless z = 0. Note that loss-free kernels introduced in the context
of backdoors [17] are different since they only preserve minimal solutions; for subset
minimization problems those kernels are called full kernels [9].

A kernel for vertex cover that preserves all minimum-size solutions has been intro-
duced in [8]. In our terminology, this corresponds to a 0-loss-less kernel. Interestingly,
this kernelization is based on a special type of crown reduction but yields a kernel of
size 2k (matching the best known bound for standard kernelization). The idea is to
consider only crowns (H,W, I) such that W is the only minimum-size vertex cover of

G[W ∪ I], as for this kind of crown vertices of W are always a strictly better choice
that those of I . Those crowns are said rigid. The authors present a polynomial-time
algorithm that finds the (unique) rigid crown (H,W, I) such that H is rigid crown free
and has size at most 2k. Their algorithm works as follows. First, build fromG = (V,E)
the graph BG with two vertices vl, vr for every v ∈ V and two edges {vl, ur}, {ul, vr}
for every edge {v, u} ∈ E. Compute a maximum matching M of BG (which can be
done in polynomial time via the Hopcroft-Karp algorithm [14]). Then, if D is the set of
all vertices in BG that are reachable from unmatched vertices via M -alternating paths
of even length, a vertex v inG belongs to the independent set I of the rigid crown if and
only if vl and vr belong to D. This algorithm is well suited to constraint propagation as
bipartite matching algorithms based on augmenting paths are efficient and incremental.

3.3 Witness Pruning

Last, even if the standard kernel uses dominance relations, it can indirectly be used for
pruning. By reducing the size of the problem it often makes it possible to find an optimal
vertex cover relatively efficiently. This vertex cover gives a valid (and maximal) lower
bound. Moreover, given an optimal cover S we can find inconsistent values by asserting
that some vertices must be in any cover of a given size.

Theorem 1. if S is an optimal vertex cover of G = (V,E) such that there exists v ∈
S, J ⊆ N(v) \ S with N(J) ⊆ N+(v) then any vertex cover of G either contains v or
at least |S|+ |J | − 1 vertices.

Proof. Let k be an upper bound on the size of the vertex cover, v ∈ S be a vertex in an
optimal vertex cover S. Consider J ⊆ N(v) \ S such that N(J) ⊆ N+(v). Suppose
there exists a vertex cover S′ such that |S′| < |S|+ |J |−1 and v /∈ S′. S′ must contain
every node in N(v) and hence in J . However, we can build a vertex cover of size at
most |S| − 1 by replacing J by v, since V \ S and thus J are independent sets. ut

If we can manage to find a minimum vertex cover S, for instance when the kernel
is small enough so that it can be explored exhaustively, Theorem 1 entails a pruning
rule. If we find a vertex v ∈ S and a set J ∈ N(v) \ S with N(J) ⊆ N+(v) and
|J | > k − |S| then we know that v must be in all vertex covers of size ≤ k.

4 A Propagation Algorithm for VERTEXCOVER

In this section we give the skeleton of a propagation algorithm for the VERTEXCOVER
constraint based on the techniques discussed in Section 3.

Algorithm 1 takes as input the set variable S standing for the vertex cover, an integer
variable K standing for the cardinality of the vertex cover, and three parameters: the
graph G = (V,E), an integer λ, and a “witness” vertex cover ω initialised to V .

The pruning in Line 1 is a straightforward application of the definition: the neigh-
borhood of vertices not in the cover must be in the cover. Then, in Line 2, we apply
the∞-loss-less kernelization (Buss rule) described in Section 3.2 yielding a pair with a
residual graph Hr and a set of nodes F r that must be in the cover.

Algorithm 1: PropagateVertexCover(S,K,G = (V,E), λ, ω)

S ← S ∪N(V \ S);1

Hr, F r ← BussKernel(G[S \ S]);2

if ω 6⊆ S ∨ |ω ∪ S| ≥ K then3

Hk,W k ← Kernel(Hr);4

if λ > 0 then ω ← F r ∪W k∪ VertexCover(Hk, λ);5
if ω is optimal then K ← |ω|;6

else K ← max(K, |F r|+ |F k|+LowerBound(Hk));7

if K = K then8

Hr, F r, Rr ← RigidKernel(G[S \ S]);9

S ← S \Rr;10

else if ω is optimal &K −K ≤ 2 then S, S ← WitnessPruning(G,ω);11
S ← S ∪ F r;12

Next, if Condition 3 fails, there exists a vertex cover (ω∪S) of size strictly less than
K. As a result, the pruning from rigid crowns cannot apply. When the cover witness
is not valid, we compute, in Line 4, a standard kernel with the procedure Kernel(G)
using crowns, as explained in Section 3.1. We then use this kernel to compute, in Line 5,
a new witness using the procedure VertexCover(G,λ) which is the standard brute-
force algorithm described in Section 2. We stop the procedure when we find a vertex
cover whose size is stricly smaller than the current upper bound, or when the search
limit of λ, in number of nodes explored by the branch & bound procedure, is reached.
In the first case, we know that the lower bound cannot be tight hence the constraint
cannot fail nor prune further than the loss-less kernel. The second stopping condition is
simply used to control the amount of time spent within the brute-force procedure.

If the call to the brute-force procedure was complete, we can conclude that the
witness cover is optimal and therefore a valid lower bound (Line 6). Otherwise, we
simply use the lower bound computed at the root node by VertexCover, denoted
LowerBound in Line 7. If the lower bound is tight, then we can apply the pruning
from rigid crowns as described in Section 3.2. Algorithm RigidKernel returns a
triple Hr, F r, Rr of residual, forced and restricted vertices, respectively. Finally we
apply a restriction to pairs of the pruning corresponding to Theorem 1 in Line 11, and
apply the pruning on the lower bound of S corresponding to the forced nodes computed
by BussKernel and/or RigidKernel.

5 Experimental Evaluation

We experimentally evaluated our propagation algorithm on the “balanced vertex cover
problem”. We want to find a minimum vertex cover which is balanced according to a
partition of the vertices. For instance, the vertex cover may represent a set of machines
to shut down in a network so that all communications are interrupted. In this case,
one might want to avoid shutting down too many machines of the same type, or same

client, or in charge of the same service, etc. By varying the degree of balance we can
control the similarity of the problem to pure minimum vertex cover. We used a range of
graphs from the dimacs and snap repositories. For each graph G = (V,E), we post
a VERTEXCOVER constraint on the set variable ∅ ⊆ S ⊆ V .

Table 1: Comparison of approaches on the “Balanced Vertex Cover” problem.
Decomposition Clique Cover Kernel Pruning Kernel & witness VERTEXCOVER

#s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd
balancing constraint: tight

3 kel 2 2.00 9.7 0.4M 2 2.00 10.6 0.2M 2 2.00 9.1 0.2M 2 2.00 26.6 0.1M 2 2.00 41.0 0.1M
15 p h 12 5.73 8.6 0.5M 10 5.20 15.6 1.1M 11 5.20 11.2 0.6M 11 4.67 27.7 0.4M 11 4.67 28.8 0.4M
12 bro 9 3.67 0.1 11K 9 3.67 0.1 4K 9 3.67 0.1 3K 9 3.67 0.1 2K 9 3.67 0.2 2K
4 joh 1 0.00 0.1 10K 1 0.00 0.0 1K 1 0.00 0.0 1K 1 0.00 0.0 971 1 0.00 0.0 937
15 san 15 10.87 12.2 1.8M 11 9.80 13.3 1.9M 11 9.80 13.7 1.1M 11 9.80 10.8 0.6M 11 9.80 12.4 0.6M
7 c-f 3 10.29 0.2 9K 3 10.29 0.2 18K 3 10.29 0.1 7K 3 10.29 0.1 7K 3 10.29 0.1 7K
6 ham 4 9.00 26.3 2.2M 3 9.00 3.1 0.3M 3 9.00 3.4 0.2M 3 9.00 5.1 0.2M 3 9.00 5.1 0.2M
32 gra 29 40.47 24.6 2.5M 28 40.47 19.8 3.5M 28 39.22 17.6 2.0M 28 40.47 18.9 1.5M 28 41.22 9.8 0.5M
4 man 3 91.00 1.1 33K 3 91.00 1.1 51K 3 91.00 0.9 31K 3 91.00 1.4 31K 3 91.00 1.5 30K
5 mul 5 8.40 7.2 1.8M 4 7.60 41.4 6.3M 3 7.60 24.6 2.1M 3 7.60 25.1 2.1M 3 7.60 19.2 1.7M
3 fps 3 105.00 0.1 7K 3 103.67 40.5 4.2M 3 103.67 56.0 3.2M 3 103.67 61.0 3.2M 3 103.67 14.9 0.8M
3 zer 3 44.67 11.9 2.6M 3 44.67 11.4 1.6M 3 44.67 14.7 1.4M 3 44.67 13.9 1.4M 3 44.67 8.2 0.9M
3 ini 3 191.33 57.5 6.1M 3 191.33 72.7 6.1M 3 191.33 82.3 6.1M 3 191.33 82.6 6.1M 3 191.33 82.6 6.1M
5 p2p 5 38.60 1.0 8K 5 22.80 36.1 23K 2 11.80 2.8 11K 2 11.80 3.1 11K 2 11.80 3.4 11K
5 ca- 5 14.40 31.6 0.2M 4 9.00 35.6 0.2M 4 1.80 99.3 0.2M 3 2.60 102.3 0.2M 3 1.80 96.1 0.2M

balancing constraint: medium
3 kel 2 1.67 24.1 1.2M 2 0.67 35.9 1.0M 2 0.67 54.7 1.0M 2 0.00 32.8 2K 2 0.00 32.1 2K
15 p h 12 3.07 21.5 1.2M 10 1.27 24.3 0.7M 11 1.27 34.4 0.6M 10 0.87 18.6 60K 10 0.87 18.8 59K
12 bro 9 0.83 15.6 1.9M 8 0.17 17.8 1.0M 8 0.17 25.4 1.0M 8 0.17 23.9 451 8 0.17 22.2 450
4 joh 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11
15 san 15 8.33 35.6 5.0M 7 2.67 30.4 2.4M 7 2.73 33.5 1.6M 7 1.53 42.8 0.4M 7 1.53 43.1 0.4M
7 c-f 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40
6 ham 4 4.67 0.2 53K 2 4.67 0.0 1K 2 4.67 0.0 360 2 4.67 0.0 359 2 4.67 0.0 359
32 gra 26 29.28 32.8 2.7M 22 26.50 21.9 2.2M 22 24.44 23.8 1.4M 22 24.25 21.5 0.9M 22 24.25 23.0 0.9M
4 man 3 89.00 29.3 1.3M 3 88.75 44.6 1.6M 3 88.75 21.1 0.6M 2 88.50 29.6 0.6M 2 88.50 33.4 0.6M
5 mul 5 1.20 0.3 61K 1 1.20 0.0 1K 1 1.20 0.0 682 1 1.20 0.0 682 1 1.20 0.0 560
3 fps 3 103.00 0.0 250 1 102.67 0.0 429 1 102.67 0.0 404 1 102.67 0.0 404 1 102.67 0.0 261
3 zer 3 3.33 37.4 8.2M 1 3.00 11.6 1.5M 1 3.00 25.4 1.5M 1 3.00 14.5 1.5M 1 3.00 14.5 1.5M
3 ini 3 189.00 0.6 65K 1 189.00 0.0 4K 1 189.00 0.0 3K 1 189.00 0.0 3K 1 189.00 0.0 3K
5 p2p 5 35.40 1.0 8K 5 15.80 38.3 26K 1 4.40 3.3 11K 1 4.40 3.5 11K 1 4.40 3.8 11K
5 ca- 5 14.40 0.7 5K 4 8.60 2.3 8K 3 0.40 72.6 18K 2 1.20 74.1 16K 2 0.40 64.0 15K

balancing constraint: loose
3 kel 2 1.67 43.3 1.8M 2 0.67 20.1 0.6M 2 0.67 30.4 0.6M 2 0.00 27.7 447 2 0.00 28.0 419
15 p h 12 2.40 20.6 1.2M 10 0.73 32.1 1.0M 11 0.73 47.1 1.0M 9 0.27 18.0 3K 9 0.27 18.0 3K
12 bro 9 0.67 16.2 1.9M 8 0.00 10.6 0.7M 8 0.00 15.8 0.7M 8 0.00 13.6 264 8 0.00 13.6 264
4 joh 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11
15 san 15 8.20 28.1 4.0M 7 2.13 40.9 2.3M 7 2.27 29.6 1.4M 5 0.27 36.8 3K 5 0.27 36.8 3K
7 c-f 2 0.71 0.0 1K 0 0.00 0.6 98K 0 0.00 0.1 7K 0 0.00 0.2 7K 0 0.00 0.2 7K
6 ham 4 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118
32 gra 23 18.97 29.4 1.9M 17 12.84 12.9 0.8M 17 12.06 15.6 0.5M 17 11.56 14.5 66K 17 11.50 17.3 0.1M
4 man 3 88.50 38.1 0.8M 3 88.50 8.5 0.3M 3 87.75 30.6 0.8M 2 87.00 43.5 0.8M 2 86.50 52.4 0.8M
5 mul 5 0.00 0.0 93 0 0.00 0.0 92 0 0.00 0.0 91 0 0.00 0.0 91 0 0.00 0.0 91
3 fps 3 1.67 1.1 0.1M 1 1.00 12.6 1.0M 1 1.00 13.4 0.5M 1 1.00 13.9 0.5M 1 0.67 53.5 2.1M
3 zer 3 2.00 0.2 48K 0 1.00 2.6 0.4M 0 1.00 2.7 0.2M 0 1.00 2.6 0.2M 0 1.00 0.6 58K
3 ini 3 0.67 6.9 0.5M 0 0.00 20.9 1.3M 0 0.00 28.9 1.0M 0 0.00 31.9 1.0M 0 0.00 11.6 0.5M
5 p2p 5 33.00 1.0 8K 5 13.40 38.3 26K 1 2.00 3.4 11K 1 2.00 3.5 11K 1 2.00 3.9 11K
5 ca- 5 14.40 0.7 5K 4 8.60 2.5 8K 3 0.40 74.0 18K 2 1.20 73.9 16K 2 0.20 69.2 16K

Then, we compute (uniformly at random) a balanced 4-partition {s1, s2, s3, s4} of the
vertices and we post the following constraints: max({|si∩S| | 1 ≤ i ≤ 4})−min({|si∩
S| | 1 ≤ i ≤ 4}) ≤ b. For each graph instance, we generated 3 instances for b ∈
{0, 4, 8} denoted “tight”, “medium” and “loose” respectively. However, the classes p2p
and ca- are much too large for these values to make sense. In this case we used three
ratios 0.007, 0.008 and 0.009 of the number of nodes instead.

We compared 5 methods, all implemented in Mistral [13] and ran on CORE I7
processors with a time limit of 5 minutes:

Decomposition is a simple decomposition in 2-clauses and a cardinality constraint.
Clique Cover uses only Buss kernelization and the clique cover lower bound. It corre-
sponds to non-colored lines in Algorithm 1. The witness is initialised to V and never
changes, and Line 4 is replaced by a simple identity Hk ← Hr. Kernel Pruning uses
kernelization, but no witness cover. It corresponds to Algorithm 1 minus the instruction
line 11, with λ set to 0. Kernel & witness uses kernelization, and the witness cover for
the lower bound K. It corresponds to Algorithm 1 minus the instruction line 11, with λ
set to 5000. VERTEXCOVER is Algorithm 1 with λ set to 5000.

The results of these experiments are reported in Table 1. Instances are clustered by
classes whose cardinality is given in the first column. These classes are ordered from
top to bottom by decreasing ratio of minimum vertex cover size over number of nodes.
We report four values for each class and each method: ‘#s’ is the number of instances of
the class that were not solved to optimality, ‘gap’ is the average gap w.r.t. the smallest
vertex cover found, ‘cpu’ and ‘#nd’ are mean CPU time in seconds and number of nodes
visited, respectively, until finding the best solution. Notice that CPU times and number
of nodes are then only comparable when the objective values (gaps) are equal. We color
the tuples 〈#s, gap, cpu, #nd〉 that are lexicographically minimum for each class1.

Instances with same value of b are grouped in the same sub-table. The “shift” of
colored cells from left to right when going from top to bottom in each subtable was
to be expected since the kernelization is more effective on instances with small vertex
cover. It should be noted that many instances from the dimacs repository are extremely
adverse to our method as they tend to have very large vertex covers. On the other hand,
kernelization is very effective on large graphs from snap.

We can also observe another shift of colored cells from left to right when moving
to a subtable to the next. This was also an expected outcome since the pruning on this
constraint becomes more prevalent when the problem is closer to pure vertex cover.

Last, we can observe that every reasoning step (0-loss-less kernels, lower bound
from the witness and pruning from the witness) improves the overall results.

6 Conclusion

We have shown that the kernelization techniques can be an effective way to reason about
NP-hard constraints that are fixed parameter tractable. In order to design a propagation
algorithm we introduced the notion of loss-less kernel and outlined several ways to ben-
efit from a small kernel. Our experimental evaluation on the VERTEXCOVER constraint
shows the promise of this approach.

1 With a “tolerance” of 1s and 1% nodes.

References

1. Faisal N Abu-Khzam, Michael R Fellows, Michael A Langston, and W Henry Suters. Crown
structures for vertex cover kernelization. Theory of Computing Systems, 41(3):411–430,
2007.

2. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., 1993.

3. Nicolas Beldiceanu. Pruning for the minimum constraint family and for the number of dis-
tinct values constraint family. In CP, pages 211–224, 2001.

4. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper, and T. Walsh. The Parame-
terized Complexity of Global Constraints. In AAAI, pages 235–240, 2008.

5. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Filtering Algorithms for the
NValue Constraint. Constraints, 11(4):271–293, 2006.

6. Jonathan F Buss and Judy Goldsmith. Nondeterminism within pˆ*. SIAM Journal on Com-
puting, 22(3):560–572, 1993.

7. J. Chen, I. A. Kanj, and G. Xia. Improved Parameterized Upper Bounds for Vertex Cover.
In MFCS, pages 238–249, 2006.

8. Miroslav Chlebı́k and Janka Chlebı́ková. Crown reductions for the minimum weighted vertex
cover problem. Discrete Applied Mathematics, 156(3):292–312, 2008.

9. Peter Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny recon-
struction. Theoretical Computer Science, 351(3):337–350, 2006.

10. J.-G. Fages and T. Lapègue. Filtering AtMostNValue with Difference Constraints: Appli-
cation to the Shift Minimisation Personnel Task Scheduling Problem. In CP, pages 63–79,
2013.

11. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

12. S. Gaspers and S. Szeider. Kernels for Global Constraints. In IJCAI, pages 540–545, 2011.
13. E. Hebrard. Mistral, a Constraint Satisfaction Library. In The Third International CSP Solver

Competition, pages 31–40, 2008.
14. J. E. Hopcroft and R. M. Karp. An n5/2 Algorithm for Maximum Matchings in Bipartite

Graphs. SIAM J. Comput., 2(4):225–231, 1973.
15. George L Nemhauser and Leslie E Trotter Jr. Vertex packings: structural properties and

algorithms. Mathematical Programming, 8(1):232–248, 1975.
16. J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In AAAI, pages

362–367, 1994.
17. Marko Samer and Stefan Szeider. Backdoor trees. In AAAI, volume 8, pages 13–17, 2008.
18. W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming: Flow-Based Soft

Global Constraints. Journal of Heuristics, 12(4-5):347–373, 2006.

