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Abstract. Conserved intervals were recently introduced as a measure of
similarity between genomes whose genes have been shuffled during evo-
lution by genomic rearrangements. Phylogenetic reconstruction based on
such similarity measures raises many biological, formal and algorithmic
questions, in particular the labelling of internal nodes with putative an-
cestral gene orders, and the selection of a good tree topology. In this
paper, we investigate the properties of sets of permutations associated
to conserved intervals as a representation of putative ancestral gene or-
ders for a given tree topology. We define set-theoretic operations on sets
of conserved intervals, together with the associated algorithms, and we
apply these techniques, in a manner similar to the Fitch-Hartigan algo-
rithm for parsimony, to a subset of chloroplast genes of 13 species.

1 Introduction

The information contained in the order in which genes occur on the genomes of
different species has proved very useful for inferring phylogenetic relationships
(see [18] for a review). Together with phylogenetic information, ancestral gene
order reconstructions give some clues about the conservation of the functional
organisation of genomes, towards a global knowledge of life evolution. With a few
exceptions [16], phylogeny reconstruction techniques using gene order data rely
on the definition of an evolutionary distance between two gene orders. These dis-
tances are usually computed as the minimal number of rearrangement operations
needed to transform one genome into another, for a fixed set of rearrangement
operations. Since most choices lead quickly to hard problems, the set of opera-
tions is usually restricted to reversals, translocations, fusions or fissions, in which
case a linear-time algorithm exists ([1, 13, 14] and [3] for a review). However, this
choice of rearrangement operations is more dictated by algorithm necessity than
by biological reality, as rearrangements such as transpositions and inverted trans-
positions could be quite common in some genomes (see [6] for heuristics dealing
with these types of rearrangements).

A family of phylogenetic approaches dubbed “distance-based” methods only
rely on the ability to compute pair-wise evolutionary distances between extant
species, which are then fed into an algorithm such as neighbor-joining (see [11]
for a review) to infer a tree topology and branch lengths for the species consid-
ered. While these approaches have proved very useful for phylogenetic inference



[22], they provide information neither about the putative ancestral gene orders
nor about the evolutionary process that led to the extant species. In contrast,
parsimony-based approaches attempt to identify the rearrangement scenario (in-
cluding tree topology and gene orders at the internal nodes) that minimizes the
number of evolutionary events required. This formulation usually leads to much
more difficult computational problems [9], although good heuristics have been
developed for breakpoint [5, 19, 21] and reversal [8, 17, 23] distances. It provides
a candidate explanation, in terms of ancestral gene orders and rearrangements
applied on them, for the modern gene orders. However, these methods only pro-
vide us with one (or a small number of) possible hypothesis about ancestral gene
orders, with no information about alternate optimal or near-optimal solutions.

In this study, we develop the mathematical tools and algorithms required
to describe and infer a set of likely ancestral gene orders at each internal node
of a phylogenetic tree with a given topology. We use the notion of conserved
intervals, introduced in [4], as a measure of similarity for sets of permutations
representing genomes with equal gene contents. In short, a conserved interval is
a generalization of the notion of gene adjacency, corresponding to a constraint
on the ordering of the genes. This type of representation has several properties
that make it is particularly useful in the study of gene order: (i) it is a compact
representation of a rich set of gene orders (e.g. putative ancestral gene orders),
(ii) it provides computationally tractable operations on these sets (some origi-
nally described in [4], others reported here), (iii) it is intimately related to the
reversal distance computation [3], although it behaves well even in the presence
of other types of intra-chromosomal rearrangements like transpositions and in-
verted transposition, and (iv) it is particularly effective at dealing with short
rearrangement events, which seem to be the most common in mitochondrial and
chloroplastic genomes [20].

In Section 2, we introduce the notion of conserved intervals and illustrate
it using a small example. Section 3 reviews the main definitions and properties
associated to conserved intervals, and Section 4 gives new fundamental results
on the operations on sets of conserved intervals, together with the associated
algorithms, in Section 5. In particular, we show how an algorithm, conceptually
similar to the Fitch-Hartigan algorithm ([12, 15]) for character-based parsimony,
can be build upon the defined set of operations. The output of this algorithm is
a hypothesis regarding ancestral gene orders, in the form of a set of conserved
intervals at each node of the tree. The results obtained on chloroplastic genomes,
reported in Section 6, indicate that the algorithm seems effective at capturing
specifically a set of likely ancestral gene orders.

2 Looking for Ancestors

We assume that gene orders are represented by signed permutations where each
element corresponds to a different gene and its sign represents the gene orienta-
tion.
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Definition 1 (Conserved interval [4]). A conserved interval of a set of signed
permutations is an interval [a, b] such that a precedes b, or −b precedes −a, in
each permutation, and the set of elements, without signs, between a and b is the
same in each permutation.

Consider the following genomes P and Q represented by signed permutations
on the set {1, 2, 3, 4, 5, 6}: P = (1 2 3 4 5 6) and Q = (1 − 2 3 − 5 4 6). The
conserved intervals of P and Q are I({P, Q}) = {[1, 3], [3, 6], [1, 6]}. A practical
representation of conserved intervals is to choose one signed permutation of the
set, box its elements, and join the extremities of conserved intervals that are not
the union of smaller ones with larger boxes. For example, the conserved intervals
of P and Q can be represented as:

I1 = 1 2 3 4 5 6

We associate, to such a representation, the set of all signed permutations that
share the same conserved intervals. Graphically, this set can be obtained by
reversals and transpositions that do not “break” any box. The set Perm(I1)
of signed permutations sharing the conserved intervals I1 would thus contains
16 permutations, obtained by reversing elements 2, 4 or 5, or by transposing
elements 4 and 5. (Note that the extreme points 1 and 6 are considered fixed.)

Suppose now that two other signed permutations are added in the set of
genomes under study: R = (1 − 2 − 3 5 4 6) and S = (1 − 3 2 5 − 4 6). Their
conserved intervals are represented as:

I2 = 1 −2 −3 5 4 6

and the set of associated permutations contains also 16 permutations.

P

Q

I

R

S

1 2I

I?

Fig. 1. A Tree Topology for the Permutations {P, Q, R, S}

If we are given the tree topology of Fig. 1, it would seem natural to label the
parent of {P,Q} with I1, and the parent of {R, S} with I2. Indeed, under most
reasonable rearrangement scenarios, the ancestors are respectively in Perm(I1)
and Perm(I2) [4]. What should be the label I of the ancestral node? Computing
the conserved intervals of the permutations {P, Q,R, S} yields the trivial interval
[1, 6]. However, in this example, the two sets of signed permutations associated
to I1 and I2 have a non-empty intersection consisting of the four permutations:
(1 2 3 5 4 6), (1 − 2 3 5 4 6), (1 2 3 5 − 4 6), and (1 − 2 3 5 − 4 6).

Thus, an interesting label for the ancestral node could be the set of conserved
intervals of these four permutations:
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I = 1 2 3 5 4 6

Note that this set contains all conserved intervals of both sets I1 and I2, together
with the adjacency [3, 5]. The distinctive characteristic of the two subgroups of
the tree of Fig. 1 is the alternate ways in which the adjacency [3, 5] is broken.

When the intersection of the two sets is empty, we will show, in Sections 4
and 5, that it is possible to keep a subset of each set of signed permutations,
and then compute conserved intervals of the union of these sets.

3 Basic Properties of Conserved Intervals

Let G be a set of signed permutations, we will denote by I(G) the set of conserved
intervals of G. Sets of conserved intervals are highly structured, which was not
readily apparent with the simple examples of Section 2. For example, consider
the following set G of two signed permutations: P = (1 2 3 4 5 6 7 8 9) and
Q = (1 − 6 − 5 3 4 − 2 − 8 − 7 9). Then the set I(G) is represented by the
following diagram, based on the permutation P .

I(G) = 1 2 3 4 5 6 7 8 9

A conserved interval that is not the union of smaller conserved intervals is called
irreducible. For example, in I(G), all intervals are irreducible except the interval
[2, 6]. Irreducible intervals share at most one endpoint, as made precise by the
following proposition:

Proposition 1 ([4]). Let G be a set of signed permutations. Let [a, b] and [c, d]
be two irreducible intervals of I(G). Then [a, b] and [c, d] are either disjoint,
nested with different endpoints, or overlapping on one element.

Successive irreducible intervals that overlap on one element form chains.
Chains are denoted by the successive common elements of the overlapping in-
tervals, such as the chain [2, 5, 6] in I(G). It is easy to see that each conserved
interval of a set of signed permutations is either irreducible, or is a chain.

Because the set of conserved intervals of a given set of signed permutations
has some structural properties, a collection C of intervals is not necessarily the
set of conserved intervals of a set of signed permutations. However, it is always
possible to construct the smallest collection that contains C, and that is the set
of conserved intervals of a set of signed permutations.

Definition 2 (Closure of a set of intervals). Let U be a set of intervals of
a signed permutation P = (p1, . . . , pn). The closure of U , denoted by U∗, is the
smallest set of intervals containing U and such that, for any pair ([pi, pj ], [pk, pl])
of intervals in U∗, such that i ≤ k ≤ j ≤ l, then [pi, pk], [pk, pj ], [pj , pl] and
[pi, pl] are in U∗, provided that they have more than one element.
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Consider the set of intervals U = {[1, 3], [3, 6], [1, 5], [5, 6]} of the identity
permutation. Its closure is given by: U∗ = {[1, 3], [1, 5], [1, 6], [3, 5], [3, 6], [5, 6]}.

Given a set of intervals I, the maximal set of signed permutations that have
all the conserved intervals of I is denoted by Perm(I). Again, not all sets of
signed permutations can be constructed in this way.

Definition 3 (Saturated set of permutations). A set of signed permuta-
tions G is saturated if G is the set of signed permutations that have all the
conserved intervals of I(G), that is to say G = Perm(I(G)).

For example, the set { (1 −2 3 5 4 6) , (1 2 3 5 −4 6)} is not saturated,
because both permutations (1 2 3 5 4 6) , and (1 −2 3 5 −4 6) share the
same conserved intervals. These four permutations form a saturated set since
they are the only ones that have the conserved intervals:

I = 1 2 3 5 4 6

4 Operations on Sets of Conserved Intervals

We now turn to the problem of computing the conserved intervals of unions
and intersections of sets of signed permutations. The first result is the basis of
a linear-time algorithm to compute the conserved intervals of the union of two
sets of signed permutations.

Theorem 1 (Conserved intervals of a union [4]). Let G1 and G2 be two
sets of signed permutations on the set {1, . . . n}, then I(G1∪G2) = I(G1)∩I(G2).

However, there is no such simple characterization of the conserved intervals
of an intersection of arbitrary sets of signed permutations. In order to have a
dual property, we must assume that the sets G1 and G2 are saturated, but this
will be the case in the algorithms we describe in Section 5.

Theorem 2 (Conserved intervals of an intersection). Let G1 and G2 be
two saturated sets of signed permutations on the set {1, . . . n}. If G1 ∩ G2 6= ∅.
Then I(G1 ∩G2) = (I(G1) ∪ I(G2))∗.

Note that the right hand side of the above equation is well defined, since the
intersection of G1 and G2 is not empty, thus all intervals of I(G1) and of I(G2)
can be represented using the same permutation.

Testing whether G1 ∩ G2 is empty is not elementary, and is at the heart
of the algorithmic complexity of constructing intersections. The next definition
introduces the basic concept of filtering a set of signed permutations with an
interval.

Definition 4 (Filtering sets of permutations). Let [a, b] be an interval of a
signed permutation P , and G a saturated set of signed permutations. The filtered
set G[a,b] is the subset of all signed permutations of G that have the conserved
interval [a, b]. The set of conserved intervals of G[a,b] is denoted by I(G)[a,b].
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For example, consider the following set of conserved intervals, and the corre-
sponding saturated set G.

I = 1 2 3 4 5 6 7 8 .

Let P = (1 3 2 4 5 −7 6 8) . Filtering G with the interval [4,−7] of P yields
the following set of conserved intervals:

I(G)[4,−7] = 1 2 3 4 5 -7 6 8 .

However, filtering G with the interval [1, 3] of P would yield the empty set, since
no permutation of G has the conserved interval [1, 3].

Proposition 2. Let G be a saturated set of signed permutations. Let [a, b] and
[c, d] be two intervals. Then G[a,b] is saturated, and (G[a,b])[c,d] = (G[c,d])[a,b].

Theorem 3. Let G1 and G2 be two saturated sets of signed permutations. Let
J1, . . . , Jk be the set of irreducible conserved intervals of G1, then G1 ∩G2 = ∅
if and only if (I(G2))J1,...,Jk

= ∅. Moreover, if G1 ∩ G2 6= ∅, then we have
I(G1 ∩G2) = (I(G2))J1,...,Jk

.

Together with Proposition 2, this theorem yields an algorithm to compute
the intersection of two saturated sets of signed permutations using successive
filtering. Indeed, if there is a step in which filtering produces an empty result,
then the intersection is empty.

However, even when the intersection is empty, there might still exists a non-
empty subset of, say G1, that shares conserved intervals with G2. Such conserved
intervals are likely to have been shared by a common ancestor. Some care must
be taken in order to properly define these collections. Indeed sets of intervals
can be conflicting:

Definition 5. A set S of conserved intervals is conflicting with respect to a
saturated set G of signed permutations if GS = ∅ and ∀I ∈ S,GS\{I} 6= ∅.

In Section 6 we will see that, when G1 and G2 are filtered with collections
of conserved intervals in which conflicting subsets are removed, we can obtain
ancestral gene orders that are extremely well-defined.

Conjecture 1. Let G1 be a saturated set of signed permutations, and S be the set
of irreducible intervals of G1, then it is possible to identify, in polynomial time,
all conflicting subsets of S with respect to a saturated set of signed permutations
G2.

5 Algorithms

We discuss now the two main algorithmic issues raised in the previous sections:
filtering and ancestors labelling. We first describe how to represent a set of
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conserved intervals as a PQ-tree, then we outline a linear time filtering algorithm.
Finally, we describe an ancestor labelling algorithm based on the principle of the
Fitch-Hartigan parsimony algorithm.

Conserved intervals and PQ-trees. A PQ-tree is a data structure used to
represent in a compact way a set of permutations [7]. Here we adapt this data
structure to represent sets of conserved intervals. This idea was briefly introduced
in [4].

We define a variant of PQ-trees as ordered trees with three types of nodes:
n leaves that are labelled with signed elements of {1, . . . , n}, and internal nodes
that are either round or square. The root is always a square node, and all the
children of a round (resp. square) node are square (resp. round) nodes or leaves.
Moreover, among the children of a square node, the first and last are leaves and
there cannot be two consecutive round nodes. It follows that the total number
of nodes of a PQ-tree is linear in n. The relationship between PQ-trees and
conserved intervals is as follows: a round node represents the free elements and
conserved intervals that are inside a box of the box representation, and a square
node represents a maximal chains of intervals. The children of a square node are
either round nodes, or the endpoints of the irreducible intervals of the maximal
chain it represents. See Fig. 2.

I(G) = 1 2 3 4 5 6 7 8
1

2 3

¤ 4

© 5

6 7

© 8

¤

Fig. 2. Two representations of the same set of conserved intervals

Enumerating, during a depth-first traversal, the leaves of a PQ-tree repre-
senting a set I of conserved intervals, gives a permutation in Perm(I). Consider-
ing PQ-trees as ordered trees implies that there are as many different PQ-trees
representing I as there are permutations in Perm(I), and that each of these dif-
ferent trees, when traversed as described above, gives a different permutation of
Perm(I). Indeed, performing one of the following transformations on a PQ-tree
T does not change the set I of conserved intervals it represents, but implies that
the new ordered tree obtained represents a different permutation of Perm(I):
changing the sign of a leaf incident to a round vertex, reordering the children
of a round vertex, reversing the order of the children of a square vertex (except
the root), and changing in the same time the signs of all leaves present among
these children. It is straightforward to design simple data structures to imple-
ment PQ-trees that allow to perform transformations of a node of a PQ-tree in
constant time.
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Filtering a set of conserved intervals. We now outline the basic steps in the
construction of the filtering algorithm3.

Let T be a PQ-tree representing a set G of unsigned permutations on the set
{1, . . . n} and S ⊆ {1, . . . , n} a given set of elements. The reduction of T over S
yields the PQ-tree that represents the set GS of all permutations of G in which
the elements of S appear consecutively. A reduction can be computed in linear
time with respect to n [7].

A conserved interval [a, b] with inner elements x1, . . . , xk yields three sets that
should appear consecutively in all permutations: {x1, . . . , xk}, {a, x1, . . . , xk}
and {x1, . . . , xk, b}. Moreover, signed permutations on n elements can be coded
by unsigned permutations on 2n elements by replacing +i by 2i−1, 2i, and −i by
2i, 2i−1. Thus, filtering a set G of signed permutations amounts to perform three
reductions (five in the unsigned case) on the PQ-tree representing the unsigned
versions of permutations in G. We have:

Proposition 3. Let [a, b] be an interval of a permutation P on n elements, and
G a saturated set of signed permutations, then the set of conserved intervals of
G[a,b] can be computed in O(n) time and space.

Ancestors labelling. We now describe an algorithm for inferring putative an-
cestral genes orders for a phylogenetic tree with a given topology and with gene
orders at the leaves. The algorithm is similar in spirit to the Fitch-Hartigan al-
gorithm ([12], [15]) for character-based parsimony, and consists of two labelling
phases: a bottom-up labelling and a top-down refinement of this labelling.

Bottom-up labelling. In a first phase, during a bottom-up traversal of the tree,
each ancestral node is labelled with a set of conserved intervals and the associated
saturated set of signed permutations. Let x be a node with children y and z, and
assume that y and z are already labelled by saturated sets of signed permutations
Gy and Gz, with sets of conserved intervals Iy and Iz. Intuitively, we choose the
label Ix that has as many intervals in common with Iy and Iz as possible. If
Gy ∩ Gz 6= ∅, then we set Ix = I(Gy ∩ Gz). If Gy ∩ Gz = ∅, then Iy and Iz

contain some conflicting intervals that need to be removed. We first identify Sy

the subset of Iy that contains intervals that do not belong to conflicting subsets
with respect to Gz. We obtain Sz similarly, with respect to Gy. Finally, we set
Ix = I((Gy)Sz ∪ (Gz)Sy ) and Gx = Perm(Ix). The algorithm proceeds up the
tree until a label for the root is obtained.

Top-down refinement. While the root of the tree was assigned a label Iroot based
on all the leaves of the tree, this is the not the case for the other internal nodes,
which were so far inferred based only on the leaves of the subtree of which they
are the root. To let the information about all leaves be used to establish ancestral
genomes, we proceed to a second phase, again similar to the second phase of the
Fitch-Hartigan algorithm, where the conserved interval Ix of node x are used to
refine the conserved intervals of the children of x. For any child y of node x, we

3 The full technical details of the implementation of this algorithm will appear in [2].
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first compute Sxy, the subset of Ix that contains intervals that do not belong to
conflicting subsets with respect to Gy. We then refine Iy as Iy = (Iy ∪ Sxy)∗,
and obtain Gy = Perm(Iy).

By Theorem 2 and assuming that Conjecture 1 holds, the running time of the
whole labelling procedure is polynomial in the number of genes and the number
of leaves of the tree.

6 Chloroplast genomes

To assess the specificity of the ancestral gene order reconstruction method de-
scribed above, we tested our algorithm on a subset of gene segments of the chloro-
plast genomes of 13 species of plants previously studied by Cosner et al.[10].

Based on a phylogenetic tree previously reported for these species, the two
phases of the ancestral gene order reconstruction were performed, and the in-
ferred sets of conserved intervals are illustrated in Fig. 4. For example, in the
first phase of the algorithm, when building the set of conserved intervals for
the ancestor of Legousia and Triodanus: since both sets contain single permu-
tations, the label of the ancestor is I(GLeg ∪ GTri). This yields the following
representation of the conserved intervals:

ALeg,Tri = 0 1 2 10 7 11 12 13 14 3 -9 -8 -6 -5 -4 15 .

Then, using this reconstruction to build the ancestor of Asyneuma, we note that
intervals [0,1] and [2,13] of Asyneuma are conflicting with respect to ALeg,Tri.
The resulting set of compatible conserved elements is represented by:

ALeg,Tri,Asy = 0 1 2 10 7 11 12 13 14 3 -9 -8 -6 -5 -4 15 .

The process continues up the tree until the ancestral gene order at the root of
the tree is obtained. Fig. 3 shows the resulting set of conserved intervals. The
second phase of the algorithm then starts and the information is propagated
down the tree, starting from the root and adding conserved intervals to the
children as often as possible. The resulting sets of conserved elements, shown in
Fig. 4, is often much more refined than those obtained during the first phase
of the algorithm. For example, the two ancestors ALeg,Tri and ALeg,Tri,Asy are
now pinpointed to single possible permutations, separated by one reversal.

A closer inspection of the ancestral gene orders reconstructed reveals that,
although the criterion used for inferring them was not based on a notion of
parsimony of genome rearrangements, the distance, in terms of number of rear-
rangements, between neighboring sets of ancestral conserved intervals is usually
very small, and often zero. We observe that most rearrangements that can be
deduced from the reconstructed ancestors are reversals, but that a few transpo-
sitions and inverted transpositions also occur, for example between ALeg,Tri and
Legousia or between Platycodon and its ancestor.
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Fig. 3. Reconstructed conserved intervals for internal nodes of the campanulaceae phy-
logeny, after bottom-up labelling.

0 1 2 67 8 9 -10 -5 -4 -3 -14 -13 12 -11 15

0 1 2 7 8 9 -5 -4 -3 -14 -13 12 -11 1510 -6

0 1 2 12 -11 15-8 -7 -10 -9 3 4 6513 14

0 1 2 12 -11 15-8 -7 -10 -9 3 46 513 14

150 1 2 -5 -4-3 -14 -13 -11 -6-12 -7 -10 -8-9

150 1 2 3 4 65 7 8 9 10 -14 -13 -12 -11

150 1 2 3 4 65 7 8 9 10 11 12 13 14150 1 2 3 4 65 7 8 9 10 11 12 13 14

150 1 2 3 4 65 7 8 9 10 11 12 13-14

Trachelium

Symphyandra

Campanula

Adenophora

Wahlenbergia

Merceria

Legousia

Triodanus

Asyneuma

Codonopsis

Cyananthus

Platycodon

Tobacco

-5 -4-6 150 1 2 7 8 9 10 11 12 13 14-3

150 1 2 3 4 5 7 8 9 10 11 12 13 14-6

150 1 2 3 4 5 10 11 12 13 14-6 -8-9 -7

150 1 2 10 12 13-14-5 -4 -3 -8-9 -7 -6 -11

11 150 1 2 -5 -4-610 7 12 3 -8-913 14

11 150 1 2 -5 -4-610 7 12 3 -8-913 14

1110 7 12313 14 150 1 2 -5 -4-6-8-9

150 1 2 -5 -410 7 8 9 6 -3 -14 -13 11 -12

13 14 150 1 2 10 7 8 6-9 3 4 5 12 -11

130 12 12 -11 15-8 -7 -10 14 3 4 659

-8-90 1 2 -5 -4 -3 -14 -13 12 -11 15-7 -10 6

150 1 2 3 4 5 7 8 9 10 11 12 13 14-6

150 1 2 3 4 65 7 8 9 10 11 12 13 14

150 1 2 3 4 65 7 8 9 10 11 12 13-14

11 150 1 2 -5 -4-610 7 12 3 -8-913 14

0 1 2 7 8 9 -5 -4 -3 -14 -13 12 -11 1510 -6

Fig. 4. Reconstructed conserved intervals for internal nodes of the campanulaceae phy-
logeny, after top-down refinement.
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7 Conclusion

This paper presented operations on sets of conserved intervals, as well as as-
sociated techniques applied to the reconstruction of ancestral gene orders. The
results obtained on a classical data set based on chloroplast genomes are very
encouraging.

The next step is to apply our algorithms to the inference of complete an-
cestral mitochondrial and chloroplast genomes, and eventually to whole nuclear
genomes. This would yield a better understanding of the rearrangement pro-
cesses at work in these genomes. It may also highlight some highly conserved
intervals that may correspond to sets of genes with strong positional ties, such
as operons in bacteria.

However, the method presented here has still to be validated by using on
simulated data. Given phylogenetic trees with known ancestral gene orders, we
will test our algorithms on these trees and compare the results to the original
ancestral gene orders.
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